Design of High Lift Low Reynolds Number Airfoil for Micro Aerial Vehicle

Shahid khan¹, Saima H Ilkal², Rekha R³

^{1,2,3}Student, Acharya Institute of technology, VTU University, belagavi, Karnataka, India

Abstract:- In this present approach using direct design method in Xflr open source software a newly designed low Reynolds number airfoil is validated. UIUC airfoil coordinates database is taken for the reference airfoil SS007 and, S1223 and E423. using Xfoil parameters, panel code the airfoil parameters like thickness, camber, camber location is optimized at different Reynolds number ranging from $3.42*10^5$ to $10.28*10^5$ at different angle of attacks. This notes derives largely from the prior publication (see refs [3]). The characteristics of new airfoil are analysed and validated from the reference airfoil SS007 which can produce a lift of 2.56 and high L/D ratio at stall angle. Application:This low Reynolds number airfoil is strongly recommended for may design.

I. INTRODUCTION

A. Airfoil Design Methods

The airfoil design advances from the association between geometry of the airfoil, distribution of pressure and the properties of boundary layer.Usually, airfoil is designed in such a way that it provides maximum lift with minimum drag including constraints such as thickness, pitching moment, off-design performance, or other rare constraints.There are two methods of designing an airfoil:[1]

- ➤ direct method
- ➢ inverse method

B. Direct Method for Airfoil Design

This includes the specific geometry of a part and computing the pressure and performance of airfoil. Firstly, the shape is evaluated and altered so as to improve its performance. In this method the two main problems are:[1]

> To Identify the measure of performance of the airfoil

To improve the performance by changing the shape of airfoil

These problems are fixed until there are no crucial problems in the airfoil.

C. Inverse Method for Airfoil Design

In this method, the geometry is calculated for particular parameters like velocity and pressure. It involves changing the shape of airfoil so as to improve its aerodynamic performance which can be done in two ways:

- ➢ By changing the airfoil geometry
- By numerical optimization: changing the geometry of airfoil with the help of shape functions and improving the design by determining the geometry.[1]

The design of airfoil with low Reynolds number is complex as it involves the formation of separation bubble. This results in increase of drag and hence reduces lift.[2]

Using the direct design method, an effort to design an airfoil with low Reynolds number has been made to improve the aerodynamic performance for the application of micro aerial vehicles.

II. METHODOLOGY

The main focus of this is to design an airfoil having low Reynolds number ranging from 3.42*10⁵ to 10.28*10⁵ at various angles of attack (-5 to 20 degree) to increase the aerodynamic performance in mavs and to obtain an ideal result against the existing results. This work involves the analysis and design of 2D airfoil with low Reynolds number using XFLR5 and XFOIL. The characteristics over the 2D airfoil for instance, the coefficients of lift and drag, pressure distribution are studied at different conditions of flight.[3]

As shown in fig 1 the flow chart illustrates the detailed procedure of the work.For understanding the aerodynamic characteristics the leading three airfoils i.e.SS007, S1223 and e423 are selected on the basis of the outcome of the Xfoil results.Using the initial analysis i.e., analysis of aerodynamic characteristics of almost 200 plus airfoil is done by the method of Xfoil panel code. The maximum lift coefficient is obtained by the SS007 airfoil when compared with the other two airfoils which is further used for the design of a new airfoil using XFLR5 software (Foil direct design method).Using this method,the new airfoil is generated when we modify the parameters such as the maximum thickness and camber, location of the thickness and camber.The nascent airfoil is tested for its performance against the reference airfoil i.e.SS007 .[3]

Fig 1:- Methodology [3]

III. FOIL ANALYSIS AND DESIGN MODES

A. Xfoil

For 2D airfoil, the aerodynamic characteristics are attained from the Xfoil. The airfoil coordinates are enlisted to obtain the geometry. Further, the Reynolds number and the AOA sequence is entered from -5 to 20 degrees and the generated aerodynamic characteristics are drag,lift, pressure coefficient and moment coefficients.

$Re = Vc \cdot v$

```
Where \cdot =1.78 \text{ X} \ 10-5 \text{ N-s/m2}, \text{ V} = 5, \ 10, \ 15 \text{ m/s},
```

chord (c) = 1 m, $\cdot = 1.22 \text{ kg/m3}$

- ➤ Case-1: V = 5 m/s; Re = 342697
- ➤ Case-2: V = 10 m/s; Re = 685393
- ➤ Case-3: V= 15 m/s; Re = 1028090

The parameters of the airfoil selected are:

Airfoil parameters	SS007	E423	S1223	
Thickness(%)	12.18	12.52	12.13	
Max thickness	20.20	24.24	20.21	
position(%)				
Max camber(%)	10.56	10.03	8.67	
Max camber	49.50	44.45	49.50	
position(%)				
Number of panels	200	72	81	

Table 1

B. XFLR5

By using direct foil design method, altering the airfoil parameters such as maximum camber and thickness, location of thickness and camber, the nascent airfoil is generated.

The parameters below are modified and analysed for the conditions given.[3]

➢ Condition-

- 1% increment in the camber
- 2% increment in the camber
- 3% increment in the camber

• 1% increment in the camber condition

- 2% Increment in thickness Condition
- 1% Decrement in camber Condition
- 1% Decrement in thickness Condition
- 1% Increment camber & thickness Condition
- 1% Increment thickness & increment 10% location Condition
- 1% Increment thickness & decrement 10% location Condition
- 1% Increment thickness & increment 5% location [3]

ISSN No:-2456-2165

IV. RESULT AND DISCUSSIONS

A. Xfoil

Here, 3 aerofoils have been selected namely SS007, e423, S1223 and it is been tested at different conditions of 5m/s, 10m/s and 15m/s respectively. The maximum lift

coefficient obtained based on the above selected aerofoil is taken as the reference aerofoil for the design of new aerofoil.

The table given below indicates the maximum lift coefficient of all the cases:

Airfoil	Re=342697		Re=685393		Re=1028090	Re=1028090		
	· stall	Clmax	· stall	Clmax	· stall	Clmax		
S1223	11	2.2733	13	2.2767	13	2.2849		
e423	13	2.0065	13	2.0481	13	2.0604		
SS007	15	2.4693	15	2.5162	15	2.5252		

Fig 2:- Lift coefficient versus angle of attack

Fig 3:- Lift/drag coefficient ratio versus angle of attack

ISSN No:-2456-2165

Airfoil		Re 342697	Re 685393	Re 1028090	
Parameters		Clmax	Clmax	Clmax	
	1%increment	2.3806	2.4421	2.3461	
Camber	3%increment	2.4817	2.5144	2.5655	
	1% decrement	2.2001	2.2532	2.2921	
	1%increment	2.3531	2.3851	2.4231	
Thickness	2%increment	2.3431	2.4213	2.4521	
	3%increment	2.3653	2.4341	2.4839	
	1% decrement	2.1321	2.3162	2.3432	
1% Increases camber & thickness		2.4123	2.4821	2.5143	
1% Increased thickness & increased 10%		2.1821	2.2001	2.1521	
location					
1% Increased thickness & decrease	ed 10%	2.2621	2.2921	2.3621	
location					
1% Increased thickness & increased 5%		2.2823	2.2642	2.2958	
location					
SS007 (Reference Airfoil)		2.4693	2.5162	2.5252	

Table 3:- The maximum lift coefficient at different conditions and the second condition i.e; 3% increase in the camber gives the maximum Cl compared to other conditions.

The table here gives the newly developed SR007 low Reynolds number aerofoil with maximum lift and the aerofoil parameters are defined below:

Airfoil Parameters	SR007					
Thickness (%)	13.50					
Max. Thickness Position (%)	22.23					
Max Camber (%)	11.47					
Max. Camber Position (%)	50.51					
Number of Panels	200					

Table 4:- SR007 Airfoil Parameters

Fig 4:- SR007Airfoil Geometry

ISSN No:-2456-2165

X(mm)	Y(mm)	X(mm)	Y(mm)	X(mm)	Y(mm)	X(mm)	Y(mm)
99.67	0.357	74 865	11 324	37 124	16.7	8 648	10 333
99 201	0.931	73 403	11.637	35 719	16.74	7 823	9.828
98 746	1 487	71 932	12.004	34 331	16.76	7.046	9 322
98 284	1 996	70.454	12.325	32.961	16.76	6 319	8 818
97 797	2 457	68.97	12.635	31.616	16 738	5 642	8 317
97 267	2.889	67 479	12.033	30 311	16.692	5.012	7 823
96.683	3 307	65 979	13 219	29.055	16.619	4 4 3 6	7 337
96.003	3 722	64 469	13.496	27.843	16.517	3 905	6 862
95 335	4 14	62.95	13 763	27.645	16 387	3 422	6 401
94 562	4 565	61 424	14.02	25 496	16.229	2 987	5 956
93 716	4 999	59 894	14 266	23.190	16.043	2 595	5.536
92 795	5 443	58 358	14.200	23 197	15.828	2.393	5.109
91.8	5 896	56.816	14.732	23.157	15.586	1 931	4 704
90 742	6 351	55 268	14.752	20.932	15.300	1.551	4 312
89.627	6.805	53 715	15.162	19 814	15.021	1.05	3 931
88.456	7 256	52 159	15.162	19.014	14.696	1.7	3 559
87.232	7.230	50.604	15 557	17.603	14.070	0.98	3 201
87.232	8 146	49.053	15.337	16.512	13 068	0.98	2.85
81.617	8 584	47.500	15.012	15.435	13.508	0.649	2.85
83 300	0.011	47.309	15.912	14 370	13.57	0.049	2.313
81.05	9.011	43.974	16.072	12 345	12 717	0.313	1.880
80.560	9.420	44.433	16.210	12 227	12.717	0.394	1.009
70,160	9.829	42.940	16.35	12.337	12.200	0.292	1.393
77.107	10.219	41.402	16.562	10.421	11.001	0.200	1.519
76 315	10.399	39.990	16.505	0.515	10.833	0.137	0.702
70.313	0.552	50.55 6 217	10.041	9.515	10.835	0.082	0.792
0.043	0.332	7 107	-0.883	41.720	6.336	70.245	7.620
0.017	0.282	2 201	-0.755	43.223	6.571	19.24J 80.575	7.004
0.004	-0.052	0.201	-0.390	44.725	6 703	81.886	7.40
0.003	-0.037	9.332	-0.414	40.219	7.004	82.172	7.273
0.02	-0.38	11.896	-0.208	47.712	7.004	84 434	6.808
0.048	-0.390	13 248	0.014	49.2	7.202	85 667	6.545
0.092	-0.798	14.607	0.248	52 167	7.580	86.877	6.26
0.159	-1	15 083	0.495	53 648	7.550	88.061	5.955
0.238	1 280	17 302	1.048	55 126	7.713	80.001	5.935
0.595	-1.269	18.85/	1 36/	56 601	7 981	90 318	5 295
0.307	-1.505	20 372	1.304	58.07	8.003	90.318	1 948
0.704	-1.414	20.372	2 057	59 533	8 189	02 375	4.548
1 10/	-1.442	21.920	2.037	60 001	8 768	93 373	1 218
1.194	-1.435	25.49	2.41	62 442	8.200	93.323	4.210
1.423	-1.440	25.044	2.730	63.888	8.331	94.218	3.636
1.062	-1.420	20.309	2 / 25	65 378	8 106	95.055	3.45
2 250	-1.404	20.123	3.433	66 762	0.400 Q /17	95.055	2.030
2.239	-1.379	27.031	3.702	68 180	0.41/	90.30	2.031
2.300	-1.332	32,670	4.002	60 608	0.41 8 285	71.230 07 977	1 704
2.75	-1.321	32.079	4.390	71 017	0.30J <u>8</u> 2/1	71.0// 08.482	1.794
3.331	-1.202	34.19	4.702	72 415	0.341	70.403	0.841
3.191	-1.231	33.703	<u>ې</u>	72.413	0.279	99.003	0.041
4.303	-1.100	37.213	5.200	75.005	8 004	77.020 100	0.332
5 5/0	-1.09	<u> </u>	5.300	76.546	7 071	0	-0.019

Table 5:- SR007 Airfoil Coordinates

B. XFLR5

Here, the non dimensional force Cl and Cd (Aerodynamical forces) has been tabulated below at different angles of attack att different conditions of 5m/s, 10m/s and 15m/s respectively

SR007 Airfoil									
AOA	Re = 342697			Re = 685393			Re = 1028090		
	Cl	Cd	Cl/Cd	Cl	Cd	Cl/Cd	Cl	Cd	Cl/Cd
-5	0.4138	0.07710	5.367	0.4578	0.07315	6.26	0.4438	0.07346	6.042
-3	0.4527	0.06504	6.960	0.4825	0.05679	8.51	0.4433	0.06329	7.001
-1	0.6583	0.04501	14.62	0.7035	0.04023	17.47	0.5094	0.05304	9.604
1	1.5088	0.02217	68.05	1.5270	0.01987	76.85	1.5621	0.01806	86.51
3	1.7359	0.02449	70.88	1.7356	0.02227	77.93	1.7715	0.02005	88.35
5	1.9411	0.02711	71.60	1.9150	0.02511	76.26	1.9468	0.02281	85.35
7	2.1289	0.02973	71.61	2.0849	0.02831	73.64	2.1082	0.02623	80.41
9	2.3018	0.03330	69.12	2.2358	0.03186	70.16	2.2593	0.02987	75.63
11	2.4112	0.03842	62.75	2.3588	0.03722	63.37	2.3871	0.03504	68.12
13	2.4672	0.04611	53.35	2.4525	0.04494	54.58	2.5027	0.04130	60.60
15	2.4817	0.05897	42.08	2.5144	0.05651	44.51	2.5655	0.05247	48.91

Table 6:- summary of the results

Figure 5 gives the overview of complete study carried out in this present work at different angle of attack -5° to 20° and different Reynolds number $3.28*10^5$ to $10.28*10^5$

Fig 5:- Lift coefficient versus angle of attack

From the above figure 5 the comparison is made between SS007(Reference aerofoil) and SR007 at different angle of attack ranging from -50 to 200 with different Reynolds number condition ranging from 3.42*105 to 10.28*105 is been plotted which produces a maximum lift of 2.56 at Reynolds number 10.28*105 and the reference aerofoil produces 2.53 maximum lift at 10.28*105 Reynolds number respectively.

V. CONCLUSIONS

As a result of this present work using xflr5 open source software allows Reynolds number aerofoil with maximum lift co-efficient at stall angle with maximum Cl/Cd ratio can be designed using this xfoil panel method which produces more lift than the reference aerofoil SS007. SS007 produces 10.96% more lift from the S1223 aerofoil and SR007 produces 12.12% more lift compared to S1223 aerofoil. The maximum lift is 2.56 from the 3.42*105 to 10.28*105 Reynolds number range. It is proved that newly developed

SR007 2D aerofoil gives the better aerodynamic performance than the reference aerofoil, this can be strongly recommended to be used in the construction of MAV.

REFERENCES

- [1]. XFLR5, 2009, Analysis of foils and wings operating at low Reynolds numbers, Guidelines for QFLR5 v0.03.
- [2]. Somashekar V, 2014, "A Computational Investigation of Unsteady Aerodynamics of InsectInspired Fixed Wing Micro Aerial Vehicle's 2D Airfoil", Hindawi Publishing Corporation, Volume 2014, Article ID 504049, 7 pages.
- [3]. Design of low Reynolds number airfoil for micro aerial vehicle.
- [4]. Michael S. Selig, Christopher A. Lyon, Philippe Giguere, Cameron P. Ninham. James J. Guglielmo, 1996, "Summary of Low-Speed Airfoil Data", SoarTech Publications, Virginia Beach, Virginia.
- [5]. Ali Doosttalab, Mohammad Mohammadi, Mehdi Doosttalab, Ali Ashrafizadeh, 2012, "Numerical Investigation of Aerodynamical Performance of Damaged Low-Reynolds Airfoils for UAV Application", TFAWS 2012.
- [6]. Mostafa Hassanalian, Hamed Khaki and Mehrdad Khosrawi, 2014, "A new method for design of fixed wing micro air vehicle" Journal of Aerospace Engineering 2014.