
Volume 4, Issue 3, March – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MA280 www.ijisrt.com 551

Analysis of Android Applications by Using Reverse

Engineering Techniques

Soe Myint Myat
Myanmar Aerospace Engineering University

May Thu Kyaw
University of Computer Studies, Yangon

Abstract:- Mobile devices have developed tremendous

popularity over the last few years. The most popular

usage is the smart phones because they are capable of

providing services such as banking, social network, and

so on. The Android platform is the fastest growing

market in smart phone operating systems to date. The

malicious applications targeting the Android system

have exploded in recent years. It needs to detect the

malicious code on Android applications. This paper

focus on the analysis of the android apps by using the

reverse engineering tools for checking the malicious

activities. There are mainly two parts this analysis such

as permissions and java source codes analysis. The

results show that most of malware apps are located the

unnecessary permission on AndroidManifest.xml to

inject the malicious codes in the apps.

Keywords:- Android Security, Reverse Engineering, Static

Analysis, Android Malware.

I. INTRODUCTION

Most of malware attacks are targeting Android

operating system because of the growing market of smart

phones, called Android, and this is a most popular

operating system, open source platform of Google. Android

is mainly used in mobile devices such as smart phone and

tablets. They support several features such as Wi-Fi,

Bluetooth, voice, data, GPS, etc. And, they also provide the

useful services such as gaming, internet browsing, banking,

social networking, etc.

According to the data from International Data

Corporation (IDC),the world-wide smartphone market

grew 0.7% year over year, with 344.7 million shipments [7].

The world wide smart phone market reach a total 355.2

million units shipped in 2018 and Android will dominate

the market with an 89.0% share in 2019.

Android is one of the most popular operating system

because it is an open source operating system. It has some

basic features such as middleware in the form of virtual

machines, system utilities and applications. The most

attractive feature is the ability to extend its functionality
with third-party applications. But, this feature brings with it

the threat, attacks of malicious applications. The increase

of mobile applications causes the challenges of security

that is the vulnerable of the applications and these become

the target of malicious application developers.

According to the report, the large population of

potential victims give malware writers to target mobile

devices and states that the number of new smart phone

malware simples detected has doubled from 1000 per day

in 2013 to 2000 per day in 2014 [8]. Based on these facts,

the android malware increased to the double rate within

2014 and 2015. In the Trend Micro 2016 Security

Predictions report, CTO, Raimund Genes predicted the

following: China will drive mobile malware growth to 20
million by the end of 2016 [9].

Name Form of Attack

Expensive Wall A form of malware

Marcher A form of adobe flash player

update

Xavier A form of Trojan adware

Dvmap Injected puzzle game, Colourblock

Bankbot Injected a game, Jewels Star

Classic

Table 1:- The Five Biggest Andorid Malware Attack in

2017

The five biggest android malware attacks in 2017 [20]

are shown in Table I. The first one, Marcher is found on

third-party markets and other malware attacks are

discovered from Google Play store. Expensive Wall sent

fake messages and charged without users’ permission. The

second one, Marcher would disable security, removes its
icon, sent all device’s information to C&C when the users

open an app from it list of targets. It could steal login

credentials from retail, social media and banking apps. The

third one, Xavier can quietly store personal and financial

data from users by hiding inside the several types of apps

such as ringtone changers, photo manipulators, call

recorders and so on. Another one, Dvmap could inject code

into system library and eliminate root detection software by

hiding inside puzzle game, Colourblock. And another

attack, Bankbot created fake overlay screens which looked

like the login pages of popular banking apps by injecting
inside a game, Jawels Star Classic. And then the data was

passed onto cybercriminals when they entered their login

credential.

In the proposed system, it is used the reversed

engineering tool such as apktool, dex2jar and jdgui for

static malware analysis. This paper is organized as follows.

In section II, it will discuss about the related work of the

previous research work. Section III will be expressed

background theory about android architecture, security and

malware. Reverse engineering methodology and tools will
be discussed in Section IV. The implementation and

http://www.ijisrt.com/

Volume 4, Issue 3, March – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MA280 www.ijisrt.com 552

analysis results will be explained in Section V and this

paper will conclude in Section VI.

II. RELATED WORK

There are many research works that are implemented

on android malware analysis. Most of them are based on

static analysis and these are used reverse engineering

methodology to analyze the apps.

C.Y. Huang et al. [2] proposed their research work

with the performance evaluation on permission-based

detection for android malware. They analyzed the required

and requested the permissions for application and labels the
apps as benign or malware using site based, scanner based

and mixed labeling. And then, they used machine learning

algorithms on three data sets and evaluates the permission

based malware detection performance. It can detect 81% of

malicious application just upon their dataset.

S. M. A. Ghani et al. [3] presented the static analysis

technique that extracted the android apps including benign

and malware for getting their original source code. They

compared API and manager classes from these apps and

categorized them. The most frequent API and manager
class used in malware will be detected. They extracted the

feature by using Androguard, a reverse engineering tool

and compared the extracted source code by categorized the

APIs and manager classes. Their result show that there are

relationship between API and manager classes in malicious

apps.

Y. Cuixia et al. [1] proposed the tool to design a UI

modeling method in Android. It based on attribute graph by

using reverse engineering and program analysis for

applications. Their method is to detect repackaging

detection for malware and assessmentation of apps family.
Therefore, their method can also be used to detect

repackaged apps by checking the UI, functions and

appearances similarity between member families. Their

approach achieved 94.74% detection rate at UI and 26.13%

at repackaging detection. And, they show tht 50% of

repackaged apps use the same UI. Their result shows that

the UI modeling method helps to detect repackaged

applications include malicious apps.

J. Y. Pan et al. [4] proposed the framework to

eliminate the advertisement by filtering or redirection for
targeted application. Some of them require root permission.

They develop an advertisement removal program with the

technique of reverse engineering, which can effectively

patch the advertising code, even obfuscated by other tools.

However, this proposed method cannot work on

customized code of loading advertisement.

A number of researchers introduced the permission

based malware detection. The performance evaluation of

permission based detection [2] is also implemented this

type of detection. But the permission list is still the
minimum defense for a user to detect whether an app could

be harmful. These works can’t completely grantee for

detection malware because the benign app can also use the

same permission like that malware. In [1], [3], and [4], the
static analysis is used the reverse engineering tools to

detect malicious nature such as repackaging and

advertisement.

But it is still needed to implement the effective

malware detection framework because the previous

researches works are partially effective in their proposed

works and some gaps such as detecting of unknown

malware and reducing of false positive alarm are still

remained. The main gap of the current research works is

only effective in well-known attacks because of the rise of

the malware attacks and the budding of malware natures
such as ADB.Miner, a copycat from Marai which is IoT

botnet.

III. BACKGROUND THEORY

This section will discuss about android application

architecture, security and malware that are populated on

recent years.

A. Android Application Architecture

The APK bundle is the format used to package the
android apps that can be got from Google Play Store or any

third-party markets [13]. An APK file is basically a ZIP file,

it can be renamed and can be extracted their contents. Table

II shows the basic architecture of the android application.

Entry Notes

AndroidManifest.x

ml

The manifest file in binary XML

format to set the resources

permission.

classes.dex The application code compiled in

the dex format.

resources.arsc This file contains precompiled

application resources, in binary

XML.

res/ This folder contains resources not

compiled into resources.arsc

assets/ This folder contains applications
assets, which can be retrieved by

Asset Manager.

lib/ This folder contains compiled

code, native code libraries.

META-INF/ This folder stores meta data about

the contents of the JAR. The

signature of the APK is also stored

in this folder.

Table 2:- Android Application Architecture [13]

B. Android Security

Android apps run in separate processes under distinct

Unix user identifiers (UIDs) each with distinct permissions

as shown in Fig. 1. Programs can’t either read or write each

other’s data or code of apps, and applications must be done
explicitly for sharing data. There are two levels for android

security such as Linux Kernal level and Application

Framework level.

http://www.ijisrt.com/

Volume 4, Issue 3, March – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MA280 www.ijisrt.com 553

Fig 1:- Android security model

 Linux Kernel Level Security

Android relies on Linux both of the process, memory
and file system management. It is also one of the most

important components in the Android security architecture.

And, it is responsible for provisioning Application

Sandboxing and enforcement of some permission.

 Application Framework Level Security

Android applications consist of different components

and there is no central entry point unlike Java programs

with the main method. Therefore, it is needed to declare the

resources permission by the developer of an application in

the AndroidManifest.xml file. Permissions are used for

protecting the access to the system resources. The third-
party applications developers may also use custom

permissions to guard the access to the components of their

applications.

 Android Permission

The Android operating system uses a permission-

based model not only to limit the behavior of an application

but also to inform the user of the application’s potential

behavior. An application is needed to declared the required

permissions in AndroidManifest.xml file. The user can

decide to grant the list of permissions, an application
requests when it is to be installed. The user gets to make

the choice whether or not to install the application based on

the list of permissions. Once an application is installed, the

permissions that it has remains static. The android

permission classified into four different levels is shown in

Table III.

Permission

Level

Notes

Normal These cannot impart real harm to the user

(e.g. change the wallpaper)

Dangerous These can impart real harm (e.g. call

numbers, open Internet connections, etc)

Signature These are automatically granted to

requesting app if that app is signed by the
same certificate.

Signature/

System

Same as Signature, expect that the system

image gets the permissions automatically

as well and it is designed only to use by

device manufacturers.

Table 3:- Android Application Permission Level

C. Android Malware

Mobile malware is malicious software that targets
mobile phones by causing the crash of the system and

stealing the confidential information. The first known

mobile virus, “Timofonica”, originated in Spain and was

identified by antivirus labs in Russia and Finland in June

2000 [10].

Fig 2:- The growing threat of android mobile malware [10]

The top android malware families are shown in Fig. 2.
Trojan is the most spread types in android malware. All

types of Trojan malware are totally 60.16% all of malware

[11]. The second more attack type is the Advertising

Malware (Adware).

The behavior of different malware families is

provided in subsequent sections.

 Trojans

Trojans appear to a user as benign application but it is

actually steal the user’s confidential information without
the user’s knowledge. Such applications can easily get

access to the browsing history, messages, contacts and

device IMEI numbers [8]. Mobile banking Trojans can run

together with Win-32 Trojans to bypass the two-factor

authentication and the theft of banking verification codes

that banks send their customers in SMS messages. These

trojans attack a limited number of bank customers and it

can invent new techniques to allow them for expanding the

number and the geography of potential victims.

 Rooter

Originally, the word “root” is used to refer to the root
account on Linux, that is to say, the system administrator,

who has all the rights on the device and can modify all OS

elements as it sees fit, including sensitive files. The rooted

phone or tablet means that the users get the system

administrator level and can control every resources on the

devices. The root may include a phone blocking risk.

 Adware

Adware is a software that contains advertisements

embedded in the application. Adware targeted to the users

who do not wish to pay the software cost. There are many
adware ad-supported programs, games or utilities that are

distributed as adware [19].

37.07

14.268.07
3.39

21.44

14.12

1.65

Trojan -SMS

Rooter

Backdoor

Spyware

Trojan

Adware

Trojan -SPY

Android Applications

UID: 1001, 1002,…..

System Process

UID: System

Linux Kernel

http://www.ijisrt.com/

Volume 4, Issue 3, March – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MA280 www.ijisrt.com 554

 Backdoor

A backdoor is a hidden program to bypass the
security mechanisms. Sometimes, the developer may install

back door for troubleshootional purposes. Backdoors can

utilize the root exploits to grant root privileges for

malwares and help them to hide from antivirus.

 Spyware

There are many reports the spyware as the serious

threat for mobile users Spyware threats are also highly

persistent according to security company and 0.24% of

Android devices that they scanned in the U.S. had

surveillance-ware installed intended to target a specific

individual [18].

 Botnet

Botnet is a network of compromised Android devices

which is running one or more bots. Botmaster, is also

called a remote server controls the botnet through the

Command and Control Server (C&C) network. The botnet

tendencies to actually hijack and control infected devices.

D. Reverse Engineering

Reverse engineering is called back engineering.

Reverse engineering can also be the process of extracting
knowledge or design information from a product that can

be hardware or software. Fig. 3 shows the general reverse

engineering process. To make the source code translation,

it is needed to use the automated tools that can convert one

language to another. Source code translation is a process of

converting from a language to another. This may be

machine bytecodes to original source codes. It is needed to

translate the original program to required human readable

format. After that, it is needed to note the program structure

as the documentation. Most of the programs are too large, it

is necessary to pass through program modularization

process. Program modularization is a process of
subdividing a program into separate sub-programs. After

getting the modularized programs, it is easy to analyze the

whole program. Reengineering of data components of

existing system can be done with the help of methods and

software tools. It extends the life of existing systems by

standardizing data definition and facilitating source code

simplification. It is also called data reengineering process.

Reverse engineering can reproduce the original one or

reproducing anything based on the extracted information.

In android application, there are many reasons for using
reverse engineering. It can be trying to hack or inject

malicious code into an application. Repacakging is a

methodology to modify an application with a particular

layout or animation by using the tools that could access the

XML resource files of interest.

Fig 3:- Reverse eingineering process

Reverse engineering techniques can also be used to

inject the modified code in the original one and it is also

called repackaging application. Therefore, it is always a

good practice to check the developers who develop the

application for security reasons. It is needed to check the

code or the resources that have been effectively obfuscated

or to be sure that unwanted files have not been packaged

into the final release APK, including the information

like API keys, authentication tokens or unused resources
[13]. On the other way, reverse engineering techniques or

tools can be used to detect not only repackaged apps but

also malicious apps.

There are many tools for reverse engineering for

android applications and the following are some of popular

tools.

 SMALI/BAKSMALI

This tool is an assembler or dis-assembler for the dex

format that is used by dalvik bytecode.

 ANDBUG

This tool is also a debugger program for dalvik

bytecode and it uses the same interface as Android’s

Eclipse debugging plugin.

 ANDROGUARD

This tool is a full python tool to perform with android

files such as dex, apk, xml and bytecode resources.

 APKTOOL

It is the most useful tool for android reverse
engineering. It can be used for both decompiling and re-

compiling the android apps. It can generate smail, xml and

resources file.

 DEX2JAR

This tool can work with android.dex and java

bytecode *.class files. It can convert android(dex) file to

bytecode package (jar) file.

Original program

Source code translation

Program documentation

Program modularisation

Modularised program

Data reengineering

http://www.ijisrt.com/

Volume 4, Issue 3, March – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MA280 www.ijisrt.com 555

 JD-GUI

It is a graphical user interface tool to display java
source code from java bytecode (class) file.

IV. METHODOLOGY

This paper will focus on the malware analysis for

Android apps by using reverse engineering tools and static

analysis. There are mainly two steps to extract the required

files for static analysis. The first one, it needs to extract

permission information from AndroidManifest.xml of the

apps. It needs to use apktool for extracting the permission

file. The second one to needed to analyse the java source

codes for extracting the malicious codes. For this step,
dex2jar can be used to convert android (dex) file to java

bytecode (jar) file. But, it is still needed to translate these

java bytecodes to java source codes. For this process, jdgui

can translate the java (class) file to source code (java) file.

A. Reverse Engineering Tools

There are many tools for reverse engineering for

android applications. Among them, the following tools will

be used for the malware analysis.

Fig 3:- Decoding of android app using apktool

 APKTOOL

A tool for reverse engineering 3rd party, closed,

binary Android apps. It can decode resources to nearly

original form and it can rebuild them after making some

modifications [15]. It also makes working with an app

easier because of project-like file structure and automation

of some repetitive tasks like building apk, etc. It can extract

the original source as smali code and the important

permission file. Decoding process of android app using

apktool is shown in Fig. 4.

 DEX2JAR

This tools is to work with android.dex and java .class

files [16]. It can convert the classes.dex file to classes-

dex2jar.jar file. This jar file is the combination of original

source class files. The process of this tool is shown in Fig.

4. It is useful for extracting the original sources as java byte

code.

Fig 4:- Regenerating of bytecode using dex2jar

 JD-GUI

JD-GUI is a standalone graphical utility and it can

display Java source codes from java object code “.class”

files. It can be browsed the reconstructed source code with

this tool for instant access to methods and fields [17]. This

tool can translate *.jar file to *.java code. It is useful to

check the source codes as java based language. Fig. 5

shows the reconstruction of java code from dex file using

dex2jar.

Fig 5:- Reconstruction of java code using dex2jar

B. Android Malware Analysis

In order to analyses a malware there are two methods,

namely, static analysis and dynamic analysis. This work

will only use static approach for malware detection because

static analysis is more effective than dynamic analysis. And,

the cost of computing cost is low and low cost consuming

in static analysis. It can classify as java source code

analysis and permission based analysis. For these analysis,

it is necessary to use reverse engineering methods or tools.

Static analysis consists of executing a selected sample
in a controlled environment to monitor its analysed and it

determine whether it is malicious, and what the changes or

modifications are in the system. Static analysis is a

commonly used tool in malware detection. For Java

applications, static analysis works directly on the bytecode

and can perform various analyses such as reconstruct the

class hierarchy. This analysis find method invocations and

extract control-flow and data-flow information [6] from

them. In a static analysis, it analyze the apk file which has a

common characteristic with jar file for detection the

malicious application. After the resources such as files and

folders are extracted, the static analysis will be mainly
focused on two components such as AndroidManifest.xml

and classes.dex [18]. This xml file is one of main feature

because all the processes need to set the permission in this

file. Therefore, it is needed to check whether unnecessary

permission will be used or not.

http://www.ijisrt.com/

Volume 4, Issue 3, March – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MA280 www.ijisrt.com 556

V. IMPLEMENTATION

There are some reverse engineering tools that are

used to analysis and check the applications for mobile

security. The apktool is used to extract the permission file.

Dex2jar is used to re-convert the *.jar file from original

apps and Jdgui is used for viewing the java code from *.jar

file. The proposed flow of malware analysis architecture is

shown in Fig. 6.

The analysis has basically two parts, permission and

source code analysis. For the permission analysis, it will

use apktool that it can extract the AndroidMinifest.xml and

original bytecodes. These codes are based on the machine
code which is implemented in smili language. This analysis

will only use permission file because smali codes are

difficult to analysis and it will need several process.

Fig 6:- Flow of the Analysis

The permission file is important on android apps

because it is needed to set the permission for several
resources that are implemented in source codes. Most of

the malicious apps use the unnecessary permission that

isn’t related with their apps, and it is needed to extract from

Android Minifest.xml.

For source code analysis, dex2jar and jdgui tools are

used. The first tool can convert the android apk to *.jar file

based on the java byte codes. But, these are also difficult to

analysis due to the implementation of java based machine

language. So, the second tool will be used to decompile

*.jar file and it can generate the original java sources. In

the proposed analysis, the suspected android apps are
carefully analyzed the source code if these apps will use

unnecessary permissions. Finally, it will report the selectd

app (apk) is malicious or benign app.

Apk Manifest Permission

iCalendar.apk INTERNET

ACCESS_COARSE_LOCATION

RESTART_PACKAGES
RECEIVE_SMS

SEND_SMS,

SET_WALLPAPER

Kalendar

Indonesia.apk

INTERNET,

ACCESS_NETWORK_STATE

Calendar.apk RECEIVE_BOOT_COMPLETED

WRITE_EXTERNAL_STORAGE

READ_CONTACTS

VIBRATE

READ_CALENDAR

WRITE_CALENDAR

WAKE_LOCK

Table 4:- Analysis Result of Calendat Apks

Table IV shows the analysis result of three types of

calendar apps such as iCalender.apk, Kalendar

Indonesia.apk and Claendar.apk. Among them,

iCalender.apk is one of the malicious app and the other

apps are benign apps. In Kalendar Indonesia.apk, it only

used two permissions including internet access permission.

This permission used to implement for adding the ads in

the application but it didn’t add any dangerous malicious

code in the app. In Calendar.apk, there are seven access

permissions but these permissions are used only for giving

the calendar facilities. It is not using any malicious code

and it is also a benign app. But, some unnecessary
permissions (sms permissions) are used in iCalendar.apk

and it can be malicious app. The detail analysis of this app

will be shown in Table V.

Manifest Permissions Malicious Codes

INTERNET,

ACCESS_COARSE_LOCATI

ON,

RESTART_PACKAGES,

RECEIVE_SMS,

SEND_SMS,

SET_WALLPAPER

SmsManager.getDefault

().sendTextMessage("10

66185829", null,

"921X1",

PendingIntent.getBroadc

ast(this, 0, new Intent(),

0), null);

Table 5:- Analysis Result of iCalendar.apk

Some of the analysis results of the android apps (apk)

that malware apps are shown in Table V, VI and VII. In

these tables, the left column is the manifest permission list

of the analyzed app and the right column is the malicious

code in the app. The existing several applications like

Skype that needs many access to various data on the phone;

but there are a few applications like Wallpaper, Calendar,

etc that require very few permissions. In these tables, the

analysis results are for a calendar application and two

simple games. But these applications used several

permission and including unnecessary codes in the

packages. Other tested applications also include several
permission and some malicious codes such as SMS

receive/send, read content lists, location access and so on.

Table V is showed the analysis result of calendar

application that is called iCalendar.apk. It is only simple

application that it only needs to show the date of the years,

but it used several unnecessary permission such as internet

http://www.ijisrt.com/

Volume 4, Issue 3, March – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MA280 www.ijisrt.com 557

and sms. After checking the source code, it also used the

malicious code that is used for sending information to
premium number (1066185829). So, the analysis can

determine that this app is a malicious application.

Manifest Permissions Malicious Codes

WRITE_SMS,

RECEIVE_BOOT_COMPL

ETED,

VIBRATE, SEND_SMS,

READ_SMS,

RECEIVE_SMS,

READ_PHONE_STATE,

DISABLE_KEYGUARD,

READ_CONTACTS,

WRITE_CONTACTS,
INTERNET,

ACCESS_NETWORK_STA

TE,

READ_PHONE_STATE,

CALL_PHONE,

WAKE_LOCK,

RESTART_PACKAGES,

WRITE_APN_SETTINGS

String str =

paramIntent.getStringExt

ra("ObjNG0Zw5A");

Intent localIntent = new

Intent("android.intent.act

ion.CALL",

Uri.parse("tel:" + str));

paramContext.startActivi

ty(localIntent);

Table 6:- Analysis Result of qqgame.apk

Other analysis are based on the android games,

qqgame.apk and suiconfo.apk. These results are shown in
Table VI and VII. These apps also used the unnecessary

permissions that are not related with the game features. In

qqgame, the usage of sms and contact permissions are not

related with this game feature. These can utilize to keep

and watch on the users of their calls. And, it is trying to use

the intent.action class by passing the specific number from

the predefined string (ObjNG0Zw5A).

In suiconfo, it also used the unnecessary permissions

such as location access, sms send and contact read. And it

used the malicious codes which are implemented to send
the personal information to the premium number

(0646112264) as in the background process. The users can

only know that they only play the game but their personal

information is stolen in the background by the malicious

developer.

Most of malware apps include the malicious code that

can read contact data to be used to send span messages of

just keep track of the user’s personal data. Some of apps

can be finding GPS location. The permission of android

apps can enable an application to track the collect

information regarding the user who does not comfortable
providing. The internet access permission is also the most

command and dangerous permissions. This internet access

permission is requested by all application that supports

advertisements, video games, etc. But, most of the freeware

apps used internet access permissions to use the

advertisement purpose.

Manifest Permissions Malicious Codes

INSTALL_PACKAGES,

USE_CREDENTIALS,

INTERNET,
BLUETOOTH_ADMIN,

DEVICE_POWER,

READ_CONTACTS,

SEND_SMS,

ACCESS_LOCATION,

ACCESS_GPS

Object[] arrayOfObject =

(Object[])paramIntent.getExtr

as().get("pdus");
SmsMessage[]

arrayOfSmsMessage = new

SmsMessage[arrayOfObject.le

ngth];

String str1 =

arrayOfSmsMessage[0].getMe

ssageBody();

SmsManager.getDefault().sen

dTextMessage("0646112264",

null, str1, null, null);

Table 7:- Analysis Result of SuiConFo.apk

There are mainly used the reverse engineering tools

such apktool, dex2jar and jdgui for these analysis. Actually,

apktool can generate the permission file, source codes and

resource files. It is useful for static analysis to extract the

unnecessary permission usages and malicious code. But,

these extracted source codes are implemented with smali,

bytecode format. It is difficult to understand and it can’t

easily extract malicious features. Therefore, dex2jar and

jdgui tools are needed to use for extracting the malicious

features. Dex2jar can convert the android bytecodes (dex

format) to java bytecodes (jar format). This jar format is a
package of java (.class) files combination. Jdgui can

translate this files (.class) to (.java). After that, it can easily

extract the malicious features. If it is possible to analyze the

smali codes, apktool can only be used for static analysis.

VI. CONCLUSIONS

This analysis has to break apart the application or

malware using the reverse engineering tools and techniques.

For this analysis, the results are based on the manually

checking mechanism after converting to the original source
codes by using the reverse engineering tools. As the results,

some apps consist of the unnecessary permissions which

are used to inject the malicious code for stealing the

information. For this reason, the user should need to check

the usage the permission of the apps when it will be

installed in the mobile devices. As the future work, the

automatic detection mechanism will be proposed for

checking the malicious features.

ACKNOWLEDGEMENT

The authors are grateful for the supports provided by
Myanmar Aerospace Engineering University.

http://www.ijisrt.com/

Volume 4, Issue 3, March – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MA280 www.ijisrt.com 558

REFERENCES

[1]. Y. Cuixia, Z. Chaoshun, G. Shanqing, H. Chengyu, C.

Lizhen, “UI ripping in android: reverse engineering of

graphical user interfaces and its application”, IEEE

Conference on Collaboration and Internet Computing,

2015.

[2]. C.Y. Huang, Y.T. Tsai, and C.H. Hsu, “Performance

evaluation on permission-based detection for android

malware”, Adv. Intell. Syst. Appl. - Vol. 2, vol. 21,

pp. 111–120, 2013.

[3]. S .M. A. Ghani, M. F. Abdollah, R. Yusof, M. Z.

Mas’ud, “Recognizing API Features for

MalwareDetection Using Static Analysis”, Journal of
Wireless Networking and Communications, 2015.

[4]. J. Y. Pan, S. H. Ma, “Advertisement Removal of

Android Applications by Reverse Engineering”,

Workshop on Computing, Networking and

Communications (CNC), 2017.

[5]. T. K. Barsiya1, M. Gyanchandani, R. Wadhwani,

“Android Malware Analysis: A Survey Paper”,

International Journal of Control, Automation,

Communication and Systems (IJCACS), 2014.

[6]. Y. J. Ham, H. W. Lee, “Detection of Malicious

Android Mobile Applications Based on Aggregated
System Call Events”, International Journal of

Computer and Communication Engineering, Vol. 3,

No. 2, March 2014.

[7]. “Smartphone OS Market Share, 2016 Q2”, [Online],

http://www.idc.com/prodserv/smartphone-os-market-

share.jsp

[8]. “Cumulative Number of Android Malware in 2015”,

[Online], https://www.itvoice.in/index.php/it-voice-

news/android-malw are-doublyed-in-2015-vs-2014-

reports-trend-micro-2015-threat-report

[9]. “Continued Rise in Mobile Threats for 2016”,

[Online], http://blog.treandmicro.com/continued-rise-
in-mobile-threats-for-2016

[10]. “Mobile Malware”, [Online],

http://en.wikipedia.org/wiki/Mobile_malware

[11]. “The Growing Threat of Mobile Malware”, [Online],

http://blogarchive.quickheal.com/wp/the-growing-

threat-of-mobile-malware-top-android-malware-

families-of-2012/

[12]. “Backdoor”http://searchsecurity.techtarget.com/defini

tion/back-door

[13]. D. Altomare, “Android Reverse Engineering”,

November 2016. [Online],
http://www.fasteque.com/android-reverse-

engineering-101-part-4/

[14]. “Smali/Baksmali”, [Online],

https://github.com/JesusFreke/smali

[15]. “Apktool”,

[Online],https://ibotpeaches.github.io/Apktool/

[16]. “Dex2jar”, [Online],

https://sourceforge.net/projects/dex2jar/

[17]. “Java Decompiler”, [Online], http://jd.benow.ca/

[18]. J. Kirschner, [Online], “Moblie Security Apps

Perform Dismally Against Spyware”,
https://www.techlicious.com/review/mobile-security-

apps-perform-dismally-against-spyware/

[19]. V. Beal, “Adware”, [Online],

https://www.webopedia.com/TERM/A/adware.html
[20]. A. Elise, “5 types of Android Malware that made

headlines in 2017”, December, 2017. [Online],

http://www.kcci.com/article/5-types-of-android-

malware-that-made-headlines-in-2017/14508001

http://www.ijisrt.com/
http://en.wikipedia.org/wiki/Mobile_malware
http://www.kcci.com/article/5-types-of-android-malware-that-made-headlines-in-2017/14508001
http://www.kcci.com/article/5-types-of-android-malware-that-made-headlines-in-2017/14508001

