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Abstract:- Software complexity crisis becomes an 

impediment to further development of software. 

Specifically, in order to manage increasingly complex 

and massive software systems, researchers involve in 

building systems with autonomy. The real-time reactive 

systems with autonomic behaviors could be more self-

managed and more adaptive to the environment. 

However, formations of some of such systems are not 

formalized, which may lead systems to be error-prone. 

In this research, we proposed a formal way to describe 

formations of reactive autonomic systems framework. 

Firstly, we introduce how to from reactive autonomic 

system, components group, and component, then we 

focused on categorizing the formations. To do so, the 

basis of reactive autonomic systems can be built with 

correct by construction. 
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I. INTRODUCTION 

 

Software complexity crisis has been deemed as one of 

the major obstacles to the progress in software industry, 

since the management of computing systems with 

complexity becomes difficult for IT Practitioners. We need 

to select a target system that can get benefit from applying 

the autonomic computing paradigm. Usually, real-time 

reactive systems are considered as one of the most complex 

systems; the complexity involved comes from their real-
time as well as reactive characteristics: 1) concurrency is 

involved; 2) timing requirements are strict; 3) reliability is a 

must; 4) software and hardware components are involved; 

5) it becomes more and more intelligent and heterogeneous. 

So, we need to add autonomic features into real-time 

reactive systems by using Reactive Autonomic Systems 

Framework (RASF), which helps to specify, model and 

develop the Reactive Autonomic Systems (RAS). By 

adding autonomic behaviors, real-time reactive systems 

become more self-managed and adaptive; the RAS can 

improve and simplify users’ experiences. By using input 

data and checking results only, it is difficult to find the 
competitive conditions in the real-time reactive system, 

because some errors may only occur when the process 

sends or receives data at a specific time. In order to detect 

these errors through testing, every state combination of 

processes must be checked, which may result in an 

exponential number of states [1]. Formal methods have 

been proven to be the way to ensure the correctness of 

operation in complex interactive systems, because formal 

specifications are proved that it can help to check specific 

types of errors, and it can also be used as input for model 

checking [1]. 

 

To continue the research [2][3], we proposed an 

approach to model reactive autonomic system, component 

group and components in this paper. The rest part of the 

paper is presented as follows: Section 2 sketches the work 
related to the research. Section 3 introduces the background 

knowledge needed to understand the paper. Section 4 

introduces formation of reactive autonomic system and its 

categorical models. Section 5 describes formation of 

reactive autonomic component group and its categorical 

models. Section 6 explains formation of reactive autonomic 

component and its categorical models. In the last, 

conclusion and future work are provided in Section 7. 

 

II. RELATED WORK 

 

This section introduces related research work to the 
paper. 

 

A. Real-Time Reactive Systems 

In research [4], Caporuscio specifies that there is a 

trend to switch assembling components into systems to 

composing autonomous systems into systems-of-systems 

dynamically, as these kinds of system usually run in highly 

dynamic environments. In research [5], an approach to 

solve the problem of synchronous programs that cannot be 

executed in a time-triggered or event-triggered execution 

loop easily. By using dynamic tickets method, semantic 
timing abstraction of the synchronous approach can be 

reconciled that can help to give the application fine-grained 

control over its real-time behavior.  

 

B. Formal methods 

Formal method can be used to assess risks at the early 

stages of developing security-critical real-time systems in 

research [6], where a formal model named Object-Message-

Role (OMR) with Z notation is proposed to specify 

functional and security aspects of systems. Research [7] 

defined a model using formal method to evaluate the 

quality of system architecture. By formalizing 
characteristics of system architecture, good quality 

attributes can be quantified and can be used in may system 

architecture tools. In research [8], probabilities are 

combined with a formal approach to develop safety-critical 

systems. In this approach, model-driven engineering is used 

for reactive systems and a tool-set reactive blocks extend 

the support of modeling and verification of behaviors in 

real-time systems. In paper [9], instead of reviewing 

requirements manually, a formal scenario-based method 
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based on LSCs/MSDs are proposed, which support 

automated analysis by formal realization checking and 
scenario execution. In research [10], based on a formal 

language called Biographical Reactive System, the 

correctness of deploying architecture is able to be 

guaranteed. By using a multi-scale modelling, automatic 

construction is supported. 

  

III. BACKGROUND 

 

In this section, background and work related to our 

research are introduced. 

 

A. Reactive Autonomic Systems (RAS) 
The framework of Reactive Autonomous System 

(RASF) shown in Fig.1 consists of four tiers, which include 

Reactive Autonomic Systems, Reactive Autonomic 

Component Groups, Reactive Autonomic Components and 

Reactive Autonomic Objects. In this hierarchical model, 

each layer only exchange messages with its upper or lower 

layers. Therefore, the independence of these layers makes it 

possible to modularize, encapsulate, decompose and reuse 

them. 

 

 
Fig. 1:- RASF Architecture Model 

 

 RAO is considered as a labeled transformation system 

[11], which is specified as tuples (P,ε,Θ,X,L,Φ,Λ,γ,R) as 

follows: 

 

 P consists of a set of ports, where, for each type of 

port and type of null, there exist only port P0. 

 ε consists  of a set of events, where silence events are 
included.  

 Θ consists of a set of states, where Θ0 indicates the 

initial states, and final state doesn’t exist.  

 X consists of a set of attributes with types. There 

exists two types, port reference types and abstract data 

types. 

 L consists of a set of traits, which is used to indicate 

the abstract data type in X. 

 Φ indicates a pair (Φs,Φat) to denote function-vector 

relation,  where Φs attaches a set of sub states to each 

Θ and Φat attaches a set of attributes to each Θ. 

 Λ indicates a set of specifications used in transitions. 

 γ indicates a set of constraints to time. 

 R indicates the set of available resources used locally 

to support object’s functionality. 
 

 RAC indicates a group of RAOS that communicate 

synchronously, one of which is assigned to the 

remaining workers as a leader, which is usually referred 

to as RAOL. Workers take care of reactive tasks, while 

RAOL is responsible for autonomous tasks, such as 

coordinating and managing component’s self-

monitoring. Therefore, RAOL is different from workers 

by using a different set of states. These states are related 

to autonomic behavior. The reactivity and autonomy of 

RAOL, which is specified formally, provide a means for 

them to gain functionalities with autonomic 
characteristics in reactive systems with real-time 

property. In order to coordinate the performance of 

tasks and messages exchanging between RAOs, the 

specification of RAC specification includes members, 

configurations, leaders, supervisors, repositories and 

neighbors. RAC is the smallest centralized reactive 

autonomous element (RAE) with self-management 

ability. 

 

RAC’s reactive behavior includes n collaborations. 

RAO is modeled as tuples (Ps,εs,Θs,Xs,Ls,Φs,Λs,γs,Rs) [12] as 
follows: 

 

 Ps contains a set of types of port, which allows a 

synchronous message passing between Reactive 

Autonomic objects. 

 εs indicates a union of εi where 1≤in. 

 Θs contains a set of states which are used for valid 

Synchronous Production Machine. 

 Xs indicates a union of sets Xi
syn, where 1≤in. 

 Ls indicates a union of sets of traits, which are used for 

Abstract Data Type and specified by Larch 
Specification Language. 

 Φs indicates a triple (Φs
s,Φat

s, Φγ
s) to denote function-

vector relationship, where Φs
s attaches a set of 

substates to each Θs, Φat
syn attaches a set of attributes 

Φat1(Θ1
s) ,…, Φatn(Θn

s) to each Θs, and Φγ
s attach a 

subset of Rsyn to each Θsyn. 

 Λs contains a set of specifications used for transitions. 

 γs contains a set of constraints to time. 

 Rs indicates the set of available resources in RAO, 

which is represented as a union of Ri, where 1≤in. 

 
 RACG is a group of RAC, which are either distributed 

or centralized. RAC completes tasks that grouped 

together through synchronous message passing and 

cooperation between each other. It is considered as the 

smallest RAE in RASF that can perform tasks of real-

time reactive systems independently. RACS is a 

supervisor, which coordinate and manage autonomic 

behaviors at group level. 

 

 RAS consists of a group of RACG, which are either 

distributed or centralized with asynchronous message 
passing. It acts as an interface that is integrated for user 

to delegate tasks for computing, monitoring and 
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managing. A manager of RACG (RACGM) has the 

main responsibilities to coordinate autonomic behaviors 
at system level. 

 

B. Category Theory 

Category theory is considered to have a rich 

theoretical knowledge to explain objects and relations 

between objects. It is an abstract framework that is able to 

be applied to many kinds of languages used for 

specifications [12]. For software specification, category 

theory provides a means to construct specifications with 

properties of correctness, which can help to prove the 

attributes and relationships maintained during the 

constructions of different stages [12].  In addition, by 
equipped with operations and diagrams of reasoning, 

hierarchical structures of complex systems are able to be 

formed as components used in other complex systems, and 

infer system attributes based on their configuration [13]. 

Since the self-configuration of RAS does not have such 

formalization, we suggest to achieve the formalization of 

self-configuration by category theory. In order to learn this 

paper, we present the basic definitions of category as 

follows: 

 

Definition 1: A category includes morphisms and objects. 
Given object A, B and C, if there exists morphisms f: A → 

B and g: B → C, then there must have a composition 

morphism g ◦ f : A → C. For the composition, an 

associativity: (h ◦ g) ◦ f = h ◦ (g ◦ f) exists. For each object 

X, there exists an identity morphism IdX, and for morphism 

f : A → B, f ◦ IdA = f = IdB ◦ f. 

 

Definition 2: A subcategory Sub of category Cat represents 

by a collection of objects which is a subcollection of  Cat’s 

objects, indicated by obj(Sub), and a collection of 

morphisms which is a subcollection of Cat’s morphisms, 

indicated by mor(Sub). For each X in obj(Sub), there exist 

an identity morphism IdX in mor(Sub). For each 
morphism f: X → Y in mor(Sub), and morphism g: Y→ Z in 

mor(Sub), there exists a composition f ◦ g is in mor(Sub). 

 

IV. RAS FORMATION AND CATEGORICAL 

MODELS 

 

In this section, an approach to form RAS is proposed, 

and categorical models for RAS are illustrated. 

 

A. Forming a RAS 

After receiving the task of forming a RAS from User 

Console, RACGM starts to create RACS and establish 
corresponding connections among them based on the 

composition rules and communication protocols specified 

by the index category RAS-Formation. Fig.2 depicts an 

example of forming categories RAS1 and RAS2 from their 

index category RAS Formation. 

 

After RACGM1 initializes its RACS according to the 

requirements from the User Console and the capabilities of 

those RACS, it validates the configuration of those RACS 

against their types every t ticks (a tick represents abstracted 

one time unit within RAS1), while RACGM1 is in the 
initial state of its intelligent control loop for monitoring. If 

the configuration of those RACS conforms to their types, 

composition rules and communication protocols, 

NoViolation event keeps RACGM1 in the state of Monitor; 

otherwise, NeedInvestigation event is triggered and 

RACGM1 transits to state Analyze, while a constraint to 

time variable (TCvar1) is initialized to act as a local clock 

in terms of constraints to time on every transition of the 

intelligent control loop. The value of TCvar1 is t0, t1, t2, 

t3... where t0 < t1 < t2 < t3.

 

 
Fig. 2:- Example of Forming RAS from RAS-Formation 
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After RACGM1 goes in state Analyze, 1) it sends a 

message Restart to RACS1 in t0 ticks where the violation is 
caused by incorrect RACS type or incorrect communication 

type from RACS1 to RACGM1. If RACS1 conforms to its 

type and communication type, event NoAction occurs and 

RACGM1 returns back to state Monitor, while the TCvar1 

is reset; otherwise, RACGM1 moves to state Plan triggered 

by event LaunchSelfHealing in t1. 2) If the violation is 

caused by incorrect communication type from other RACS 

(RACS3) to RACS1, RACGM1 sends a message Restart to 

RACS3. If the communication conforms to its type, event 

NoAction occurs and RACGM1 returns back to state 

Monitor, while the TCvar1 is reset; otherwise, RACGM1 

moves to state Plan triggered by the event 
LaunchSelfHealing within t1. 3) If the violation is caused 

by the incorrect communication type from RACGM1 to 

RACS1, RACGM1 resets that communication. If it 

conforms to the correct one specified in the index category 

RAS-Formation, event NoAction occurs and RACGM1 

returns back to the state Monitor, while the TCvar1 is reset; 

otherwise, RACGM1 moves to state Plan triggered by the 

event LaunchSelfHealing in t1. 

 

When RACGM1 is in state Plan, it chooses either 

Substitute plan or Take-over plan, based on the availability 
of substitutable RACS for RACS1 or for RACS3. RACGM1 

moves to state Execute triggered by the event Substitute or 

event Take-over respectively in t2. RACGM1 sends a 

message selfViolation to User Console, and the latter 

chooses either Substitute plan or Take-over plan based on 

the availability of substitutable RACGM for RACGM1. It 

moves to state Execute triggered by event Take-over or 

Substitute in t2. 

 

When RACGM1 is in state Execute and Substitute plan 

is available, it sends a message register to the substitutable 

RACS of RACS1 or RACS3 and initialize it to the status of 
RACS1 or RACS3 according to the previously made 

checkpoint. When the plan take-over is available, RACGM1 

sends a message take-over to RACS2 and update the status 

of the synchronous product machine of RACS1 and RACS2, 

or RACS3 and RACS2 d on the checkpoint. After the plan 

execution of plan, RACGM1 validates the configuration of 

RAS1’, an evolution of RAS1 against its index category 

RAS-Formation according to their categorical 

specifications. If that configuration conforms to the index 

category, event ActionDone occurs and RACGM1 moves to 

the Monitor state in t3; otherwise, event ActionFailed stays 
it in state Execute for the user intervention from the User 

Console. 

 

B. Categorical Models of Forming a RAS 

The actions in the formation work flow, self-

configuration work flow, substitution work flow and take-

over work flow of RAS1 can be specified as the categories 

where objects are those actions (InitializeRACS, 

ValidateRACS, ValidateRACcommunication, etc.), and 
morphisms are their preorder relationship before. Each 

object (action) in those categories is a quadruple. For 

example, LaunchInvestigation = (RACGM1, NotConfrom-

RACS, InvestigateRACS, RACS1); the sequences of those 

actions can be specified as the categories in which objects 

are those sequences (<InitializeRACGM, Heartbeat, 

InitializeRACS, Heartbeat>, <ValidateRACGM, Conform, 

ValidateRACS, NotConform>), and morphisms are the 

equivalence relationship between those sequences. 

 

The transitions in the intelligent control loop of 

RACGM1 for self-configuration are specified as a category 
where objects are those transitions (NoViolation, 

NeedInvestigation, RestartRACS, NoAction, etc.), and 

morphisms are their preorder relations before. Each object 

(transition) in that category is a triple. For example, 

NeedInvestigation = (Monitor, NotConform-RACS, 

Analyze); the sequences of those transitions are specified as 

a category where objects are those sequences 

(<NoViolation, NeedInvestigation, RestartRACS1, 

NoAction>, <RestartRACS1, LaunchSelfHealing, 

Substitute, ActionDone>), and morphisms are equivalence 

relations between those sequences. 
 

Let RAS1 be a subcategory (consisting of the objects 

RACGM1, RACS1, RACS2, RACS3 and the morphisms 

among them) of RAS1-0 (a category consisting of all the 

potential RAE for the self-configuration in RAS1). If RAS1 

is conformed to the index category RAS-Formation by 

restarting the violated RACS1 or RACS3, it will evolve to 

RAS1-1 (consisting of the objects RACGM1, RACS1 or 

RACS1-1, RACS2, RACS3 or RACS3-1 and the 

morphisms among them in RAS1-0), which has the same 

configuration and categorical structure as RAS1 except for 

the different initial status of RACS1 or RACS3. This 
evolution is specified by a Restart functor (a structure-

preserving mapping) from the RAS1-1 to RAS1-0. If 

RAS1 is confirmed to RAS-Formation by substituting the 

RACS1 or RACS3 with their isomorphic objects RACS7 or 

RACS9, it will evolve to RAS1-2 (consisting of objects 

RACGM1, RACS1 or RACS7, RACS2, RACS3 or RACS9 

and the morphisms among them in RAS1-0) that has the 

same configuration and categorical structure as RAS1 but 

replacing RACS1 or RACS3 with RACS7 or RACS9. The 

above is specified by the Substitute functor, a structure-

preserving mapping. If RAS1 is conformed to the RAS-

Formation by querying RACS2 to acquire the 

responsibilities of RACS1 or RACS3, it will evolve to 

RAS1-3 (consisting of objects RACGM1-1, SPM, RACS1 

or RACS3 and the morphisms among them in the RAS1-0), 

which has different categorical structure, but both of them 

have the equivalent configuration (see Fig. 3). 
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Fig 3:- Evolution for Self-Configuration in RAS1 

 

V. RACG FORMATION AND CATEGORICAL 

MODELS 

 

In this section, an approach to form RACG is 

proposed, and categorical models for RACG are illustrated. 

 
A. Forming a RACG 

After receiving the task of forming a RACG from 

RACGM, RACS starts to create RAOL and establish 

corresponding connections among them based on the 

composition rules and communication protocols specified 

by index category RACG-Formation. Fig.4 illustrates an 

example of forming the categories RACG1 and RACG2 

from their index category RACG-Formation. 

 

After RACS1 initializes its RAOL according to the 

requirements from the RACGM and the capabilities of those 

RAOL, it validates the configuration of those RAOL against 
their types each t (a tick represents abstracted one time unit 

within RACG1), while RACS1 is in the initial state of its 

intelligent control loop for monitoring. If the configuration 

of those RAOL conforms to their types, composition rules 

as well as communication protocols, event NoViolation 

keeps RACS1 in state Monitor; otherwise, event 

NeedInvestigation is triggered and RACS1 transits to state 

Analyze, while a time constraint variable (TCvar2) is 

initialized to work as a local clock in terms of constraints to 

time on every transition of the control loop. The value of 

TCvar2 is t0, t1, t2, t3... where t0 < t1 < t2 < t3. 

 

After RACS1 goes in state Analyze, 1) it sends a 
message Restart to RAOL1 in t0 ticks where the violation is 

caused by the incorrect RAOL type or incorrect 

communication type from RAOL1 to RACS1. If RAOL1 

conforms to its type and communication type, event 

NoAction occurs and RACS1 goes back to state Monitor, 

while the TCvar2 is reset; otherwise, RACS1 moves to state 

Plan triggered by event LaunchSelfHealing in t4 ticks. 2) If 

the violation is caused by incorrect communication type 

from other RAOL (RAOL3) to RAOL1, RACS1 sends a 

Restart message to RAOL3. If the communication conforms 

to its type, event NoAction occurs and RACS1 returns back 

to state Monitor, while the TCvar2 is reset; otherwise, 
RACS1 moves to state Plan triggered by the event 

LaunchSelfHealing within t4. 3) If the violation is caused 

by the incorrect communication type from RACS1 to 

RAOL1, RACS1 resets that communication. If it conforms 

to the correct one specified in the index category RACG-

Formation, event NoAction occurs and RACS1 returns 

back to the state Monitor, while the TCvar2 is reset; 

otherwise, RACS1 moves to state Plan triggered by event 

LaunchSelfHealing in t4. 
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Fig 4:- Example of Forming RACG from RACG-Formation 
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When RACS1 is in Plan state, it chooses either 

Substitute plan or Take-over plan, based on the availability 
of substitutable RAOL for RAOL1 or for RAOL3. RACS1 

moves to state Execute triggered by the event Substitute or 

event Take-over respectively in t5 ticks. RACS1 sends a 

message selfViolation to RACGM1, and the latter chooses 

either Substitute plan or Take-over plan based on the 

availability of substitutable RACS for RACS1. It moves to 

state Execute triggered by event Substitute or Take-over in 

t5. 

 

When RACS1 is in state Execute and plan Substitute is 

available, it sends a message register to the substitutable 

RAOL of RAOL1 or RAOL3 and initialize it to the status of 
RAOL1 or RAOL3 according to the previously made 

checkpoint. When the plan take-over is applicable, RACS1 

sends a message take-over to RAOL2 and update the status 

of the synchronous product machine of RAOL1 and 

RAOL2, or RAOL3 and RAOL2 according to the 

checkpoint. After the executing the plan, RACS1 validates 

the configuration of RACG1’, an evolution of RACG1 

against the index category RACG-Formation based on 

their categorical specifications. If that configuration 

conforms to the index category, event ActionDone occurs 

and then RACS1 moves to the state Monitor within t6; 
otherwise, event ActionFailed keeps it in state Execute for 

RACGM1’s intervention. 

 

B. Categorical Models of Forming a RACG 

The actions in the formation work flow, self-

configuration work flow, substitution work flow and take-

over work flow of RACG1 can be specified as the 

categories where objects are the actions (InitializeRAOL, 

ValidateRAOL, ValidateRAOLcommunication, etc.), and 

morphisms are their preorder relationship before. Each 

object (action) in those categories is a quadruple. For 

example, LaunchInvestigation = (RACS1, NotConfrom-
RAOL, InvestigateRAOL, RAOL1), and the sequences of 

those actions are specified as the categories where objects 

are those sequences (<InitializeRACS, Heartbeat, 

InitializeRAOL, Heartbeat>, <ValidateRACS, Conform, 

ValidateRAOL, NotConform>), and morphisms are the 

equivalence relationship between those sequences. 

 

The transitions in the intelligent control loop of 

RACS1 for self-configuration can be specified as the 

category in which objects are those transitions 

(NoViolation, NeedInvestigation, RestartRAOL, NoAction, 
etc.), and morphisms are their preorder relations before. 

Each object (transition) in that category is a triple. For 

example, NeedInvestigation = (Monitor, NotConform-

RAOL, Analyze); the sequences of those transitions can be 

specified as a category in which objects are those sequences 

(<NoViolation, NeedInvestigation, RestartRAOL1, 

NoAction>, <RestartRAOL1, LaunchSelfHealing, 

Substitute, ActionDone>), and morphisms are equivalence 

relations between those sequences. 

 

 
 

Let RACG1 be a subcategory (consisting of the 

objects RACS1, RAOL1, RAOL2, RAOL3 and the 
morphisms among them) of RACG1-0 (a category 

consisting of all the potential RAE for the self-

configuration in RACG1). If RACG1 is conformed to the 

index category RACG-Formation by restarting violated 

RAOL1 or RAOL3, it evolves to RACG1-1 (consisting of 

the objects RACS1, RAOL1 or RAOL1-1, RAOL2, 

RAOL3 or RAOL3-1 and the morphisms among them in 

RACG1-0) that has the same configuration and categorical 

structure as RACG1 except for the different initial status of 

RAOL1 or RAOL3. This evolution is specified by a functor 

Restart (a structure-preserving mapping) from RACG1-1 

to RACG1-0. If RACG1 is conformed to the RACG-

Formation by substituting RAOL1 or RAOL3 with their 

isomorphic objects RAOL7 or RAOL9, it will evolve to 

RACG1-2 (consisting of objects RACS1, RAOL1 or 

RAOL7, RAOL2, RAOL3 or RAOL9 and the morphisms 

among them in RACG1-0), which has the same 

configuration and categorical structure as the RACG1 but 

replacing RAOL1 or RAOL3 with RAOL7 or RAOL9. The 

above is specified by a Substitute functor, a structure-

preserving mapping. If RACG1 is conformed to RACG-

Formation by querying RAOL2 to acquire the 

responsibilities of RAOL1 or RAOL3, it evolves to 
RACG1-3 (consisting of the objects RACS1-1, SPM, 

RAOL1 or RAOL3 and the morphisms among them in 

RACG1-0), which has the different categorical structure, 

but both of them have the equivalent configuration (see 

Fig.5). 
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Fig 5:- Evolution for Self-Configuration in RACG1 
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VI. RAC FORMATION AND CATEGORICAL 

MODELS 
 

In this section, an approach to form RAC is proposed, 

and categorical models for RAC are illustrated. 

 

A. Forming a RAC 

After receiving the task of forming a RAC from 

RACS, RAOL starts to create RAO and establish 

corresponding connections between them based on the 

composition rules and communication protocols specified 

by the index category RAC-Formation. Fig.6 depicts an 

example of forming the categories RAC1 and RAC2 from 

their index category RAC-Formation. 
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Fig 6:- Example of Forming RAC from RAC-Formation 

 

After RAOL1 initializes its RAO according to the 

requirements from RACS1 and the capabilities of those 

RAO, it validates the configuration of those RAO against 

their types each t ticks (a tick represents abstracted one 

time unit within RAC1), while RAOL1 is in the initial state 

of its intelligent control loop for monitoring. If the 

configuration of those RAO conforms to their types, 

composition rules as well as communication protocols, 

event NoViolation keeps the RAOL1 in state Monitor; 

otherwise, event NeedInvestigation is triggered and RAOL1 

moves to state Analyze, while a constraint to time variable 
(TCvar3) is initialized to work as a local clock in terms of 

time constraints on every transition of the intelligent 

control loop. The value of TCvar2 is t0, t1, t2, t3... where t0 

< t1 < t2 < t3. 

 

After RAOL1 goes in state Analyze, 1) it sends a 

message Restart to RAO1 in t0 where the violation is 

caused by the incorrect RAO type or incorrect 

communication type from RAO1 to RAOL1. If RAO1 

conforms to its type or communication type, event 

NoAction occurs and RAOL1 returns back to state Monitor, 

while the TCvar3 is reset; otherwise, RAOL1 moves to state 
Plan triggered by event LaunchSelfHealing in t7. 2) If the 

violation is caused by incorrect communication type from 

other RAO (RAO3) to RAO1, RAOL1 sends a message 

Restart to RAO3. If the communication conforms to its 

type, event NoAction occurs and RAOL1 returns back to 

state Monitor, while the TCvar3 is reset; otherwise, RAOL1 

moves to state Plan triggered by the event 

LaunchSelfHealing within t7. 3) If the violation is caused 

by the incorrect communication type from RAOL1 to 

RAO1, RAOL1 resets that communication. If it conforms to 

the correct one specified in the index category RAC-

Formation, event NoAction occurs and RAOL1 returns 

back to the state Monitor, while TCvar3 is reset; otherwise, 

RAOL1 moves to state Plan state triggered by event 

LaunchSelfHealing in t7. 

 

When RAOL1 is in state Plan, it chooses either plan 

Substitute or plan Take-over, based on the availability of 

substitutable RAO for RAO1 or for RAO3. RAOL1 moves 

state to Execute triggered by the event Substitute or event 

Take-over respectively in t8. RAOL1 sends a message 

selfViolation to RACS1, and the latter chooses either plane 

Substitute or plan Take- over according to the availability 
of substitutable RAOL for RAOL1. It moves to state 

Execute triggered by event Substitute or Take-over in t8. 

When RAOL1 is in state Execute and plan Substitute is 

available, it sends a message register to the substitutable 

RAO of RAO1 or RAO3 and then initialize it to the status of 

RAO1 or RAO3 based on the previously made checkpoint. 

When the plan take-over is available, RAOL1 sends a 

message take-over to RAO2 and update the status of the 

synchronous product machine of RAO1 and RAO2, or 

RAO3 and RAO2 according to the checkpoint. After the 

plan execution, RAOL1 validates the configuration of 
RAC1’, an evolution of RAC1 against the index category 

RAC-Formation based on their categorical specifications. 

If that configuration conforms to the index category, event 

ActionDone occurs and RAOL1 moves to the state Monitor 

within t9; otherwise, event ActionFailed keeps it in state 

Execute for RACS1’s intervention. 

 

B. Categorical Models of Forming a RAC 

The actions in the formation work flow, self-

configuration work flow, substitution work flow and take-

over work flow of RAC1 can be specified as the categories 
where objects are the actions (InitializeRAO, ValidateRAO, 

ValidateRAOcommunication, etc.), and morphisms are their 
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preorder relationship before. Each object (action) in those 

categories is a quadruple. For example, 
LaunchInvestigation = (RAOL1, NotConfrom-RAO, 

InvestigateRAO, RAO1), and the sequences of those actions 

can be specified as the categories in which objects are those 

sequences (<InitializeRAOL, Heartbeat, InitializeRAO, 

Heartbeat>, <ValidateRAOL, Conform, ValidateRAO, 

NotConform>), and morphisms are the equivalence 

relationship between those sequences. 

 

The transitions in the intelligent control loop of 

RAOL1 for self-configuration are specified as the category 

in which objects are those transitions (NoViolation, 

NeedInvestigation, RestartRAO, NoAction, etc.), and 
morphisms are their preorder relations before. Each object 

(transition) in that category is a triple. For example, 

NeedInvestigation = (Monitor, NotConform-RAO, Analyze); 

the sequences of those transitions can be specified as a 

category in which objects are those sequences 

(<NoViolation, NeedInvestigation, RestartRAO1, 

NoAction>, <RestartRAO1, LaunchSelfHealing, Substitute, 

ActionDone>), and morphisms are equivalence relations 

between those sequences. 

 

 
Let RAC1 be a subcategory (consisting of objects 

RAOL1, RAO1, RAO2, RAO3 and the morphisms among 

them) of RAC1-0 (a category consisting of all the potential 

RAE for the self-configuration in RAC1). If RAC1 is 

conformed to the index category RAC-Formation by 

restarting the violated RAO1 or RAO3, it will evolve to 

RAC1-1 (consisting of the objects RAOL1, RAO1 or 

RAO1-1, RAO2, RAO3 or RAO3-1 and the morphisms 

among them in RAC1-0), which has the same configuration 

and structure as RAC1 except for the different initial status 

of RAO1 or RAO3. This process is specified by a Restart 

functor (a structure-preserving mapping) from RAC1-1 to 
RAC1-0. If RAC1 is conformed to RAC-Formation by 

substituting RAO1 or RAO3 with their isomorphic objects 

RAO7 or RAO9, it will evolve to RAC1-2 (consisting of 

objects RAOL1, RAO1 or RAO7, RAO2, RAO3 or RAO9 

and the morphisms among them in the RAC1-0), which has 

the same configuration and categorical structure as RAC1 

but replacing RAO1 or RAO3 with RAO7 or RAO9. The 

above is specified by a Substitute functor, a structure-

preserving mapping. If RAC1 is conformed to the RAC-

Formation by querying RAO2 to acquire the 

responsibilities of RAO1 or RAO3, it evolves to RAC1-3 
(consisting of objects RAOL1-1, SPM, RAO1 or RAO3 

and the morphisms among them in RAC1-0), which has the 

different categorical structure, but both of them have the 

equivalent configuration (see Fig.7). 
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Fig 7:- Evolution for Self-Configuration in RAC1 

 

VII. CONCLUSION 

 

To provide the formation of reactive autonomic 

system with correct by construction, in this research, we 

suggested to use categorical means to model formation of 

reactive au-tonomic system framework. We described three 

scenarios regarding the self-configuration that are forming 

a RAS, forming a RACG and forming a RAC using 
intelligent control loops. In addition, we presented the 

categorical illustration for the for-mations respectively. 

Through the process of modeling and construction, 

category theory is able to provide formalization to the 

formation of reactive autonomic system frame-work. In 

future, we will work toward analyzing Evolution for 

Communication Self-Configuration in the RAS, RACG and 

RAC in the framework. 
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