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Abstract:- Wireless localization plays a key role in 

enabling location-based services in commercial, 

healthcare, public safety, and military applications. 

Thus, an increasing number of localization techniques 

have been proposed based on motion or location 

dependent parameter (MLDP) including time-of-

arrival (TOA), time-difference-of-arrival (TDOA), 

received signal strength (RSS), angle-of-arrival (AOA), 

angle-of-departure (AOD), Doppler-shift (DS), etc. 

Recently, the expansion, heterogeneity, and coexistence 

of wireless networks stimulate new research efforts in 

developing novel hybrid localization techniques, which 

utilize combinations of two or more MLDP types. 

However, the accuracy of these localization techniques 

highly depends on complex electromagnetic spectrum, 

e.g., multi-user interference, multipath effects, and 

non-line-of-sight (NLOS) propagation. The latter issue 

has been known as a major source of localization 

errors in wireless systems. Therefore, developing 

robust localizing algorithms for coping with NLOS 

propagation is of great importance. The aim of this 

paper is to survey the key characteristics and technical 

challenges of hybrid wireless localization techniques in 

NLOS environments, to provide comprehensive 

performance analysis and finally to identify possible 

new research directions and further improvements. 
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I.  INTRODUCTION 

 

The proliferation of mobile devices, decreasing 

deployment costs, and rapid advancements in wireless 

technologies have fostered a growing interest in location-

aware services. Satellite based global positioning system 

(GPS) is by far the most popular localizing technology in 

use today, which can provide high precision and real-time 

localization only if the GPS receiver is covered by at least 

four satellites. However, this condition is not always 

satisfied for indoor, dense urban and underwater 
environments, where satellite signals can either be largely 

attenuated or even get completely blocked by various solid 

and dense objects. In order to offer accurate and ubiquitous 

localization solutions, wireless localization techniques 

have been developed in which the location of unknown 

nodes can be inferred with help from nodes with 

knowledge of their location, called anchor nodes, by means 

of the intersection of range measurements from anchor 

nodes. Hence, wireless localization techniques serve as a 

complement or replacement of the GPS when the latter is 

not reliable or operational. 

 

Over the past years, there has been an increasing 

demand for wireless localization techniques in many 

applications. For instance, precise indoor positioning 
system can support elderly living alone, children and 

people with special needs who may be out of visual 

supervision. In smart buildings, localization is needed for 

optimizing energy management systems based on 

occupancy levels, access control, and security. In hospitals, 

accurately localizing the in-demand portable equipment, 

assets, and staff can help in lowering operational cost and 

increasing efficiency. In public safety and military 

operations, real-time localization capability enables 

navigation and coordination of police officers, firefighters, 

or soldiers to complete their mission inside buildings, 

reduce risks in rescue operations, and locate victims faster. 
In addition, accurate wireless localization will play a key 

role in other important applications such as location-

sensitive billing, intelligent transportation, fraud 

protection, mobile yellow pages, and animal tracking. 

 

Localization of wireless nodes can be commonly 

realized by measuring motion or location dependent 

parameter (MLDP) such as received signal strength 

indicator (RSSI), time of arrival (TOA), and time 

difference of arrival (TDOA), Doppler-shift (DS) from 

anchor nodes at known location. Consequently, distances 
between an unknown node and anchor nodes are calculated 

from these MLDPs and then passed to the estimation 

techniques such as least-squares, maximum likelihood 

estimation, and convex optimization to determine location 

of the unknown node. A large number of non-hybrid 

techniques, which employs one type of MLDP, have been 

extensively studied for location estimation, each with its 

own advantages and limitations. Driven by the diversity of 

applications, widespread implementation of heterogeneous 

wireless networks, and the ease of obtaining a variety of 

localization metrics, the hybrid localization techniques, 

which utilize combination of MLDP types, have attracted 
significant research interest. One of the main advantages of 

hybrid techniques is to overcome the limitations of non-

hybrid techniques by exploiting their complementary 

behavior. Moreover, fusion of different MLDP types can 

compensate some inaccurate measurements, and hence 

increase accuracy of the localization performance. Hybrid 

localization techniques are also useful in weak mobile 

hearability conditions or low base stations (BS) density. In 



Volume 3, Issue 12, December – 2018                                   International Journal of  Innovative Science and Research Technology                                                 

                            ISSN No:-2456-2165 

 

IJISRT18DC150                                                  www.ijisrt.com                                  307 

particular, hearability is the ability to simultaneously 

receive signals with sufficient power from neighboring 
BSs, and low hearability conditions can adversely affect 

the performance of the deployed localization technique. 

More1over, the accuracy of the location estimation highly 

depends on the propagation conditions of the wireless 

channels. High accuracy can be achieved when the line-of-

sight (LOS) paths between the unknown node and anchor 

nodes are present. However, harsh radio propagation 

environments such as through tunnels, under bridges, tree 

canopies, or other enclosed areas commonly cause non-

line-of-sight (NLOS) propagation conditions, in which the 

LOS path between a transmitter and a receiver is either 

completely blocked or only partially blocked with the 
signal still penetrating through obstacles such as walls and 

windows. NLOS propagation tends to incur significant 

errors in MLDPs and increase uncertainties in the location 

estimate, which seriously affects the localization 

performance. Therefore, it is of the utmost importance to 

analyze the impact of NLOS conditions on the localization 

techniques and to develop mitigation methods. 

  

There are two classes of method to deal with NLOS 

conditions, i.e., identification and mitigation. The former 

class is to distinguish between LOS and NLOS conditions, 
and then eliminate the NLOS corrupted measurements. 

The later class is to minimize the errors introduced by 

NLOS links. There are several survey papers for NLOS 

mitigation and non-hybrid localization techniques. 

However, to our best knowledge, a detailed survey of 

hybrid localization methods in NLOS environments is not 

available in the literature. In order to inspire new research 

efforts in this field, there is still a need of better 

understanding of state-of-the-art hybrid localization 

techniques. Thus, this paper is an attempt to serve for this 

purpose. We provide a unified overview of different hybrid 

localization methods under NLOS conditions, and analyze 
the investigated techniques in terms of accuracy, 

complexity, and robustness. 

  

The paper is organized as follows: Section II 

provides an overview of NLOS propagation. In Section III, 

a performance analysis of hybrid localization techniques 

with NLOS links is presented. Section IV discusses 

possible new research directions and further 

improvements. 

 

II. NLOS PROPAGATION 
 

In this section, we give a brief overview of NLOS 

propagation. Direct link between a transmitter and receiver 

(i.e., line-of-sight (LOS) link) rarely exists in dense urban 

and indoor environment. Instead, the transmitted signal 

experiences reflection, diffraction, and scattering, as 

illustrated Fig 1, through its propagation. Hence, the 

received signal might consist of multi path components 

                                                        

This paper contains results and findings of a research 
project that was funded by King Abdulaziz City for 
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155. 

(MPC). Single bounce model is commonly used by many 

researchers due to its simplicity. In this model, each MPC 
of the received signal is assumed to bounce only once from 

each scatterer, which forms a one-to-one correspondence 

between a scatterer and an MPC. Besides single bounce 

model, pathless propagation model and shadowing is 

widely considered in hybrid localization approaches. Path 

loss represents the level of signal attenuation while 

shadowing characterizes variations of the mean received 

power. Cost is one of the standard channel models for path 

loss propagation [1], and shadowing is modeled by a 

normal distribution with zero mean and certain standard 

deviation (SD). The impact of multipath is simply 

discarded during estimation of the location of the target by 
averaging the measurements. 

  

Due to the lack of LOS link, the measured distance is 

generally much larger than the true path. As a result, 

measurements might face a deviation error from the 

corresponding true values. Therefore, NLOS error statistics 

are modeled and incorporated into the estimation to 

improve the accuracy. More specifically, the NLOS 

bearing error is uniformly distributed while the NLOS 

range error component in UWB indoor environment is 

modeled as exponential distribution, i.e., 

                (1) 

 

Above, 1/λ denotes the mean. In the presence of 

strictly NLOS links where LOS blockage occurs, AOA 

measurements denoted by  are modeled as uniform 

distribution in the following [2]: 

 

 

(2)  

 

When both LOS and NLOS paths exist, AOA 
measurements are modeled based on a linear combination 

of Gaussian and blockage probability as follows [2]: 

 

(3) 

 

 

where αblock represents the probability of blockage. 

 

(4) 

 

 
 

 

Above, σ2
ls is the standard deviation of local 

scattering. 
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III. HYBRID LOCALIZATION TECHNIQUES 

 
In this section, we analyze various hybrid localization 

techniques proposed for NLOS propagation. Two tables 

that summarize the key characteristics of the investigated 

techniques is provided. 

 

 
Fig 1:- NLOS signal propagation and scattering 

 
A. TOA/RSSI 

Unconstrained nonlinear optimization technique is 

utilized to process hybrid TOA and RSSI measurements 

for wireless localization [3]. First, the distances between 

the target and all BSs are determined using the path loss 

model for given RSSI values. Then, the estimated distances 

are employed in identifying the LOS and NLOS BSs in a 

binary hypothesis testing. Based on the result of the 

hypothesis testing, weight factors indicating the reliability 

of the measurements are assigned for the objective 

function, which consists of the sum of the weighted square 

errors. 
 

In another work [4], the maximum likelihood (ML) 

estimation of the time delay is introduced exploiting path 

loss information whereas the exact ML and maximum 

correlation estimators are derived in  [5]. Since the time 

delay includes a sufficient relation to both position vector 

and positive delay distance due to NLOS, the resulting 

estimate is transformed to the mobile position vector using 

proposed least square, weighted least square and ML 

estimators.  It is shown that identifying NLOS 

measurements a priori, removing them in the estimation 
and using only LOS time delay is sufficient to achieve 

optimal performance in terms of estimation error variance 

[5]. 

   

One of the drawbacks of the proposed methods is the 

clock synchronization requirement between the target and 

BS, which is prone to timing errors in NLOS environment. 

Also, the methods need a priori knowledge of path loss 

model. However, the indoor environment has a different 

path loss exponent changing as function of carrier 

frequency, environment, and the degree of obstructions 

(e.g., wall material, furniture etc.). 
 

B. TOA/Fingerprinting 

In Fingerprinting (FP) method or pattern matching 
method, a database is constructed by location signatures 

(i.e., fingerprints) based on channel impulse response 

(CIR) of different fixed locations in a region. 

Consequently, target location is estimated by correlating 

CIR collected from the target with the stored fingerprints 

in database. The recent work [6] combines FP method and 

an iterative-TOA estimation for wireless localization in 

ultra-wide-band (UWB) signaling systems. More 

specifically, the target location is first estimated by 

matching its CIR pattern of with all available CIR patterns 

in the database. Then, the resulting estimate is given as an 

initial position for iterative-TOA method. Hence, the 
proposed hybrid method plays an important role to reduce 

NLOS errors in the final location estimation. Although the 

FP method can be employed in NLOS environment, its 

high computational complexity can be a major challenge 

for practical systems. 

 

C. TDOA/Fingerprinting 

Also, it should be noted that TOA-based approaches 

require a tight clock synchronization between BS and MS 

whereas TDOA-based methods do not have this limitation. 

However, their accuracy is greatly affected by the relative 
location of the BSs. In TDOA based distance estimation, 

the signal may reflect through scatterers in the multipath 

environment before reaching the MS, which potentially 

introduces a ranging error. Fingerprinting method is used 

to correct this error [7]. Following, LS approach is used to 

estimate the position of MS. 

 

D. TOA/AOD/DS 

The Viterbi algorithm, forward-backward algorithm 

and online Bayesian recursive filter are used to estimate 

the position of a mobile station (MS) using TOA, AOD 

and Doppler-shift observations [8]. The Doppler-shift 
observations depend on the speed and direction of 

movement of the MS. Therefore, the proposed algorithms 

give satisfactory estimation performance if the MS has a 

high probability of transition. On the other hand, if the MS 

is stationary, TOA and AOD measurements are not 

sufficient to estimate its position.  The computational 

complexity of the proposed algorithms is quite high since 

the complexity grows exponentially with the number of 

scatterers. 

  

The joint estimation of the position and speed of the 
MS has been proposed in [9] where the location of 

scatterers are estimated using AOD observations and then 

DS, TOA, and AOD observations are combined to estimate 

the position of the MS. The scatterers’ locations and the 

distances between the scatterers and the MT are estimated 

using least-squares (LS) technique. The algorithm is 

suboptimal since the least-squares technique is applied to a 

nonlinear estimation problem. 

 

The MS location, MS speed and excess time delay of 

the first arriving ray are determined simultaneously [10] by 
solving a set of non-linear equations obtained from angle 

of arrival (AOA), time of arrival (TOA) with respect to 
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first arriving ray, and Doppler shift measurements from 

each arriving ray. Simplex method is used to solve the 
equations. The unique solution exists for the number of 

scatterers being greater than or equal to 6. The above 

works considered single bounce model for NLOS 

propagation, created a mapping between the LMDP of the 

multipath component and the MT coordinates, and 

estimated the latter. It is shown that increasing the number 

of multipath components, i.e., rich scattering environments 

leads to better estimation accuracy. 

  

Another approach is to solve constrained non-linear 

least squares optimization, which explicitly attempts to 

reduce the impact of NLOS links by using bounds on the 
range and angle errors inferred from the geometrical 

relationships among the BSs, the scatterers and the 

unknown MS  based on single bounce Gaussian scatter 

density model [11]. The optimization is solved using a 

novel grid search, which is computationally expensive. In 

this setting, a unique solution exists when the number of 

BSs is greater than or equal to 4. 

  

E. TOA/AOA/RSS 

User cooperation has been exploited in wireless 

localization problem. In particular, when the BS receives a 
location information request from a MS, it constructs a 

cluster in the surroundings of that MS [12]. The neighbors 

of that MS are assigned as cluster-members (CM). The 

BSs take TOA and AoA observations for each BS-CM link 

while each CM takes RSS observations for each CM-CM 

link. First location estimate for each CM is obtained by a 

data fusion method. For each corresponding initial location 

estimate, the BSs in NLOS are identified and the NLOS 

mean error for TOA estimates is calculated. The calculated 

NLOS mean error is subtracted, which compensates NLOS 

errors in the measurements. The final location estimate is 

obtained by solving NLLS minimization with initial 
location estimates, TOA, AOA and RSS measurements. 

 

In the optimization, the long and short-range 

measurements are weighted appropriately to reflect the 

reliability of the measurements for each BS-CM link and 

CM-CM link, respectively. For instance, the link quality 

among CMs is likely to be better than of between BS and 

CM. Therefore, higher weight is selected for these links in 

the objective function, which geometrically constrains the 

final solution and hence reduces its location error. 

 
In the case of non-cooperation, three BSs are 

generally required to obtain an accurate location 

estimation. However, when the MS is closer to one BS 

than the other BSs, the signal-to-noise ratio (SNR) of the 

received MS signal at the neighboring BSs can be low and 

might be interpreted as interference. Therefore, the location 

estimation is actually performed with less than 3 BSs. This 

case is known as hearability problem, which deteriorates 

the estimation accuracy. In the case of restricted hearability 

conditions, the MS should either communicate with a local 

Wi-Fi hotspot or perform cooperation with the other 
known MS with known location. In this regard, the recent 

work [13] considered hybrid localization by applying 

Unscented Kalman filter (UKF) to long-range 

measurements (i.e., TOA, AOA and RSS measurements) 
obtained by one BS and short range measurements 

obtained by Wi-Fi hotspot. The estimation performance is 

improved by assuming knowledge of the NLOS errors 

statistics (i.e., NLOS error is assumed to follow an 

exponential distribution in TOA based distance estimation) 

and reducing ambiguities with available AoA information. 

  

F. TOA/AOA/AOD 

Given AoD, AoA and ToA measurements, the 

authors [14] introduced a three dimensional LS approach 

for jointly estimating the positions of the MS and scatterers 

under the assumption of single bounce reflection model for 
NLOS propagation. 

  

G. TDOA/AOA 

The AOA and TDOA information are used by EKF 

for estimating the position of MS [15]. For each BS, 

hypothesis testing is performed periodically to discriminate 

NLOS and LOS links. If the NLOS link is detected, a 

biased Kalman filter is utilized to mitigate the NLOS TOA 

error. On the other hand, AOA measurements from NLOS 

BSs are discarded and only AOA measurements from LOS 

BSs are used in the estimation. In contrast, the work [1] 
processed all measurements obtained from mixed 

LOS/NLOS propagation. In particular, the authors 

introduced lower and upper bounds on the NLOS bias 

based on geometrical considerations into the filtering step 

of the EKF equations. Since KF cannot effectively mitigate 

the impact of the NLOS bias, at least one LOS range 

measurement is assumed to be available. 

 

H. AOA/RSSI 

TOA based approaches require at least 3 BSs. AOA 

based localization techniques are robust to shadowing and 

uncertainty in the values of environmental parameters. On 
the other hand, RSSI based localization methods are robust 

to low resolution in estimating the direction of target and 

local scattering. Consequently, combination of AOA and 

RSSI based methods provide more robust and accurate 

estimates in the presence of localization errors due to 

NLOS propagation. Also, they eliminate the need of at 

least 3 BSs. 

  

The aforementioned works adopted LS and KF 

approaches for positioning. However, the localization in 

NLOS propagation has multi-modal and non-Gaussian 
nature. Motivated by this fact, the authors [17] applied 

particle filter by exploiting RSSI and AOA measurements 

from 2 BSs. When both the transmit power and location of 

the MS is not known, RSSI difference between two points 

on the path are considered in order to eliminate the need 

for estimating the transmit power. The computational 

complexity of the particle filters grows exponentially with 

the size of the state vector, thus it is less suitable for 

practical applications. To reduce the complexity, particle 

filter is replaced by multi-step extended Kalman filter 

(EKF) and UKF [18]. RSSI difference between two points 
on the path determines the linearization point for EKF, and 

initial mean and sigma points for UKF. Then, the AOA 
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measurements are incorporated to improve the estimation 

accuracy. Although equivalent estimation performance is 
achieved, EKF and UKF still suffer from high 

computational cost. In addition, EKF is very sensitive to 

the linearization point to model a non-Gaussian process 

such as localization in NLOS. Also, the accuracy of UKF 

is highly dependent on positive definite property of the 

covariance matrix. This condition may not be guaranteed 

due to numerical errors. This problem can be alleviated 

using decomposition methods for covariance matrix 

update. 

  

The position of MS is found as the intersections of 

three circles and a line obtained by three highest RSS 
measurements and the AOA information at the serving BS, 

respectively without identifying NLOS/LOS links [19]. 

The impact of NLOS is mitigated by combining a 

weighting procedure with the geometrical feature of cell 

layout. Different from the work [19], the authors [20] 

estimated the location of MS using two highest RSS 

measurements and the AOA information. In this approach, 

the proper weights are assigned to reduce the impact of the 

NLOS-corrupted measurements, and the angular bounds 

inferred from the statistics of the AOA distribution are 

used to minimize the NLOS contribution to the estimation 
accuracy. 

  

Another approach to minimize the effects of NLOS 

propagation is joint estimation of scatterers’ orientations, 

the target location and its transmission power [21]. Since 

the optimization problem is highly nonlinear and non-

convex, the authors apply the relaxation of the non-convex 

equality constraint to obtain a convex approximation and 

relax the problem to a semi-definite programming problem. 

 

Instead of using all available measurements (i.e., both 

LOS and NLOS), a hybrid hypothesis test is proposed to 
identify the most probable two LOS BSs by incorporating 

both RSS and AOA measurements [22]. If two LOS BSs 

are identified, then localization is performed. Otherwise, 

the hypothesis testing returns the two least probable NLOS 

BSs and a weighting approach is employed to reduce the 

effect of NLOS propagation, which in turn improves the 

location accuracy. 

 

I. TDOA/RSS 

The approach in [23] benefits from both TDOA and 

RSS measurements to derive best linear unbiased estimator 
(BLUE). The estimated ranges based on TDOA 

observations are chosen for the estimator if RSS is greater 

than a predetermined threshold. Hence, good SNR and 

high ranging accuracy is achieved. On the other hand, RSS 

is below a threshold, the estimated ranges by RSS are all 

chosen for location estimation. One of the limitations of 

BLUE is to include matrix inversion, which is 

computationally complex for online applications. 

 

J. TOA/AOS 

In TOA based approaches, location estimate is found 
by determining the points of intersection of circles whose 

centers are located at the BSs. By incorporating AoA 

measurements, the area of the possible positions of the MS 

is reduced, which consequently improves estimation 
accuracy. Different kinds of estimators proposed to solve 

the nonlinear TDOA/AOA location equations, i.e., 

minimax estimator [24], Wiener estimator [25], two-step 

LS estimator [26] for low-to-moderate NLOS effects. 

However, when there exits considerable NLOS errors, the 

estimation accuracy is deteriorated. In order to overcome 

this issue, the authors incorporated geometric information 

from the cell layout into the formulation of the two-step LS 

estimation [27]. Consequently, more accurate location 

estimates are obtained in the presence of severe NLOS 

environments. The authors [28] alternatively utilized non-

linear constrained optimization for positioning subject to 
bounds on the range and angle errors inferred from 

geometry. 

 

The measured ranges and AOAs depend on the 

location of scatterers. Hence, by considering the locations 

of scatterers and geometrical relationships among the MS, 

scatterers and the base stations (BSs), the location 

estimates are less sensitive to NLOS errors. The locations 

of the dominant scatterers are unknown in practice. 

Therefore, their location together with the location of MS 

are estimated jointly by means of a nonlinear optimization 
approach based TOA and AOA measurements subject to 

nonlinear geometrical constraints [29]. A grid search-based 

technique is also proposed to solve this problem [30]. 

  

The aforementioned hybrid TOA/AOA localization 

techniques assumed single bounce channel model. The 

recent work [31] analyzed multiple-bound paths (i.e., 2 

paths) and proposed nonlinear programming localization 

algorithm for severe NLOS propagation conditions. Instead 

of utilizing all LOS/NLOS measurements, authors [32] 

developed an iterative minimum residual scheme to 

sequentially detect and eliminate NLOS BSs. Hence, the 
estimation is performed with only LOS BSs. However, this 

algorithm does not provide efficient location estimates in 

strictly NLOS environments. 

 

IV. FUTURE  RESEARCH  DIRECTIONS 

 

In this paper, we present a detailed survey of hybrid 

localization techniques in the presence of NLOS errors. In 

Table 1 and Table 2, we provide a brief summary of 

different techniques including main assumptions, 

limitations and NLOS mitigation approaches adopted. As 
discussed, many proposed techniques suffer from high 

computational complexity. Therefore, further research 

efforts should be spent to develop practical and efficient 

localization approaches that can deal with NLOS 

propagation. Therefore, we believe that this survey will 

serve as a valuable resource for shedding a light on 

tradeoffs among the existing hybrid techniques. It is 

interesting to note that machine learning based techniques 

are not exploited in the literature for identification of 

NLOS links and mitigating NLOS range biases in 

localization. Robust logistics regression may be effective 
to classify links as LOS and NLOS. Artificial feed-forward 

neural networks that exploit signals from an existing 
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communication infrastructure such as Wi-Fi and Bluetooth 

may mitigate impacts of NLOS links.  We plan to research 
these two topics as part of our future work. 
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MLDP 
# of BSs 

involved 

LOS/NLOS 

Assumption 

Channel 

Model 

NLOS localization 

strategy 
Limitations 

TOA, 

RSSI [3] 
At least 3 

At least one BS 
in LOS/all 

NLOS 

Simplified pathloss 

model with 
shadowing. Target 

and BSs are 

stationary 

LOS/NLOS identification 
and weight factor assignment in 

the objective function 

A priori knowledge of 
pathloss model is 

required 

TOA, SS 

[5] 
At least 3 

At least two 

BSs in LOS and 

one BS in 

NLOS 

Simplified pathloss 

model. Target and 

BSs are stationary 

LOS/NLOS identification, 

and removing NLOS 

measurements in the estimation 

A priori knowledge of 

pathloss model is 

required 

TOA, FP 

[6] 

Large number 

of fixed 

stations used 

for training 

phase in FP 

All NLOS 

UWB channel model 

by IEEE802.15 for 

WPAN 

Estimating the target position 

using pre-calculated location 

database and giving it as an 

initial estimate to iterative TOA 

estimation 

Computational 

complexity is high for FP 

training database (i.e., 

2000 CI per location 

point) 

TDOA, 
FP [7] 

Ten access 
points 

Mixed 
LOS/NLOS 

5G band 

Finding the shortest NLOS 

paths using location database 
and removing the multipath 

components 

High computational 

complexity for FP 
training 

TOA, 

AOD DS 

[8] 

One BS, one 

MS stationary 

scatterers 

Strictly NLOS 

Single bounce model 

Markov mobility 

model for MS 

motion 

Introducing a NLOS 

propagation model creating a 

mapping between the MLDP of 

the MPC and the MS 

coordinates and estimating the 

latter 

High computational 

complexity of 

the proposed algorithm 

TOA, 

AOD DS 

[9] 

One BS, one 

MS stationary 

scatterers 

Strictly NLOS 

Single bounce model 

Linear mobility 

model for MS 

motion 

Introducing a NLOS 

propagation model creating a 

mapping between the MLDP of 

the MPC and the MS 

coordinates and estimating the 
latter 

The algorithm is 

suboptimal 

TOA, 

AOD DS 

[10] 

One BS, one 

MS stationary 

scatterers 

Mixed 

LOS/NLOS 

Single bounce model 

Linear mobility 

model for MS 

motion 

Introducing a NLOS 

propagation model creating a 

mapping between the MLDP of 

the MPC and the MS 

coordinates and estimating the 

latter 

Number of scatterers to 

be greater than or to 6, 

otherwise unique solution 

does not exist 

TOA, 

AOD DS 

[11] 

One BS, one 

MS stationary 

scatterers 

Mixed 

LOS/NLOS 

Single bounce model 

Linear mobility 

model for MS 

motion 

Reduce the effect of NLOS by 

using bounds on the range and 

angle errors inferred from the 

geometry. 

Grid search is 

computationally 

expensive 

TOA, 

AOA 

RSSI 

[12] 

One BS, one 

MS multiple 

CMs 

Mixed 

LOS/NLOS 

Statistical channel 

model based ray 

tracing 

Identify and remove NLOS 

measurements for each CM 

Accurate clock 

synchronization between 

the BS and CM needed 

TOA, 
AOA 

RSSI 

[13] 

One BS one 

Wi-Fi hotspot 

one MS 

Mixed 

LOS/NLOS 

Simplified pathloss 

channel model 

Reduce the effect of NLOS by 
using bounds on the range and 

angle errors inferred from the 

geometry 

UKF has high 

computational cost 

AOA, 
RSSI [17] 

One UAV 
one MS 

Mixed 
LOS/NLOS 

Pathloss model with 

local scattering 
probability of 

blockage, shadowing 

Reduce the effect of NLOS by 

using bounds on the range and 
angle errors inferred from the 

geometry 

UAV needs to have 
multiple antenna 

AOA, 

RSSI [18] 

One UAV 

one MS 

Mixed 

LOS/NLOS 

Pathloss model with 

local scattering 

probability of 

blockage, shadowing 

Introducing a NLOS 

propagation model and apply 

filtering 

UKF, EKF  have high 

computational 

complexity 

Table 1:- Hybrid Localization Techniques with NLOS Mitigation. 
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MLDP 
# of BSs 

involved 

LOS/NLOS 

Assumption 

Channel 

Model 

NLOS localization 

strategy 
Limitations 

 

TDOA, 

RSSI [23] 

4 BSs, one MS 
Mixed 

LOS/NLOS 

Pathloss model with 

shadowing 

 

Linear LS optimization which 

intrinsically mitigates the effect 
of NLOS errors 

The proposed 

estimator includes 

matrix inversion, 

which is computa-
tionally complex for 

online applications.. 

AOD, 

AOA TOA 

[14] 

One BS, one 

MS stationary 

scatterers 

Mixed 

LOS/NLOS 
Single bounce model 

Linear LS optimization 

which intrinsically mitigates the 

effect of NLOS errors 

The proposed algo-

rithm is suboptimal 

TDOA, 

AOA [15] 
3 BSs, one MS 

Mixed 

LOS/NLOS 

Standard UWB 

channel model 

NLOS/LOS identification 

remove NLOS measurements 

EKF has high 

computational cost 

TDOA, 
AOA [16] 

 
4 BSs, one MS 

Mixed 
LOS/NLOS 

Pathloss channel model 
Introduce bound constraints 
on the NLOS bias based on 

geometry in the optimization 

EKF has high 
computational cost 

AOA, RSS 

[19] 

 

3 BSs, one MS 

Mixed 

LOS/NLOS 

Pathloss channel model 

with shadowing 

Apply proper weights to reduce 

the impact of NLOS 

propagation 

A priori knowledge 

pathloss model is 

required 

AOA, RSS 

[20] 

 

2 BSs, one MS 

Mixed 

LOS/NLOS 

Pathloss channel model 

with shadowing 

Introduce variable LOS/NLOS 

weighting coefficients, and 

angular bounds inferred from 
the statistics of the AOA 

distribution 

A priori knowledge 

pathloss model and 

statistics of the 
AOA distribution is 

required 

AOA, RSS 

[21] 

6 sensor nodes 

one MS 
Strictly NLOS 

Single bounce 

model with shadowing 

Jointly estimate orientations of 

the scatterers and target 

Algorithm 

converge issue 

AOA, RSS 

[22] 

 

At least 2 LOS 

BSs, one MS 

Mixed 

LOS/NLOS 

Pathloss channel model 

with shadowing 

Identify LOS BSs apply proper 

weights to reduce the impact of 

NLOS propagation 

A priori knowledge 

pathloss model is 

required 

TOA, 

AOA [27] 

At least 2 BSs 

one MS 

Mixed 

LOS/NLOS 
Single ounce model 

Incorporate the geometric 

constraints into the optimization 

Different geometric 

layouts possible 

TOA, 

AOA [28] 
3 BSs one MS 

Mixed 

LOS/NLOS 
Single bounce model 

Reduce the effect of NLOS 

by using bounds on the range 

and angle errors inferred from the 

geometry 

A priori scattering 

model is required 

TOA, 

AOA [30] 
3 BSs one MS Severe NLOS Single bounce model 

Incorporate geometrical relation-

ships among MS, scatterers and 

BSs 

Grid search is 

computationally 

complex 

TOA, 

AOA [32] 

Less than 2 

NLOS BSs one 

MS 

Mixed 

LOS/NLOS 
Single bounce model 

Detect and discard NLOS 

measurements 

Low accuracy 

for strictly NLOS 

environments 

Table 2:- Hybrid Localization Techniques with NLOS Mitigation 
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