
Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP149 www.ijisrt.com 766

A Categorical Approach to Model Formation of

Reactive Autonomic Systems Framework

Ming Zhu
College of Computer Science and Technology

Shandong University of Technology

Zibo, China

Heng Kuang
Huawei Canada

Markham, Canada

Abstract:- Software complexity crisis becomes an

impediment to further development of software.

Specifically, in order to manage increasingly complex

and massive software systems, researchers involve in

building systems with autonomy. The real-time reactive

systems with autonomic behaviors could be more self-

managed and more adaptive to the environment.

However, formations of some of such systems are not

formalized, which may lead systems to be error-prone.

In this research, we proposed a formal way to describe

formations of reactive autonomic systems framework.

Firstly, we introduce how to from reactive autonomic

system, components group, and component, then we

focused on categorizing the formations. To do so, the

basis of reactive autonomic systems can be built with

correct by construction.

Keywords:- Reactive Autonomic System; Category Theory;

Formation

I. INTRODUCTION

Software complexity crisis has been deemed as one of

the major obstacles to the progress in software industry,

since the management of computing systems with

complexity becomes difficult for IT Practitioners. We need

to select a target system that can get benefit from applying

the autonomic computing paradigm. Usually, real-time

reactive systems are considered as one of the most complex

systems; the complexity involved comes from their real-
time as well as reactive characteristics: 1) concurrency is

involved; 2) timing requirements are strict; 3) reliability is a

must; 4) software and hardware components are involved;

5) it becomes more and more intelligent and heterogeneous.

So, we need to add autonomic features into real-time

reactive systems by using Reactive Autonomic Systems

Framework (RASF), which helps to specify, model and

develop the Reactive Autonomic Systems (RAS). By

adding autonomic behaviors, real-time reactive systems

become more self-managed and adaptive; the RAS can

improve and simplify users’ experiences. By using input

data and checking results only, it is difficult to find the
competitive conditions in the real-time reactive system,

because some errors may only occur when the process

sends or receives data at a specific time. In order to detect

these errors through testing, every state combination of

processes must be checked, which may result in an

exponential number of states [1]. Formal methods have

been proven to be the way to ensure the correctness of

operation in complex interactive systems, because formal

specifications are proved that it can help to check specific

types of errors, and it can also be used as input for model

checking [1].

To continue the research [2][3], we proposed an

approach to model reactive autonomic system, component

group and components in this paper. The rest part of the

paper is presented as follows: Section 2 sketches the work
related to the research. Section 3 introduces the background

knowledge needed to understand the paper. Section 4

introduces formation of reactive autonomic system and its

categorical models. Section 5 describes formation of

reactive autonomic component group and its categorical

models. Section 6 explains formation of reactive autonomic

component and its categorical models. In the last,

conclusion and future work are provided in Section 7.

II. RELATED WORK

This section introduces related research work to the
paper.

A. Real-Time Reactive Systems

In research [4], Caporuscio specifies that there is a

trend to switch assembling components into systems to

composing autonomous systems into systems-of-systems

dynamically, as these kinds of system usually run in highly

dynamic environments. In research [5], an approach to

solve the problem of synchronous programs that cannot be

executed in a time-triggered or event-triggered execution

loop easily. By using dynamic tickets method, semantic
timing abstraction of the synchronous approach can be

reconciled that can help to give the application fine-grained

control over its real-time behavior.

B. Formal methods

Formal method can be used to assess risks at the early

stages of developing security-critical real-time systems in

research [6], where a formal model named Object-Message-

Role (OMR) with Z notation is proposed to specify

functional and security aspects of systems. Research [7]

defined a model using formal method to evaluate the

quality of system architecture. By formalizing
characteristics of system architecture, good quality

attributes can be quantified and can be used in may system

architecture tools. In research [8], probabilities are

combined with a formal approach to develop safety-critical

systems. In this approach, model-driven engineering is used

for reactive systems and a tool-set reactive blocks extend

the support of modeling and verification of behaviors in

real-time systems. In paper [9], instead of reviewing

requirements manually, a formal scenario-based method

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP149 www.ijisrt.com 767

based on LSCs/MSDs are proposed, which support

automated analysis by formal realization checking and
scenario execution. In research [10], based on a formal

language called Biographical Reactive System, the

correctness of deploying architecture is able to be

guaranteed. By using a multi-scale modelling, automatic

construction is supported.

III. BACKGROUND

In this section, background and work related to our

research are introduced.

A. Reactive Autonomic Systems (RAS)
The framework of Reactive Autonomous System

(RASF) shown in Fig.1 consists of four tiers, which include

Reactive Autonomic Systems, Reactive Autonomic

Component Groups, Reactive Autonomic Components and

Reactive Autonomic Objects. In this hierarchical model,

each layer only exchange messages with its upper or lower

layers. Therefore, the independence of these layers makes it

possible to modularize, encapsulate, decompose and reuse

them.

Fig. 1:- RASF Architecture Model

 RAO is considered as a labeled transformation system

[11], which is specified as tuples (P,ε,Θ,X,L,Φ,Λ,γ,R) as

follows:

 P consists of a set of ports, where, for each type of

port and type of null, there exist only port P0.

 ε consists of a set of events, where silence events are
included.

 Θ consists of a set of states, where Θ0 indicates the

initial states, and final state doesn’t exist.

 X consists of a set of attributes with types. There

exists two types, port reference types and abstract data

types.

 L consists of a set of traits, which is used to indicate

the abstract data type in X.

 Φ indicates a pair (Φs,Φat) to denote function-vector

relation, where Φs attaches a set of sub states to each

Θ and Φat attaches a set of attributes to each Θ.

 Λ indicates a set of specifications used in transitions.

 γ indicates a set of constraints to time.

 R indicates the set of available resources used locally

to support object’s functionality.

 RAC indicates a group of RAOS that communicate

synchronously, one of which is assigned to the

remaining workers as a leader, which is usually referred

to as RAOL. Workers take care of reactive tasks, while

RAOL is responsible for autonomous tasks, such as

coordinating and managing component’s self-

monitoring. Therefore, RAOL is different from workers

by using a different set of states. These states are related

to autonomic behavior. The reactivity and autonomy of

RAOL, which is specified formally, provide a means for

them to gain functionalities with autonomic
characteristics in reactive systems with real-time

property. In order to coordinate the performance of

tasks and messages exchanging between RAOs, the

specification of RAC specification includes members,

configurations, leaders, supervisors, repositories and

neighbors. RAC is the smallest centralized reactive

autonomous element (RAE) with self-management

ability.

RAC’s reactive behavior includes n collaborations.

RAO is modeled as tuples (Ps,εs,Θs,Xs,Ls,Φs,Λs,γs,Rs) [12] as
follows:

 Ps contains a set of types of port, which allows a

synchronous message passing between Reactive

Autonomic objects.

 εs indicates a union of εi where 1≤in.

 Θs contains a set of states which are used for valid

Synchronous Production Machine.

 Xs indicates a union of sets Xi
syn, where 1≤in.

 Ls indicates a union of sets of traits, which are used for

Abstract Data Type and specified by Larch
Specification Language.

 Φs indicates a triple (Φs
s,Φat

s, Φγ
s) to denote function-

vector relationship, where Φs
s attaches a set of

substates to each Θs, Φat
syn attaches a set of attributes

Φat1(Θ1
s) ,…, Φatn(Θn

s) to each Θs, and Φγ
s attach a

subset of Rsyn to each Θsyn.

 Λs contains a set of specifications used for transitions.

 γs contains a set of constraints to time.

 Rs indicates the set of available resources in RAO,

which is represented as a union of Ri, where 1≤in.

 RACG is a group of RAC, which are either distributed

or centralized. RAC completes tasks that grouped

together through synchronous message passing and

cooperation between each other. It is considered as the

smallest RAE in RASF that can perform tasks of real-

time reactive systems independently. RACS is a

supervisor, which coordinate and manage autonomic

behaviors at group level.

 RAS consists of a group of RACG, which are either

distributed or centralized with asynchronous message
passing. It acts as an interface that is integrated for user

to delegate tasks for computing, monitoring and

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP149 www.ijisrt.com 768

managing. A manager of RACG (RACGM) has the

main responsibilities to coordinate autonomic behaviors
at system level.

B. Category Theory

Category theory is considered to have a rich

theoretical knowledge to explain objects and relations

between objects. It is an abstract framework that is able to

be applied to many kinds of languages used for

specifications [12]. For software specification, category

theory provides a means to construct specifications with

properties of correctness, which can help to prove the

attributes and relationships maintained during the

constructions of different stages [12]. In addition, by
equipped with operations and diagrams of reasoning,

hierarchical structures of complex systems are able to be

formed as components used in other complex systems, and

infer system attributes based on their configuration [13].

Since the self-configuration of RAS does not have such

formalization, we suggest to achieve the formalization of

self-configuration by category theory. In order to learn this

paper, we present the basic definitions of category as

follows:

Definition 1: A category includes morphisms and objects.
Given object A, B and C, if there exists morphisms f: A →

B and g: B → C, then there must have a composition

morphism g ◦ f : A → C. For the composition, an

associativity: (h ◦ g) ◦ f = h ◦ (g ◦ f) exists. For each object

X, there exists an identity morphism IdX, and for morphism

f : A → B, f ◦ IdA = f = IdB ◦ f.

Definition 2: A subcategory Sub of category Cat represents

by a collection of objects which is a subcollection of Cat’s

objects, indicated by obj(Sub), and a collection of

morphisms which is a subcollection of Cat’s morphisms,

indicated by mor(Sub). For each X in obj(Sub), there exist

an identity morphism IdX in mor(Sub). For each
morphism f: X → Y in mor(Sub), and morphism g: Y→ Z in

mor(Sub), there exists a composition f ◦ g is in mor(Sub).

IV. RAS FORMATION AND CATEGORICAL

MODELS

In this section, an approach to form RAS is proposed,

and categorical models for RAS are illustrated.

A. Forming a RAS

After receiving the task of forming a RAS from User

Console, RACGM starts to create RACS and establish
corresponding connections among them based on the

composition rules and communication protocols specified

by the index category RAS-Formation. Fig.2 depicts an

example of forming categories RAS1 and RAS2 from their

index category RAS Formation.

After RACGM1 initializes its RACS according to the

requirements from the User Console and the capabilities of

those RACS, it validates the configuration of those RACS

against their types every t ticks (a tick represents abstracted

one time unit within RAS1), while RACGM1 is in the
initial state of its intelligent control loop for monitoring. If

the configuration of those RACS conforms to their types,

composition rules and communication protocols,

NoViolation event keeps RACGM1 in the state of Monitor;

otherwise, NeedInvestigation event is triggered and

RACGM1 transits to state Analyze, while a constraint to

time variable (TCvar1) is initialized to act as a local clock

in terms of constraints to time on every transition of the

intelligent control loop. The value of TCvar1 is t0, t1, t2,

t3... where t0 < t1 < t2 < t3.

Fig. 2:- Example of Forming RAS from RAS-Formation

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP149 www.ijisrt.com 769

After RACGM1 goes in state Analyze, 1) it sends a

message Restart to RACS1 in t0 ticks where the violation is
caused by incorrect RACS type or incorrect communication

type from RACS1 to RACGM1. If RACS1 conforms to its

type and communication type, event NoAction occurs and

RACGM1 returns back to state Monitor, while the TCvar1

is reset; otherwise, RACGM1 moves to state Plan triggered

by event LaunchSelfHealing in t1. 2) If the violation is

caused by incorrect communication type from other RACS

(RACS3) to RACS1, RACGM1 sends a message Restart to

RACS3. If the communication conforms to its type, event

NoAction occurs and RACGM1 returns back to state

Monitor, while the TCvar1 is reset; otherwise, RACGM1

moves to state Plan triggered by the event
LaunchSelfHealing within t1. 3) If the violation is caused

by the incorrect communication type from RACGM1 to

RACS1, RACGM1 resets that communication. If it

conforms to the correct one specified in the index category

RAS-Formation, event NoAction occurs and RACGM1

returns back to the state Monitor, while the TCvar1 is reset;

otherwise, RACGM1 moves to state Plan triggered by the

event LaunchSelfHealing in t1.

When RACGM1 is in state Plan, it chooses either

Substitute plan or Take-over plan, based on the availability
of substitutable RACS for RACS1 or for RACS3. RACGM1

moves to state Execute triggered by the event Substitute or

event Take-over respectively in t2. RACGM1 sends a

message selfViolation to User Console, and the latter

chooses either Substitute plan or Take-over plan based on

the availability of substitutable RACGM for RACGM1. It

moves to state Execute triggered by event Take-over or

Substitute in t2.

When RACGM1 is in state Execute and Substitute plan

is available, it sends a message register to the substitutable

RACS of RACS1 or RACS3 and initialize it to the status of
RACS1 or RACS3 according to the previously made

checkpoint. When the plan take-over is available, RACGM1

sends a message take-over to RACS2 and update the status

of the synchronous product machine of RACS1 and RACS2,

or RACS3 and RACS2 d on the checkpoint. After the plan

execution of plan, RACGM1 validates the configuration of

RAS1’, an evolution of RAS1 against its index category

RAS-Formation according to their categorical

specifications. If that configuration conforms to the index

category, event ActionDone occurs and RACGM1 moves to

the Monitor state in t3; otherwise, event ActionFailed stays
it in state Execute for the user intervention from the User

Console.

B. Categorical Models of Forming a RAS

The actions in the formation work flow, self-

configuration work flow, substitution work flow and take-

over work flow of RAS1 can be specified as the categories

where objects are those actions (InitializeRACS,

ValidateRACS, ValidateRACcommunication, etc.), and
morphisms are their preorder relationship before. Each

object (action) in those categories is a quadruple. For

example, LaunchInvestigation = (RACGM1, NotConfrom-

RACS, InvestigateRACS, RACS1); the sequences of those

actions can be specified as the categories in which objects

are those sequences (<InitializeRACGM, Heartbeat,

InitializeRACS, Heartbeat>, <ValidateRACGM, Conform,

ValidateRACS, NotConform>), and morphisms are the

equivalence relationship between those sequences.

The transitions in the intelligent control loop of

RACGM1 for self-configuration are specified as a category
where objects are those transitions (NoViolation,

NeedInvestigation, RestartRACS, NoAction, etc.), and

morphisms are their preorder relations before. Each object

(transition) in that category is a triple. For example,

NeedInvestigation = (Monitor, NotConform-RACS,

Analyze); the sequences of those transitions are specified as

a category where objects are those sequences

(<NoViolation, NeedInvestigation, RestartRACS1,

NoAction>, <RestartRACS1, LaunchSelfHealing,

Substitute, ActionDone>), and morphisms are equivalence

relations between those sequences.

Let RAS1 be a subcategory (consisting of the objects

RACGM1, RACS1, RACS2, RACS3 and the morphisms

among them) of RAS1-0 (a category consisting of all the

potential RAE for the self-configuration in RAS1). If RAS1

is conformed to the index category RAS-Formation by

restarting the violated RACS1 or RACS3, it will evolve to

RAS1-1 (consisting of the objects RACGM1, RACS1 or

RACS1-1, RACS2, RACS3 or RACS3-1 and the

morphisms among them in RAS1-0), which has the same

configuration and categorical structure as RAS1 except for

the different initial status of RACS1 or RACS3. This
evolution is specified by a Restart functor (a structure-

preserving mapping) from the RAS1-1 to RAS1-0. If

RAS1 is confirmed to RAS-Formation by substituting the

RACS1 or RACS3 with their isomorphic objects RACS7 or

RACS9, it will evolve to RAS1-2 (consisting of objects

RACGM1, RACS1 or RACS7, RACS2, RACS3 or RACS9

and the morphisms among them in RAS1-0) that has the

same configuration and categorical structure as RAS1 but

replacing RACS1 or RACS3 with RACS7 or RACS9. The

above is specified by the Substitute functor, a structure-

preserving mapping. If RAS1 is conformed to the RAS-

Formation by querying RACS2 to acquire the

responsibilities of RACS1 or RACS3, it will evolve to

RAS1-3 (consisting of objects RACGM1-1, SPM, RACS1

or RACS3 and the morphisms among them in the RAS1-0),

which has different categorical structure, but both of them

have the equivalent configuration (see Fig. 3).

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP149 www.ijisrt.com 770

Fig 3:- Evolution for Self-Configuration in RAS1

V. RACG FORMATION AND CATEGORICAL

MODELS

In this section, an approach to form RACG is

proposed, and categorical models for RACG are illustrated.

A. Forming a RACG

After receiving the task of forming a RACG from

RACGM, RACS starts to create RAOL and establish

corresponding connections among them based on the

composition rules and communication protocols specified

by index category RACG-Formation. Fig.4 illustrates an

example of forming the categories RACG1 and RACG2

from their index category RACG-Formation.

After RACS1 initializes its RAOL according to the

requirements from the RACGM and the capabilities of those

RAOL, it validates the configuration of those RAOL against
their types each t (a tick represents abstracted one time unit

within RACG1), while RACS1 is in the initial state of its

intelligent control loop for monitoring. If the configuration

of those RAOL conforms to their types, composition rules

as well as communication protocols, event NoViolation

keeps RACS1 in state Monitor; otherwise, event

NeedInvestigation is triggered and RACS1 transits to state

Analyze, while a time constraint variable (TCvar2) is

initialized to work as a local clock in terms of constraints to

time on every transition of the control loop. The value of

TCvar2 is t0, t1, t2, t3... where t0 < t1 < t2 < t3.

After RACS1 goes in state Analyze, 1) it sends a
message Restart to RAOL1 in t0 ticks where the violation is

caused by the incorrect RAOL type or incorrect

communication type from RAOL1 to RACS1. If RAOL1

conforms to its type and communication type, event

NoAction occurs and RACS1 goes back to state Monitor,

while the TCvar2 is reset; otherwise, RACS1 moves to state

Plan triggered by event LaunchSelfHealing in t4 ticks. 2) If

the violation is caused by incorrect communication type

from other RAOL (RAOL3) to RAOL1, RACS1 sends a

Restart message to RAOL3. If the communication conforms

to its type, event NoAction occurs and RACS1 returns back

to state Monitor, while the TCvar2 is reset; otherwise,
RACS1 moves to state Plan triggered by the event

LaunchSelfHealing within t4. 3) If the violation is caused

by the incorrect communication type from RACS1 to

RAOL1, RACS1 resets that communication. If it conforms

to the correct one specified in the index category RACG-

Formation, event NoAction occurs and RACS1 returns

back to the state Monitor, while the TCvar2 is reset;

otherwise, RACS1 moves to state Plan triggered by event

LaunchSelfHealing in t4.

RACS-Type1 RACS-Type2

RAOL-Type1 RAOL-Type2 RAOL-Type3

RACS1 of

RACS-Type1

RAOL1 of

RAOL-Type1

RAOL2 of

RAOL-Type1

RAOL3 of

RAOL-Type2

C
o
m

m
-
T

y
p
e
5

Comm-Type9

Comm-Type10 Comm-Type12

Comm-Type11

RACG-Formation
C

o
m

m
3
 o

f
 T

y
p

e
3

C
o
m

m
4
 o

f
 T

y
p

e
4

RACG1

RACS2 of

RACS-Type2

RAOL4 of

RAOL-Type3

RAOL5 of

RAOL-Type3

RAOL6 of

RAOL-Type2

C
o
m

m
3
 o

f
 T

y
p

e
5

C
o
m

m
4
 o

f
 T

y
p

e
6

RACG2

Fig 4:- Example of Forming RACG from RACG-Formation

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP149 www.ijisrt.com 771

When RACS1 is in Plan state, it chooses either

Substitute plan or Take-over plan, based on the availability
of substitutable RAOL for RAOL1 or for RAOL3. RACS1

moves to state Execute triggered by the event Substitute or

event Take-over respectively in t5 ticks. RACS1 sends a

message selfViolation to RACGM1, and the latter chooses

either Substitute plan or Take-over plan based on the

availability of substitutable RACS for RACS1. It moves to

state Execute triggered by event Substitute or Take-over in

t5.

When RACS1 is in state Execute and plan Substitute is

available, it sends a message register to the substitutable

RAOL of RAOL1 or RAOL3 and initialize it to the status of
RAOL1 or RAOL3 according to the previously made

checkpoint. When the plan take-over is applicable, RACS1

sends a message take-over to RAOL2 and update the status

of the synchronous product machine of RAOL1 and

RAOL2, or RAOL3 and RAOL2 according to the

checkpoint. After the executing the plan, RACS1 validates

the configuration of RACG1’, an evolution of RACG1

against the index category RACG-Formation based on

their categorical specifications. If that configuration

conforms to the index category, event ActionDone occurs

and then RACS1 moves to the state Monitor within t6;
otherwise, event ActionFailed keeps it in state Execute for

RACGM1’s intervention.

B. Categorical Models of Forming a RACG

The actions in the formation work flow, self-

configuration work flow, substitution work flow and take-

over work flow of RACG1 can be specified as the

categories where objects are the actions (InitializeRAOL,

ValidateRAOL, ValidateRAOLcommunication, etc.), and

morphisms are their preorder relationship before. Each

object (action) in those categories is a quadruple. For

example, LaunchInvestigation = (RACS1, NotConfrom-
RAOL, InvestigateRAOL, RAOL1), and the sequences of

those actions are specified as the categories where objects

are those sequences (<InitializeRACS, Heartbeat,

InitializeRAOL, Heartbeat>, <ValidateRACS, Conform,

ValidateRAOL, NotConform>), and morphisms are the

equivalence relationship between those sequences.

The transitions in the intelligent control loop of

RACS1 for self-configuration can be specified as the

category in which objects are those transitions

(NoViolation, NeedInvestigation, RestartRAOL, NoAction,
etc.), and morphisms are their preorder relations before.

Each object (transition) in that category is a triple. For

example, NeedInvestigation = (Monitor, NotConform-

RAOL, Analyze); the sequences of those transitions can be

specified as a category in which objects are those sequences

(<NoViolation, NeedInvestigation, RestartRAOL1,

NoAction>, <RestartRAOL1, LaunchSelfHealing,

Substitute, ActionDone>), and morphisms are equivalence

relations between those sequences.

Let RACG1 be a subcategory (consisting of the

objects RACS1, RAOL1, RAOL2, RAOL3 and the
morphisms among them) of RACG1-0 (a category

consisting of all the potential RAE for the self-

configuration in RACG1). If RACG1 is conformed to the

index category RACG-Formation by restarting violated

RAOL1 or RAOL3, it evolves to RACG1-1 (consisting of

the objects RACS1, RAOL1 or RAOL1-1, RAOL2,

RAOL3 or RAOL3-1 and the morphisms among them in

RACG1-0) that has the same configuration and categorical

structure as RACG1 except for the different initial status of

RAOL1 or RAOL3. This evolution is specified by a functor

Restart (a structure-preserving mapping) from RACG1-1

to RACG1-0. If RACG1 is conformed to the RACG-

Formation by substituting RAOL1 or RAOL3 with their

isomorphic objects RAOL7 or RAOL9, it will evolve to

RACG1-2 (consisting of objects RACS1, RAOL1 or

RAOL7, RAOL2, RAOL3 or RAOL9 and the morphisms

among them in RACG1-0), which has the same

configuration and categorical structure as the RACG1 but

replacing RAOL1 or RAOL3 with RAOL7 or RAOL9. The

above is specified by a Substitute functor, a structure-

preserving mapping. If RACG1 is conformed to RACG-

Formation by querying RAOL2 to acquire the

responsibilities of RAOL1 or RAOL3, it evolves to
RACG1-3 (consisting of the objects RACS1-1, SPM,

RAOL1 or RAOL3 and the morphisms among them in

RACG1-0), which has the different categorical structure,

but both of them have the equivalent configuration (see

Fig.5).

RAOL1 RAOL2

RACS1
RACG1-0

RAOL1-1

RAOL2

RACS1
RACG1-1

RAOL7 RAOL2

RACS1
RACG1-2

SPM

RACS1-1
RACG1-3

T
a

k
e
-
o
v

e
r
 R

A
O

L

RAOL3

RAOL3-1 RAOL9

RAOL3/RAOL1

RAOL1-1

RAOL3-1
RAOL9

RAOL7

RACS1-1

SPM

Fig 5:- Evolution for Self-Configuration in RACG1

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP149 www.ijisrt.com 772

VI. RAC FORMATION AND CATEGORICAL

MODELS

In this section, an approach to form RAC is proposed,

and categorical models for RAC are illustrated.

A. Forming a RAC

After receiving the task of forming a RAC from

RACS, RAOL starts to create RAO and establish

corresponding connections between them based on the

composition rules and communication protocols specified

by the index category RAC-Formation. Fig.6 depicts an

example of forming the categories RAC1 and RAC2 from

their index category RAC-Formation.

RAOL-Type1 RAOL-Type2

RAO-Type1 RAO-Type2 RAO-Type3

RAOL1 of

RAOL-Type1

RAO1 of

RAO-Type1

RAO2 of

RAO-Type1

RAO3 of

RAO-Type2

C
o
m

m
-
T

y
p
e
5

Comm-Type9

Comm-Type10 Comm-Type12

Comm-Type11

RAC-Formation

C
o
m

m
3
 o

f
 T

y
p

e
3

C
o
m

m
4
 o

f
 T

y
p

e
4

RAC1

RAOL2 of

RAOL-Type2

RAO4 of

RAO-Type3

RAO5 of

RAO-Type3

RAO6 of

RAO-Type2

C
o
m

m
3
 o

f
 T

y
p

e
5

C
o
m

m
4
 o

f
 T

y
p

e
6

RAC2

Fig 6:- Example of Forming RAC from RAC-Formation

After RAOL1 initializes its RAO according to the

requirements from RACS1 and the capabilities of those

RAO, it validates the configuration of those RAO against

their types each t ticks (a tick represents abstracted one

time unit within RAC1), while RAOL1 is in the initial state

of its intelligent control loop for monitoring. If the

configuration of those RAO conforms to their types,

composition rules as well as communication protocols,

event NoViolation keeps the RAOL1 in state Monitor;

otherwise, event NeedInvestigation is triggered and RAOL1

moves to state Analyze, while a constraint to time variable
(TCvar3) is initialized to work as a local clock in terms of

time constraints on every transition of the intelligent

control loop. The value of TCvar2 is t0, t1, t2, t3... where t0

< t1 < t2 < t3.

After RAOL1 goes in state Analyze, 1) it sends a

message Restart to RAO1 in t0 where the violation is

caused by the incorrect RAO type or incorrect

communication type from RAO1 to RAOL1. If RAO1

conforms to its type or communication type, event

NoAction occurs and RAOL1 returns back to state Monitor,

while the TCvar3 is reset; otherwise, RAOL1 moves to state
Plan triggered by event LaunchSelfHealing in t7. 2) If the

violation is caused by incorrect communication type from

other RAO (RAO3) to RAO1, RAOL1 sends a message

Restart to RAO3. If the communication conforms to its

type, event NoAction occurs and RAOL1 returns back to

state Monitor, while the TCvar3 is reset; otherwise, RAOL1

moves to state Plan triggered by the event

LaunchSelfHealing within t7. 3) If the violation is caused

by the incorrect communication type from RAOL1 to

RAO1, RAOL1 resets that communication. If it conforms to

the correct one specified in the index category RAC-

Formation, event NoAction occurs and RAOL1 returns

back to the state Monitor, while TCvar3 is reset; otherwise,

RAOL1 moves to state Plan state triggered by event

LaunchSelfHealing in t7.

When RAOL1 is in state Plan, it chooses either plan

Substitute or plan Take-over, based on the availability of

substitutable RAO for RAO1 or for RAO3. RAOL1 moves

state to Execute triggered by the event Substitute or event

Take-over respectively in t8. RAOL1 sends a message

selfViolation to RACS1, and the latter chooses either plane

Substitute or plan Take- over according to the availability
of substitutable RAOL for RAOL1. It moves to state

Execute triggered by event Substitute or Take-over in t8.

When RAOL1 is in state Execute and plan Substitute is

available, it sends a message register to the substitutable

RAO of RAO1 or RAO3 and then initialize it to the status of

RAO1 or RAO3 based on the previously made checkpoint.

When the plan take-over is available, RAOL1 sends a

message take-over to RAO2 and update the status of the

synchronous product machine of RAO1 and RAO2, or

RAO3 and RAO2 according to the checkpoint. After the

plan execution, RAOL1 validates the configuration of
RAC1’, an evolution of RAC1 against the index category

RAC-Formation based on their categorical specifications.

If that configuration conforms to the index category, event

ActionDone occurs and RAOL1 moves to the state Monitor

within t9; otherwise, event ActionFailed keeps it in state

Execute for RACS1’s intervention.

B. Categorical Models of Forming a RAC

The actions in the formation work flow, self-

configuration work flow, substitution work flow and take-

over work flow of RAC1 can be specified as the categories
where objects are the actions (InitializeRAO, ValidateRAO,

ValidateRAOcommunication, etc.), and morphisms are their

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP149 www.ijisrt.com 773

preorder relationship before. Each object (action) in those

categories is a quadruple. For example,
LaunchInvestigation = (RAOL1, NotConfrom-RAO,

InvestigateRAO, RAO1), and the sequences of those actions

can be specified as the categories in which objects are those

sequences (<InitializeRAOL, Heartbeat, InitializeRAO,

Heartbeat>, <ValidateRAOL, Conform, ValidateRAO,

NotConform>), and morphisms are the equivalence

relationship between those sequences.

The transitions in the intelligent control loop of

RAOL1 for self-configuration are specified as the category

in which objects are those transitions (NoViolation,

NeedInvestigation, RestartRAO, NoAction, etc.), and
morphisms are their preorder relations before. Each object

(transition) in that category is a triple. For example,

NeedInvestigation = (Monitor, NotConform-RAO, Analyze);

the sequences of those transitions can be specified as a

category in which objects are those sequences

(<NoViolation, NeedInvestigation, RestartRAO1,

NoAction>, <RestartRAO1, LaunchSelfHealing, Substitute,

ActionDone>), and morphisms are equivalence relations

between those sequences.

Let RAC1 be a subcategory (consisting of objects

RAOL1, RAO1, RAO2, RAO3 and the morphisms among

them) of RAC1-0 (a category consisting of all the potential

RAE for the self-configuration in RAC1). If RAC1 is

conformed to the index category RAC-Formation by

restarting the violated RAO1 or RAO3, it will evolve to

RAC1-1 (consisting of the objects RAOL1, RAO1 or

RAO1-1, RAO2, RAO3 or RAO3-1 and the morphisms

among them in RAC1-0), which has the same configuration

and structure as RAC1 except for the different initial status

of RAO1 or RAO3. This process is specified by a Restart

functor (a structure-preserving mapping) from RAC1-1 to
RAC1-0. If RAC1 is conformed to RAC-Formation by

substituting RAO1 or RAO3 with their isomorphic objects

RAO7 or RAO9, it will evolve to RAC1-2 (consisting of

objects RAOL1, RAO1 or RAO7, RAO2, RAO3 or RAO9

and the morphisms among them in the RAC1-0), which has

the same configuration and categorical structure as RAC1

but replacing RAO1 or RAO3 with RAO7 or RAO9. The

above is specified by a Substitute functor, a structure-

preserving mapping. If RAC1 is conformed to the RAC-

Formation by querying RAO2 to acquire the

responsibilities of RAO1 or RAO3, it evolves to RAC1-3
(consisting of objects RAOL1-1, SPM, RAO1 or RAO3

and the morphisms among them in RAC1-0), which has the

different categorical structure, but both of them have the

equivalent configuration (see Fig.7).

RAO1 RAO2

RAOL1
RAC1-0

RAO1-1

RAO2

RAOL1
RAC1-1

RAO7 RAO2

RAOL1
RAC1-2

SPM

RAOL1-1
RAC1-3

T
a

k
e
-o

v
e
r

R
A

O

RAO3

RAO3-1 RAO9

RAO3/RAO1

RAO1-1

RAO3-1
RAO9

RAO7

RAOL1-1

SPM

Fig 7:- Evolution for Self-Configuration in RAC1

VII. CONCLUSION

To provide the formation of reactive autonomic

system with correct by construction, in this research, we

suggested to use categorical means to model formation of

reactive au-tonomic system framework. We described three

scenarios regarding the self-configuration that are forming

a RAS, forming a RACG and forming a RAC using
intelligent control loops. In addition, we presented the

categorical illustration for the for-mations respectively.

Through the process of modeling and construction,

category theory is able to provide formalization to the

formation of reactive autonomic system frame-work. In

future, we will work toward analyzing Evolution for

Communication Self-Configuration in the RAS, RACG and

RAC in the framework.

REFERENCES

[1]. Rash J. L., Hinchey M. G., Rouff C. A. and

Truszkowski W. F. (2005). Requirements of an

integrated formal method for intelligent swarms.

Proceedings of the 10th International Workshop on

Formal Methods for Industrial Critical Systems,

Lisbon, 5-6 Sept 2005, 125–133.

[2]. Zhu, M. and Li, J. (2018) Towards a Categorical

Framework for Verifying Design and Implementation

of Concurrent Systems. Journal of Computer and

Communications, 6, 2018, 227-246.

[3]. Zhu, M. and Li, J. (2019) Using Category Theory to

Explore and Model Label Event Structures. Journal of
Computer and Communications, 7, 2019, 49-60.

[4]. Caporuscio, M. (2017) Towards Fully Decentralized

Self-Adaptive Reactive Systems. Proceedings of the

8th ACM/SPEC on International Conference on

Performance Engineering Companion, L’Aquila, 22-

26 April 2017, 17-17.

[5]. Hanxleden, R.V., Bourke, T. and Girault A. (2017)

Real-time Ticks for Synchronous

Programming. Proceedings of 2017 Forum on

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP149 www.ijisrt.com 774

Specification and Design Languages (FDL), Verona,

18-20 September 2017, 1-8.
[6]. Ni, S., Zhuang Y., Gu, J. and Huo, Y. (2016) A formal

model and risk assessment method for security-critical

real-time embedded systems. Comput. Secur., 58: C,

2016, 199-215.

[7]. Rodano, M. and Giammarco, K. (2013) A Formal

Method for Evaluation of a Modeled System

Architecture, Procedia Computer Science, 20, 2013,

210-215.

[8]. Han, F., Blech, J.O., Herrmann, P. and Schmidt, H.

(2014) Towards Verifying Safety Properties of Real-

Time Probabilistic Systems. Proceedings of Formal

Engineering Approaches to Software Components and
Architectures, Grenoble, 05-13 April 2014, 1-15.

[9]. Greenyer, J., Haase, M., Marhenke, J. and Bellmer, R.

(2015) Evaluating a Formal Scenario-based Method

for the Requirements Analysis in Automotive

Software Engineering, Proceedings of the 2015 10th

Joint Meeting on Foundations of Software

Engineering, Bergamo, 1-4 September 2015, 1002-

1005

[10]. Gassara, A.， Rodriguez, I.B. and Jmaiel, M. (2015)

A multi-scale modeling approach for software

architecture deployment, Proceedings of the 30th

Annual ACM Symposium on Applied Computing,

Salamanca, 13-17 April, 2015, 1405-1410.
[11]. Ormandjieva, O., Bentahar, J., Huang, J. and Kuang,

H. (2015) Modelling Multi-agent Systems with

Category Theory. Procedia Computer Science, 52,

2015, 538-545.

[12]. Barr, M. and Wells, C. (2012) Category Theory for

Computing Science. Prentice-Hall, Upper Saddle

River.

[13]. Goubault, E. and Mimram, S. (2010) Formal

Relationships between Geometrical and Classical

Models for Concurrency. Electronic Notes in

Theoretical Computer Science, 283, 77-109.

http://www.ijisrt.com/

	I. INTRODUCTION
	II. RELATED WORK
	A. Real-Time Reactive Systems
	B. Formal methods

	III. BACKGROUND
	A. Reactive Autonomic Systems (RAS)
	B. Category Theory

	IV. RAS FORMATION AND CATEGORICAL MODELS
	A. Forming a RAS
	B. Categorical Models of Forming a RAS

	V. RACG FORMATION AND CATEGORICAL MODELS
	A. Forming a RACG
	B. Categorical Models of Forming a RACG

	VI. RAC FORMATION AND CATEGORICAL MODELS
	A. Forming a RAC
	B. Categorical Models of Forming a RAC

	VII. CONCLUSION
	REFERENCES

