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Abstract:- The purpose of the current manuscript is to 

propose a generic method that causes the local 

extinction of a harmful invasive species. Eradication is 

achieved via introduction of phenotypically modified 

organisms into a target population. Here we propose a 

model without the logistic type term, of which the 

reaction terms may change sign, and so the solutions are 

not bounded a priori. We prove global existence of 

solutions via a Lyapunov function method, and show 

existence of a finite dimensional (L2(Ω);H2(Ω)) global 

attractor that supports states of extinction, improving 

current results in the literature. We also conduct 

numerical simulations to investigate the decay rate of 

the female species. Lastly we apply optimal control 

techniques to compare the effectiveness of various 

reaction terms on species extinction. 
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I. INTRODUCTION 

 

An exotic species commonly referred to as invasive 

species, is any species capable of propagating into a non-

native environment. As a result of globalization, exotic 

species are being introduced to ecosystems around the 

world at an unprecedented pace, in many cases causing 

harm to the environment, human health, and/or the 

economy [35, 34]. Once an exotic species is established in 
a new environment, its detrimental potential might be 

realized in the form of economic losses or threats to public 

health. Eradication initiatives in these cases frequently 

require continuous efforts for long periods of time. A small 

fraction of the estimated 50,000 exotic species in the US is 

harmful, but they inflict considerable damage [50, 16]. 

Studies indicate losses of about $120 billion/year by 2004 

[50]. A strategy for eradication of exotic species in which a 

\Trojan individual" is strategy is relevant to species with an 

XY sex-determination system, in which males are the 

heterogametic sex (carrying one X chromosome and one Y 

chromosome, XY) and females are the homogametic sex 
(carrying two X chromosomes, XX). 

 

Variations in the sex chromosome number can be 

produced through genetic manipulation; for example, a 

phenotypically normal and fertile male fish bearing two Y 

chromosomes termed supermales (s) [2, 6, 7, 8]. Additional 

manipulations through hormone treatments can reverse the 

sex, resulting in a feminized YY supermale [36, 33, 22]. 

The eradication strategy involves the addition of sex-

reversed females bearing two Y chromosomes, i.e. 

feminized supermales (r), at a constant rate  µ to a target 

population containing f and m. Mating between the 

introduced r and the wild-type m generates a 

disproportionate number of males over time. The higher 

incidence of males decrease the female to male ratio. 

Ultimately, the number of f decline to zero, causing local 
extinction. This theoretical method of eradication is known 

as Trojan Y Chromosome strategy (TYC), [13]. Note, if an 

invasive species is used as a biological weapon, one would 

aim at maximum damage, by choosing a species that might 

populate very rapidly, and not grow according to the 

logistic control terms (at least in certain time windows), 

assumed traditionally [51, 52]. There is a large literature of 

such rapid population actuations in the so called case of an 

insect \outbreak" [4]. Furthermore, past models have not 

considered the effects of directed movements, such as 

movement of the males and supermales towards high 

concentrations of females, or avoidance of high 
concentrations, of each other. Thus such situations also 

need to be considered in our setting. 

 

The TYC model has been intensely investigated 

recently [13, 42, 41, 43, 14, 66, 63, 59, 64, 44, 45, 61, 15], 

and in the case of the classical TYC model, we now know 

the attractor is actually in Hs, 8s _ 0, [66]. However, a 

number of fundamental questions remain unanswered 

concerning existence of solutions as well as the existence 

and regularity of a global attractor, in the case that the 

reaction terms are \bad", that is say without logistic control 
terms, so that no a priori bounds on the solutions are 

possible. In [46] we began a program where we study TYC 

type models for biological control, where we remove the 

logistic type term. We also assume nonlinear and 

functionally dependent birth and death rates, instead of the 

constant coefficient birth and death rates, assumed earlier. 

In this case the system poses serious mathematical 

difficulties, as the nonlinearities change sign, and the 

components of the solution are not priori bounded in some 

Lp space. There is extensive literature on such problems [1, 

18, 20, 21, 25, 39, and 65]. In [46] we were able to use an 

elegant Lyapunov functional to prove global existence of 
solutions as well prove the existence of a finite dimensional 

(L2(Ω);L2(Ω)) global attractor to a TYC type model. An 

immediate mathematical question is: Is it is possible to 

improve the regularity of the attractor for such a class of 

models? Also, from a more practical perspective one might 

ask, what is the decay rate of the female species? 
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In the current manuscript, 

 
 We consider a major modification to the model in [46] 

by considering the introduction of both supermales and 

feminized supermales. Note in [46] we were only able 

to show that the global attractor of the considered 

system was an (L2(Ω);L2(Ω)). In this manuscript, we 

show that the attractor is actually a (L2(Ω);H2(Ω)) 

attractor, thus improving the results in [46]. 

 We show that extinction is always possible, under 

certain parameter restrictions, via the proposed strategy, 

even in a population which is not governed by a logistic 

type control term. The attractor is seen to be a one point 

attractor. 
 We perform numerical simulations to investigate the 

decay rate of the female species, showing numerical 

evidence of exponential attraction. We also explore 

optimal control scenarios for extinction of the invasive 

species, for different reaction type terms. 

 

II. THE MATHEMATICAL MODEL 

 

The control method described above is modelled via 

the following system of reaction diffusion equations: 

 

1 1f-d f=r (f,m,s,r),t                                                         (1) 

2 2m-d =r (f,m,s,r),t m                                                     (2) 

3 3s-d =r (f,m,s,r),t s                                                         (3) 

4 4r-d =r (f,m,s,r),t r                                                         (4) 

in R+Ω  with the boundary conditions 

f=m=s=r=0            on  R+Ω                                      (5) 

 

where  is an open bounded domain in R
n
, n=1,2,3 with 

smooth boundary . The functions f, m, r and s are the 

population densities of the normal females, normal males, 

supermales and sex reversed supermales respectively. The 

constants d
1

, d
2

, d
3

 and d
4

 are positive, called diffusion 

coefficients. The functions g
i
, i=1,...,10  and  

are polynomials with positive coefficients. The initial data. 

f(0,x)=m(0,x)=s(0,x)=r(0,x)=0,         in  Ω,    (6) 

are assumed to be nonnegative and uniformly bounded on 

. The reaction terms are given by: 

1 1 2

2 3 4

5 6

3 7 8 9

10

1
r (f,m,s,r)= g (f,m,s,r)fm-g (f,m,s,r)f,

2

1
r (f,m,s,r)= g (f,m,s,r)fm+g (f,m,s,r)fs

2

1
+ g (f,m,s,r)mr-g (f,m,s,r)r,

2

1
r (f,m,s,r)= g (f,m,s,r)mr+g (f,m,s,r)rs-g (f,m,s,r)s,

2

r4(f,m,s,r)= ( ) g (r)r

 

r





















 
 
 
 
 
 
 

(7) 

  

Here g
1

, g
3

, g
4

, g
5

, g
7

,g
8
 are the mating rates, and 

g
2

, g
6

, g
9
, g

10
 are the death rates, of the species. The 

function Ω is the rate of introduction of the sex reversed 

supermale. These coefficients are all allowed to be 
functionally dependent. 

 

Equation (4) is independent of the three first 

equations. It is the heat equation under homogenous 

Dirichlet boundary conditions. Under standard conditions 

on the reaction term r4: 

 

   

   
0

0 0

²
0  ,

²

ma

]

x ( ).

[

r

x

r g r r dr
and

r r g r r

where r r x











 
  

 




₁

₁
   (8) 

 

see []. The solution of (4) with the given boundary 

conditions exists globally in time and is bounded on   

 

( ,.) ( ), ,r t r t in R


                                      (9) 

  (9) 

where ( )r t  is a bounded function on bounded subsets of 

R
+

. The primary difficulty to prove the global existence of 

a solution to (1)-(4), is that the reaction terms given by (7) 

can change sign, and thus the solutions to (1)-(3) are not 

bounded a priori. 

 

III. NOTATIONS AND PRELIMINARY 

OBSERVATIONS 

 

For the definition of a strong solution we give the 

following (see for example [29]) 

 
Definition. 3.1.  We say that 

u ( )t,. =: [  0,T L
2

()L
2
()L

2
()L

2
() , is a strong 

solution of the system (1)-(4) if: 

i) u is continuous on [ [0,T  and 0(0,.) (.).u u  

ii) u is absolutely continuous on compact subsets of 

] [0,T . 

iii) u is differentiable on ] [0,T .  

 

We say u ( )t,.  is classical if it satisfies (1)-(4) pointwise, in 

the usual sense of derivatives. That is we require, . 

 

Our aim is to construct polynomial Lyapunov functionals 
(see S. Kouachi and A. Youkana [25] and S. Kouachi [26, 

27]) involving the solutions (f,m,s) of system (1)-(3), so 

that we may estimate their L
p
bounds and deduce global 

existence. 

 

The usual norms in spaces L
p
(), L


() and ( )C   are 

respectively denoted by 
 

              ∥ ∥u

p

 

p
= 

1

 | |
 



  | |u(x)

p

dx,                              (10) 

and 
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max ( ) .
x

u u x




                                           (11) 

 
Since the nonlinear right hand side of (1)-(4) is 

continuously differentiable on R
4

+
, then for any initial data 

in ( )C   or L
p
(), p ( )1,+ , it is easy to check 

directly its Lipschitz continuity on bounded subsets of the 

domain of a fractional power of the operator  

 











 

d
1
 0 0 0

0 d
2
 0 0

0 0 d
3
 0

0 0 0 d
4


.                                         (12) 

It is well known that to prove global existence of solutions 
to (1)-(3) (see, for example [19]), there are several methods 

such as the method of comparison with corresponding 

ordinary differential equations, method of invariant regions 

and functional methods based on a priori estimates. This 

last method, implies in several cases the global existence in 

time by application (to the reaction terms) of the well 

known regularizing effect (see for example [9]) which is 

also called L
p
L


 smoothing effect of the heat operator 

(i.e. the diffusion equation has an instantaneous 

regularizing effect in the sense that the above solution u 

belongs to L


 




 [ [0,T

max
,L


 ( )  regardless of the 

regularity of the initial data and that of the reaction to 

belong to L


 




 [ [0,T

max
,L

p
 ( )  for some p>N/2). The 

proof is based on the Riesz-Thorin interpolation Theorem 

(see e.g. [11]). Rigorously it suffices to derive a uniform 

estimate of each ( , , , ,i p
r f m s r , 1i4 on [ [0,T

max
 

for some p>N/2 and deduce that the solution to (1)-(3) is in 

L


() for all t [ [0,T
max

, where T
max

 denotes the 

eventual blow-up time in L


(). Under these assumptions, 

the following local existence result is well known (see 

[19,12,51,and 58]). 

 

Proposition 1 The system (1)-(4) admits a unique, classical 

solution (f,m,s,r) on [0,T
max

[ . Furthemore if 

T
max

< then 

 
max

( ,.) ( ,.) ( ,.) ( ,.)lim
t T

f t m t s t r t
   



     (13) 

where T
max

 denotes the eventual blow-up time in L


().  

 
Remark 1 In our setting a classical solution to (1)-(4) can 

be proved to be a strong solution. However, we refrain 

from this at present time.  

 

Remark 2 The uniqueness of the solution which is a fixed 

point of a nonlinear operator, is obtained by using 

standard arguments (Fixed Point Theorem) and the fact 

that the reaction terms are locally Lipschitz (see for 

example [9]).  

 

IV. GLOBAL EXISTENCE 

 

For the global existence of the system (1)-(3), we 

introduce the following functional used in S. Kouachi [] 

( ) ( ( , ), ( , ), ( , )) ,p pL t H f t x m t x s t x dx


         (14) 

where 

H
p

(f,m,s)= 
q=0

p
  
i=0

q
 C

q

p
C

i

q


i


q
f
i
m

qi
s
pq

.               (15)         (1 

The sequences { }i
iN

 and { }
q

qN

 are real and 

positive satisfying 

 

2
2

3
2

1

, 1,..., ,i i

i

d i q







                               (16) 

and 

 2 2 2 2 22 2
1 3 2 1 3

2 2

1 1

,

1,..., , 1,..., ,

q q i i

q i

d d d d d

i q q p

  

 

 

 

  
      

  

 

 (17) 

  

where 

, , , , 1,2,3.
2

i j
k

i j

d d
d i j k i j k

d d


       

(18) 

Remark 3 Conditions (16)-(17) imply that the sequences 









 


i+1


i iN

 and 








 


q+1


q qN

 are increasing and the 

sequences { }i
iN

 and { }
q

qN

 and can be chosen as 

follows  

   
2 2

3 1 ,

, 0,1,...,

i q

ki iK d and K d

i q

   



 (19) 

where K

 and K


 are any positive constants.  

We suppose that the polynomials g
2

, g
6

, g
9

 and g
10

 

(not all constant) are sufficiently large, that is in term of 

limits 
1 1

3 4 52 2

2

6

1

,

2
,

lim

lim

f m s r

f m s r

g fm g fs g mr

g f

and

g

g f

  

  

 
 

 

                  (20) 

and 
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1
7 8 92

1 1 1
6 3 4 52 2 2

,lim
f m s r

g mr g rs g s

g r g fm g fs g mr  

 
 

  
   (21) 

 

or 

     

1
7 82

2 6

,lim
f m s r

g mr g rs

g f g m  


 


                                   (22) 

 

and 

1

8

1 1 1
1 3 4 52 2 2

,lim i

i
f m s r

g s

g fm g fm g fs g mr





  

 
  

       (23) 

Remark 4 Conditions (20), (21) and (22) imply that the 

intervals in which we choose the sequences 








 


i+1


i iN

 

and 








 


q+1


q qN

 become sufficiently large and this gives 

us more freedoom to choose the sequences.  

Remark 5 Also note, the g
i
(f,m,s,r) , i=2,6,9,10, 

cannot all be chosen as constant. This will violate (20), 

(21) and (22). Note, if the g
i
(f,m,s,r)  are all 

chosen to be constant, then for certain data 

(f
0

,m
0

,s
0

,r
0

)L


() (possibly large) the solutions to 

problem (1)-(4) can blow-up in finite time. We demonstrate 

this via numerical simulation. See [30] for theoretical 

results on blow-up for similar systems. Also see [31] for a 

blow-up approach to controlling invasive populations.  

Thus we can state the following result 

Theorem  4.1 Let ( ( ,.), ( ,.), ( ,.), ( ,.))f t m t s t r t  be any 

positive solution of the problem (1)-(4) and suppose that 
the polynomials g

2
, g

6
, g

9
 and g

10
 are sufficiently large 

(conditions (20)-(23)), then under conditions (16)-(18) the 

functional L
p

(t) given by (14) is decreasing on the interval 

[0,T
max

[ .  

Proof. 

 Following the same reasoning as in S. Kouachi [28], that is 
by differentiating L

p
 with respect to t we got 

L
'

p
(t)=



  






f
H

p
 
f

t
+

m
H

p
 
m

t
+

s
H

p
 
s

t
dx 

=



  ( )a
f
H

p
f+b

m
H

p
m+c

s
H

p
s dx               (24)

 + 



  ( )r
1


f
H

p
+r

2


m
H

p
+r

3

s
H

p
dx 

=I+J. 

Using Green’s formula and the boundary conditions via(5), 

we obtain 

 
2

2

2
0 0

( 1) . ] ,[
qp

q i i q i p q

p q iq
q i

I p p C C B T T f m s dx


  


 

   
                                                                                (25) 

where the three order matrices B
iq

 are given by  

   
   
   

2 2 2 1 1 12 2

iq 2 1 2 12 2

1 1 12 2

B =

(26)

0 , 0 2,

a b a c
q i q i q i

a b b c
q i q i q i

a c b c
q i q i q i

a

b

c

i q q p

     

     

     

 
     

 
   

 
  

 
 
 
 
 

    

and T denotes the transpose vector 

                        , ,
t

T f m s    . 

From Sylvester’s criterion, each of the quadratic forms 

(with respect to f, m and s ) associated with the 

matrices B
iq

,  0qp2,  0iq is positive, if we prove the 

positivity of its main determinants 

, 1,2,3.j

iq j   For a fixed  0iq and 0qp2, we see 

that 


1

iq
=d

1


q+2


i+2
>0,  

and condition (16) implies 

 


2

iq
=d

1
d

2


2

q+2


2

i+1
 











 


i

i+2


2

i+1

  d
3

 
2

>0. 

We can show by elementary calculation that 

 2 2 2
2 2 2

2 1 31 2 3 1 1 . .

1,..., , 1,..., ,

qiq q i i id d d d d d

i q q p

     
    
  

 

 

where 

2 222
3 1

2 2

1 1

,
q qi i

qi

i q

d d
 

 
 



 

  
       
   

 

and this gives from (17) 
3

iq
>0. Consequently we have I0. 

For the second integral we have many ways to prove that 

J0, but we choose only two ways: 

The first, since 
2

1

2
0 0

( 1) ,
p q

i q i q i p q

q p iq
q i

I p p C C f m s dx


  


 

         

where 

1 1
1 2 3

q i
iq q i

q i

r r r
 

  
 

 
  

    
   

 

with 1,..., , 1,...,i q q p  . 

Replacing the reactions r
1
, r

2
 and r

3
 by their respective 

values given by (7), we get  

1 1
7 8 92

,
iq q

i

q i q

G g mr g rs g s
 

  


                     

where 

 1 1 1 1
1 2 3 4 5 62 2 2

i
i

i

G g fm g f g fm g fs g mr g m



                          

(27) 
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Then J0, if we choose first 

0,iG   

  

which can be satisfied if we choose 
 

 


i+1

2
i

g
1
fmg

6
m<0< 


i+1


i

g
2
f g

3
12fmg

4
fsg

5
12mr,  

and also this is satisfied if 

 

12g
3
fm+g

4
fs+12g

5
mr

g
2

f
 


i+1


i
 

2g
6

m

g
1

fm
, 

then under condition (20), we can choose the sequence 

{ }i
iN

 satisfying (16). Secondly by choosing the 

sequence { }
q

qN

 satisfying 

 1 1 1 1 1
6 3 5 4 7 8 92 2 2 2

0,
q

q

g m g fs g mr g f g mr g rs g s





       

 

which can be chosen under condition (21). 

The second way is that we choose 

 

  


q+1


q

 








 


i+1


i

g
1
12fm+g

3
12fm+g

4
fs+g

5
12mr g

9
s 

  <

0< 


q+1


q

 








 


i+1


i

g
2

f +g
6

m g
7
12mrg

8
rs,  

    

that is 

1
17 8 92

1 11 1 1
2 6 1 3 4 52 2 2

.
q

i iq

i i

g mr g rs g s

g f g m g fm g fm g fs g mr



 

 



 


 

   

 

As the g
i
 
'
s are polynomials with positive coefficients, then 

condition (22) together with (23) permit us to choose the 

sequence { }
q

qN

 satisfying (17). This ends the proof of 

the Theorem. By application of the preliminary 

observations, we have the following, 

Corollary 1  Suppose that the reaction terms are 

continuously differentiable on R
4

+
, then all positive 

solutions of (1)-(4) with initial data in L
p
() are in 

L


(0,T
max

;L
p

())  for all p1.  

Proof: If p is an integer, the proof is an immediate 

consequence of Theorem 3.1 and the trivial inequality  

1 max( ( , ) ( , ) ( , )) ( ), [0, [,pf t x m t x s t x dx C L t on T


   (28) 

0,1,..., ,i p  

where C
1
 is a positive constant depending on p. 

If we suppose that the reaction terms are of polynomial 

growth  

 
3

2( , , , ) ( , , , )[1 ] ,l

ig f m s r C f m s r f m s r on R      (29), 

0,1,..., ,i p  

where C
2

  positive and bounded function on bounded 

subsets of R
4

+
 we have the following 

Proposition 2  If the reaction terms are of polynomial 
growth with g

2
, g

6
, g

9
 and g

10
 are sufficiently large, then 

all positive solutions of (1)-(4) with initial data in L


() 

are global.  

Proof: From corollary 1, there exists a positive constant C
3
 

such that  

3 max(1 ( , ) ( , ) ( , )) , [0, [,pf t x m t x s t x dx C on T


        

(30) 

for all p1 and from (26) we have  

   2

2 max, , , , , , (1 ) , [0, [,
p

l p

ir f m s r C f m s r f m s r on T           

(31) 

Since f,m,s and r are in L


( [ [0,T
*

;L
p

()), for all 

p1, then we can choose p1 such 
p

l+2
> 

N

2
 and from the 

preliminary observations the solution is global. 

Remark 6 The global existence can be proved under more 

general boundary conditions including homogeneous and 

nonhomogeneous Dirichlet, Neumann and mixed boundary 

conditions (see [28]). Also note, because the non linear 

semi-group S(t) in this case is regularizing [59], for initial 

data say u
0
L

2
(), for some r>0, S(r)u

0
L

p
(). We can 

now use the constructed functional (14) with initial data 

S(r)u
0
, which is in L

p
(), so the local solution is in L

p
(), 

thus can’t blow up and becomes global. Thus we have a 

priori L


(0,;L
p

())  bounds for data in L
2

(). 

 

V. BOUNDED ABSORBING SETS AND FURTHER A 

PRIORI ESTIMATES 

 

5.1 Bounded absorbing sets 

In this section we aim to investigate the asymptotic 

behavior of (1)-(4). We use the functional L
p

 to show the 

existence of bounded absorbing sets. Using the fact that the 

matrices B
iq

, i=  0,q  ,q=  0,p   are positive definite, 

we can find a constant C
4

 such that  

Ip(p1)C
4
 



  







 ( )df+m

p2

 | | ( )f+m+s

2

dx,          (32) 

and this gives  
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'

2
2

4

( )

( 1) ( ) ( )

0,

p

p

L t

p p C f m s f m s dx



      



                 (33) 

max[0, [,on T  

by integrating (33) with respect to t, we deduce  

 

2
2

5

0

( )

( ) ( ) (0),

p

t

p

p

f m s dx

C f m s f m s dxds L







 

      



 
        (34) 

max[0, [,on T  

then this inequality gives 

 

f,m,sL


 ( ) [ [0, ;L
p

 ( ) L
2

 ( ) [ [0, ;H
1

 ( ) .

(35) 

The above method shows the existence of bounded 

absorbing set in L
p

(), for all p1, and so in particular for 

L
2

(). Similar estimates are made in [48]. 

Remark 7 Note, from (33) it is immediate that L
'

2
(t)<0, 

hence L
2

(t) is decreasing in time. From the form of the 

functional L
p

(t) in (14)-(15), it is clear that ||f||
2

2
 is also 

decreasing in time, and must enter some compact ball, by a 

finite time t
1
, where t

1
 will depend on the L

2
() norm of 

the initial conditions, and the parameters in the system.  

For completeness we show certain details pertaining to the 

uniform L
2

() estimates. 

Let us begin by multiplying (1) by f, and integrating by 

parts over , to obtain 

1

2
 
d

dt
||f||

2

2
+||f||

2

2
=a

1
 



 f
1+2

m
1+1

dxa
2
 



 f
2+2

m
2dx.           

(36) 

We now use the positivity of f and m along with Holder’s 
inequality to obtain 

1

2
 
d

dt
||f||

2

2
+||f||

2

2
a

1
||f||
1+2

2(1+2)
||m||

1+1

2(1+1)
C.               (37) 

This follows via the a priori L
p

 bound on the solutions, 

and hence in particular for p=max(2(
1

+2),2(
1

+1)) . 

Note here C only depends on the L
2

() norm of the initial 

data, and is independent of time. The C here comes from 

L
2

(0), which can be bounded by C
1
(||f

0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
), 

where C
1

 is a pure constant. Thus we use Poincare’s 

inequality to obtain, 
1

2
 
d

dt
||f||

2

2
+||f||

2

2
C

1
(||f

0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
).                        (38) 

Remark 8 Typically, in order to make dissipative 

estimates, we require an inequality of the form 
d

dt
||u||

V
+C

2
||u||

V
C

1
, for a state variable u in some 

function space V. The C
1

,C
2

 are pure constants, that could 

depend on the parameters in the problem, but not on the 

initial condition [50]. Methods in [50] show that typically 

if we choose t
1
= 

1

C
2
ln(||u

0
||

V
), then for times t>t

1
, we have 

that ||u||
V
1+ 

C
1

C
2
. In our setting the R.H.S does depend on 

the initial condition, however we can give an (,) 

argument to show that the L
2

() norm of the solutions is 
still absorbed by a finite time t

1
. Note in the estimates it is 

assumed conditions (20)-(23)), and conditions (16)-(18) 

hold.  

Via the use of Gronwall’s lemma [50] in (38) we obtain  

 ||f||
2

2
e
2t

||f
0
||
2

2
+ 

C
1

2
(||f

0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
)(1e

2t
).     (39) 

Note for any 2>>0, there exists a t=T
*
(), s.t 

e
2t
1

e
2t

=e
t

. Thus for t[0,T
*
()] , we have that 

e
2t
1

e
2t

e
t

. 

Case 1: 
1


ln(||f

0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
))T

*
().  

 We assume ||f
0

||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
>1, else the absorbing set 

is trivial from (34). 

Using the fact that 
e
2t
1

e
2t

e
t

 for t[0,T
*
()]

max[0, [,on T , in (39) we obtain, 

 ||f||
2

2
e
2t

||f
0
||
2

2
+ 

C
1

2
(||f

0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
)e
t

.       (40) 

Let’s choose t
0
= 

1

2
ln(||f

0
||
2

2
). Also given (f

0
,m

0
,s

0
) an >0, 

we can find a >0 s.t 

  
1


< 

1


< 

T
*
()

ln(||f
0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
)

.                                         

(41) 

Now we choose t
*

1
 such that 

   t
*

1
= 

1


ln(||f

0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
)),                                      

(42) 

Note, given 2>>0, we can always find >0 via (41), so 

that t
*

1
<T

*
(). 

Finally we choose t
1
=max(t

0
,t

*

1
), then we have 
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                         ||f||
2

2
1+ 

C
1

2
,  t>t

1
.                                   

(43) 

Case 2:  
1


ln(||f

0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
))>T

*
(),  

 This might be the situation if for example the given initial 
data (f

0
,m

0
,s

0
) was very large. Then similarly as earlier we 

have ||f||
2

2
e
2t

||f
0
||
2

2
+ 

C
1

2
(||f

0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
)e
t

.      (44) 

Also given (f
0

,m
0

,s
0
) an >0, we can find a >0 s.t 

    
1


< 

T
*
()

ln(||f
0

||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
)

, 0<<.                            (45) 

Thus  

||f||
2

2
e
2t

||f
0
||
2

2
+ 

C
1

2
(||f

0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
)e
t

.              (46) 

   Now we choose  

t
*

1
= 

1


ln(||f

0
||
2

2
+||m

0
||
2

2
+||s

0
||
2

2
)),                                    (47) 

Thus given 2>>0, we can always find >0 via  (45), so 

that t
*

1
<T

*
(). 

Finally we choose t
1
=max(t

0
,t

*

1
), and we have 

||f||
2

2
1+ 

C
1

2
,  t>t

1
.                                          (48) 

We next demonstrate next the H
1

0
() estimates with f. 

We integrate (37) in the time interval from [t,t+1] for any 

tt
1

, to obtain 

||f(t+1)||
2

2
+ 

t

t+1

 ||f||
2

2
dsC

5
+||f(t)||

2

2
C

6
, tt

1
.             (49) 

Remark 9 Note the C
6
 absorbs C

5
 and 1+ 

C
1

2
 from (48), 

so 1+ 

C
1

2
+C

5
<C

6
. . 

Thus we have the following uniform integral in time bound 



t

t+1

 ||f||
2

2
dsC

6
, tt

1
,                                             (50) 

using the Mean Value Theorem for integrals, there 

exists t
*
[t,t+1]  such that for all t>t

1
, we obtain 

           ||f(t
*

)||
2

2
dsC

6
,                                              (51) 

We next multiply (1) by f and integrate by parts over . 

For such higher order Sobolev estimates, we will assume f 

and f satisfy the same boundary conditions, and similarly 

the same is true for the other components. Thus we obtain 

1 1 2 2

2 21
2 2 2

1 1 1

1 2( ) ( ) .

d
dt

f f

a f m f dx a f m f dx     

 

  

    
                                       

(52) 

 

Then employing Young’s inequality yields, 
1

2
 
d

dt
||f||

2

2
+||f||

2

2
 

 
1

4
||f||

2

2
+2||f||

4(1+1)

4(1+1)
+2||m||

4(1+1)

4(1+1)
 

+ 
1

4
||f||

2

2
+2||f||

4(2+1)

4(2+1)
+2||m||

4(2)

4(2)
, 

which via  the a priori L
p

 bounds on the solutions, hence in 

particular for  

p=max(4(
1

+1),4(
1

+1),4(
2

+1),4(
2

)) , leads 

to 

1 1

1 1

2 2

2 2

2 2 4( 1) 4( 1)

2 2 4( 1) 4( 1)

4( 1) 4

4( 1) 4

4 4

4 4 .

d
dt

f f f m

f m C

 

 

 

 

 

 





    

  
                         

(53) 

Now using the Sobolev embedding of H
2

()↪H
1

0
(), we 

obtain 

                
d

dt
||f||

2

2
+C

1
||f||

2

2
C.                                          

(54) 

Grönwall Lemma via integration in the time interval [t


,t] 

yields the following uniform bound 

   
1

1

22 ( *) ( *)

2 2

6 1

1 *

, * .

t t t tC
C

C
C

f e e f t

C t t t

       

    
                          

(55) 

 

This follows via (51). 

 

Remark 10 Note, (51) holds for any t>t
*

. However, the 

reason we use t
*
, is to first derive a uniform in time bound 

on the ||f(t

)||

2

2
 via (51), so that the e

(tt)
)||f(t


)||

2

2
 

term can be absorbed, uniformly in time for times tt

t

1
, 

using (51).  

 

Remark 11 The strategy for the uniform H
1

0
() estimates 

for the m,s,r components is similar. That is we can derive a 

finite time t
m

3
 s.t. ||m||

2

2
C, for t>t

m

3
. Here the finiteness 

of the time t
m

3
, comes via the methods similar to (36)-(55), 

where we use the equation for m via (2). Similarly we can 
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derive a finite time t
s

3
 s.t. ||s||

2

2
C, for t>t

s

3
, and we can 

derive a finite time t
r

3
 s.t. ||r||

2

2
C, for t>t

r

3
.  

 

This leads us to state the following Lemma. 

 

Lemma 5.1.  Let f,m,s be solutions to (1)-(4) with 

(f
0

,m
0

,s
0

,r
0

)L
2

(). Assume conditions (20)-(23) and 

conditions (16)-(18) hold, and the finite H
1

0
() absorption 

times for the components f, m, s, r are t
1
,t

m

3
 , t

s

3
 and t

r

3
 

respectively. We denote t

3
 by  

t

3

=max(t
1
,t

m

3
,t

s

3
,t

r

3
). 

 

There exists a constant C independent of time and initial 
data, and depending only on the parameters in (1)-(4), such 

that for any t>t

3

 the following uniform a priori estimates 

hold:  

 

 ||f||
2

2
 C, (56)  (56) 

 ||f||
2

2
 C, (57)  (57) 

 ||m||
2

2
 C, (58)  (58) 

 ||m||
2

2
 C, (59)  (59) 

 ||s||
2

2
 C, (60)  (60) 

 ||s||
2

2
 C, (61)  (61) 

 ||r||
2

2
 C, (62)  (62) 

 ||r||
2

2
 C.     (63)  (63) 

 

5.2  Local In Time a Priori Estimate for f. 

Our goal now is to show that we can derive a priori 

H
2

() bounds on the solutions to (1)-(4). To this end we 

next multiply (1) by f and integrate by parts over  to 

obtain 

1 1

2 2

2 2 1 11
1 12 2 2

1

2

( )

( ) ,

d
dt

f d f a f m f dx

a f m f dx

 

 

 







    

 




     (64) 

 

Then employing Young’s inequality yields, 
1

2
 
d

dt
||f||

2

2
+d

1
||f||

2

2
 

 

d
1

4
||f||

2

2
+2||f||

4(1+1)

4(1+1)
+2||m||

4(1+1)

4(1+1)
 

  

+ 

d
1

4
||f||

2

2
+2||f||

4(2+1)

4(2+1)
+2||m||

4(2)

4(2)
, 

 

which via the a priori L
p

 bounds on the solutions, hence in 

particular for 

 p=max(4(
1

+1),4(
1

+1),4(
2

+1),4(
2
)) leads to 

1 1 2 2

1 1 2 2

2 2

12 2

4( 1) 4( 1) 4( 1) 4

4( 1) 4( 1) 4( 1) 4
4 .

d
f d f

dt

f m f m C
   

   

  

  

  

     
 

      (65) 

 

Note the regularizing properties of the semigroup yield L
p
 

(p>2) bounds on the solution, for initial data in L
2

. We now 

integrate (65) above from t


3
 to t to obtain 



t


3

t

 ||f||
2

2
ds 

t


3

t

 Cds. 

In particular choosing 

                        t=t


3
+1,  

yields  

1

(t


3
+1)t



3

 

t


3

t


3
+1

 |f|
2

2
dsC. 

 
Hence using a mean value Theorem for integrals we obtain 

that there exists a time t


3
t


3
,t


3
+1] such that the following 

estimate holds uniformly  

||f(t


3
)||

2

2
C. 

 

Remark 12 The strategy for the uniform integral in time 

H
2

() estimates for the m,s,r components is similar. That 

is we can derive a finite time t
m

3*
 s.t. 

 

t
m

3*

t
m

3*
+1

 ||m||
2

2
dtC, for t>t

m

3*
. Similarly we can derive a 

finite time t
s

3*
 s.t. 

 

t
s

3*

t
s

3*
+1

 ||s||
2

2
dtC, for t>t

s

3*
, 
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 and we can derive a finite time t
r

3*
 s.t. 

 

t
r

3*

t
r

3*
+1

 ||r||
2

2
dtC.  

 

5.3  Uniform A Priori H
2
 Estimate For f. 

We multiply Equation (1) by 
2
f and integrate by 

parts over  to obtain  

d||f||
2

2

dt
+d

1
||(f)||

2

2
 









 



 (a
1

f
1+1

m
1+1

a
2
f
2+1

m
2)(f)dx = 

 





 (a
1
f
1+1

(
1

+1)m
1m+a

1
m
1+1

(
1

+1)f
1f)(f)dx 

  

 

 



 (a
2
f
2+1

(
2

)m
21

m+a
2
m
2(

2
+1)f

2f)(f)dx 

C
2

+ 

d
1

2
||(f)||

2

2
+C

3
||f||

2

2
+C

4
||m||

2

2
.                   (66)    (66) 

 

This follows via the a priori L
p
() bounds on the 

solution, the embedding of H
2
()↪W

1,4
() , Cauchy-

Schwartz and Young’s inequalities. Now using the 

embedding of H
3

()↪H
2
() we obtain,  

 

d||f||
2

2

dt
+ 

d
1

2
||f||

2

2
C

2
+C

3
||f||

2

2
+C

4
||m||

2

2
.        (67) 

 

Now we recall the Uniform Grönwall Lemma 

 

Lemma 5.2. (Uniform Gronwall Lemma)   Let , and h 

be nonnegative functions in L
1

loc
 [ [0, . Assume that  is 

absolutely continuous on ] [0,  and the following 

differential inequality is satisfied. 

      
d

dt
+h, for t>0.                         (68) 

If there exists a finite time t
1
>0 and some r>0 such that 

     , ,

t r t r t r

t t t

d A d B and h d C       
  

           (69) 

for any t>t
1

, where A, B and C are some positive constants, 

then 

(t) 



 

B

r
+C e

A
, for  any t>t

1
+r.                  (70) 

Thus using  

()=|f|
2

2
, ()=C

3
 

d
1

2
, h()=C

2
+C

4
|m|

2

2
,             (71) 

and application of the above lemma yields 

 

Lemma 5.3.  Let f,m,s be solutions to (1)-(4) with 

(f
0

,m
0
,s

0
,r

0
)L

2
(). Assume conditions (20)-(23) and 

conditions (16)-(18) hold, and we have the finite integral in 

time H
2
() estimates for the components f, m, s, that is, 

 



t
*

3

t
*

3
+1

 ||f||
2

2
dtC,  t>t

*

3
 



t
m

3*

t
m

3*
+1

 ||m||
2

2
dtC,  t>t

m

3*
 

 

               

t
s

3*

t
s

3*
+1

 ||s||
2

2
dtC  t>t

s

3*
 

We denote t

4
 by  

                t

4
=max(t

*

3
,t

m

3*
,t

s

3*
). 

 
Then there exists a constant C independent of time and 

initial data, and depending only on the parameters in (1)-

(4), such that for any t>t

4

 the following uniform a priori 

estimates hold: 

 

||f(t)||
H2()

 C, tt

4

+1,  

||m(t)||
H2()

 C, tt

4

+1,  

||s(t)||
H2()

 C, tt

4

+1.  

Thus the existence of a bounded absorbing set in H
2
() has 

also been established. 

 

5.4.  Uniform a Priori Estimates for 
f

t




 

From (1) via brute force we obtain 





 





 

f

t

2

 

2
 

=



  ( )d
1
f+a

1
f
1+1

m
1+1

a
2

f
2+1

m
2

2

dx 

C||f||
2

2
+C

1
||f||

4(1+1)

4(1+1)
+C

2
||m||

4(1+1)

4(1+1)
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C||f||
2

2
+C

3
||f||

2

2
+C

4
||m||

2

2
.                                    (72)    (72) 

 

This follows via the priori L
p

() bounds on the 

solution, as well as the compact embedding of 

H
2

()↪L
p

(),  p (since the spatial dimension n3). 

Similar estimates can be derived for the m,s components. 

We can now state the following Lemma, 

 
Lemma 5.4.  Consider (1)-(4), for any solutions f,m,s and r 

of the system with (f
0

,m
0
,s

0
,r

0
)L

2
(). Assume conditions 

(20)-(23) and conditions (16)-(18) hold. We denote t

6
 by  

t

6

=t

4

+1. 

Then there exists a constant C, independent of time and 

initial data such that the following estimates hold uniformly  
2

*

6

2

,
f

C t
t


 


, 

2

*

6

2

,
m

C t
t


  


, 

2

*

6

2

,
s

C t
t


  


, 

2

*

6

2

,
r

C t
t


  


   

 

This easily follows via the estimates in Lemma 5.5. We 

next make a local in time estimate on 
f

t
 We take the 

partial derivative w.r.t t of (1) and multiply the resulting 

equation by 
f

t
 and integrate by parts over  to obtain 

2 2

1

2 2

1

2

d f f
d

dt t t

 
 

 

 





  




a

1
(

1
+1)f

1+1
m
1 

m

t
+a

1
(

1
+1)f

1m
1+1

 
f

t
 




 

f

t
dx

  

 

+ 



  




a

2
(

2
)f
2+1

m
21

 
m

t
a

2
(

2
+1)f

2m
2 

f

t
 




 

f

t
dx 



1 1 1 1

2 2 2 2

2 2 2
( 1) ( 1)

2 2 2

2 2 2
( 1) ( 1) (

2 2 2

.

m f f
C f m C f m

t t t

m f f
C f m C f m

t t t

   

   

 

   

 

   

     
    

        

     
     

        
     

 

  

Thus integrating the above in the time interval [t


6
,t


6
+1] 

yields 
*
6

*
6

21

2

t

t

f
ds

s

  
 

  


* *
6 6

1 1 1 1

* *
6 6

* *
6 6

2 2 2 2

* *
6 6

2 2 21 1
( 1) ( 1)

2 2 2

2 2 21 1
( 1) ( 1)

2 2 2

.

t t

t t

t t

t t

m f f
C f m ds C f m ds

s s s

m f f
C f m ds C f m ds

s s s

   

   

 
 

   

 
 

   

     
            

     
             

 

 



*
6

1 1

2 2

*
6

*
6

1 1

2 2

*
6

2 21
( 1)

* *

6 6( ) ( )
2 2

21
( 1)

* *

6 6( ) ( )
2

( ) ( )

( ) ( )

t

H H
t

t

H H
t

m f
C f t m t ds

s s

f
C f t m t ds

s

 

 




 




 

  
    

 
    





     

*
6

2 2

2 2

*
6

*
6

2 2

2 2

*
6

2 21
( 1) ( 1)

* *

6 6( ) ( )
2 2

21

* *

6 6( ) ( )
2

( ) ( )

( ) ( ) .

C.

t

H H
t

t

H H
t

m f
C f t m t ds

s s

f
C f t m t ds

s

 

 


 

 



 

  
  

   

 
  

  





               (73) 

    

    (73) 

This follows via the regularizing properties of the 

semigroup, Lemma 5.5, Lemma 5.4 and the embedding of 

H
2

()↪L


()and hence using a mean value Theorem for 

integrals we obtain that there exists a time 

 ** * *

6 6 6
, 1t t t   such that the following estimate holds 

uniformly  
2

**

6

2

( )
.

f t
C

t





 

 

We will next make a uniform in time estimate for

2

2

f

t




, 

where the previous estimate will be used. We take the time 

derivative of (1), then multiply through by  
f

t
 and 

integrate by parts over  to obtain 

 

 

  

 
1

2
 
d

dt
 




 

f

t

2

 

2
+d

1
 




 





 

f

t

2

 

2
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          

1 1 1 1

2 2 2 2

1 1

1 1 1

1 1

2 2 2

( 1) ( 1)

( 1)

m f f
a f m f m dx

t t t

m f f
a f m f m dx

t t t

   

   

 

 

 



 



    
     

    

    
     

    





  

                

 1 1 2 2

2 2
2( 1) 2( 1) 2( 1) 2

2 2

2

1

2

max ,

.
2

m f
C f m f m

t t

d f

t

     

   

  
 

   





  

    

This follows from the product rule for differentiation, 

Cauchy-Schwartz inequality and the Sobolev embedding of 

H
1

0
()↪L

4
(). Now using the embedding of 

H
2

()↪H
1

0
() we obtain  

  

 
d

dt
 ∥ ∥ 

f

t

2

 

2
+d

1
 ∥ ∥ 

f

t

2

 

2
 

C||f||
K

H2||m||
K

H2 








 ∥ ∥ 
f

t

2

 

2
+ ∥ ∥ 

m

t

2

 

2
 

              C. 

    

Here K=max(2(
1

+1),2(
1
+1),2(

2
+1),2(

2
)) . 

Thus via time integration in the interval [t


6
,t] in the 

Grönwall Lemma we obtain 

  **
1 6

**
1 6

2
**2 ( )
6( )

2 1
2

1
.

d t t
d t t

f tf e
e C C

t t d

 
 

 
  

 
         (74) 

**

6t t  . 

We can make similar estimates for the other components, 

and derive similarly absorbing times t
m

6
,t
s

6
,t
r

6
, where 

(t
m

6
,t
s

6
,t
r

6
) are the absorption times for 

2 2 2( ) ( ) ( )

( ) ( ) ( )
, , .

L L L

m t r t s t

t t t  

  

  

  

 

We thus state the following result, 

 

Lemma 5.5.  Consider (1)-(5). For any solutions u,v,w,z to 

the system, there exists a constant C independent of time 

and initial data, and a time t

6

=max(t

6

,t
m

6
,t
s

6
,t
r

6
), 

such that the following estimates hold uniformly,  

 

 
2

2

( )L

f

t 




 C, tt


6

,  

 
2

2

( )L

m

t 




 C, tt


6

,  

 
2

2

( )L

r

t 




 C, tt


6

,  

 
2

2

( )L

s

t 




 C, tt


6

.  

   

VI. EXISTENCE OF GLOBAL ATTRACTOR 

 

In this section we prove the existence of a compact 
global attractor for system (1)-(4).  

 

6.1  Preliminaries 

Recall the phase space H introduced earlier  

 

H=L
2

()L
2
()L

2
()L

2
(). 

Also recall  

 

Y=H
1

0
()H

1

0
()H

1

0
()H

1

0
(),  

and 

   

   

2 1 2 1

0 0

2 1 2 1

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

X H H H H

H H H H

      

    
 

 

Recall the following definitions 

 

Definition 6.1. Let AH
2
(), then A is said to be a (H,X) 

global attractor if the following conditions are  satisfied  

i) A is compact in X.  

ii) A is invariant, i.e., S(t)A=A, t0. 

iii) If B is bounded in H, then  

 dist
X

(S(t)B,A)0, t.  

 

Definition 6.2. (Asymptotic compactness)  The semi-

group { }S(t)

t0

 associated with a dynamical system is said 

to be asymptotically compact in H
2

() if for any 

{ }f
0,n


 

n=1
 bounded in L

2
() and a sequence of times 

{ }t
n
 , S(t

n
)f

0,n
  possesses a convergent subsequence 

in H
2

().  

 

Definition 6.3. (Bounded absorbing set)  A bounded set B 

in a reflexive Banach space H is called a bounded 

absorbing set if for each bounded subset U of H, there is a 

time T=T(U) depending on U, such that S(t)UB for all 
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t>T. The number T=T(U) is referred to as the 

compactification time for S(t)U. This is the time after 
which the semigroup compactifies.  

 

Also recall that if A is an (H,H) attractor, then in order to 

prove that it is a an (H,X) attractor it suffices to show the 

existence of a bounded absorbing set in X as well as 

demonstrate the asymptotic compactness of the semi-group 

in X, see [60]. We first state the following Lemma. 

 

Lemma 6.4.  Consider the system described via, (20)-(23). 

Under conditions (1)-(4), there exists a (H,H) global 

attractor A for this system which is compact and invariant 

in H, and attracts all bounded subsets of H in the H metric.  

 

Proof: The existence of bounded absorbing set in H follow 
via the estimates derived in Lemma5.1. Furthermore the 

compact Sobolev embedding of  

                                  Y↪H 

yields the asymptotic compactness of the semi-group 

{ }S(t)

t0

 in H. The existence of an (H,H) global attractor 

now follows. 

 

6.2.   One Point Attractor 

In this subsection, we shall prove that the attractor is a 

one point attractor. We begin by the following 

 

Proposition 3 The unique fixed point of the semi group 

{ }S(t)

t0

 associated with the dynamical system (1)- (4) is 

the null solution, if the reaction term in the equation for r is 

not positive and (20)-(23) hold.  

 

Proof: Suppose that  u  =(  v  ,  r  )  is a fixed point of 

the semi group { }S(t)

t0

, where  v  =(  f  ,  m  ,  s  ).  

 

First by supposing the reaction term in the equation for r is 

not positive, we can deduce easily that  r  0. for the other 

components we use the Lyapunov functional L
p
: from 

equation (14)-(15).  

 

Since for >0, we have S(t)  v  =0 on the interval ( )0, .  

This gives 

 L
'

p
(t)=:I+J=0, forallt ( )0, .  

Since I0 and J0 on the interval ( )0, , then 

I=J0,t ( )0, .  Since each of the quadratic forms 

(with respect to f, m and s ) associated with the 

matrices B
iq

 0qp2,  0iq, given by (26) and appearing 

in the expression of the integral I given by (25) are positive. 

This gives 

 

 f=m=s=0,t ( )0, ,  

which means that (  f  ,  m  ,  s  )  is a constant vector. 

Using the homogenous Dirichlet boundary conditions, we 

deduce  f  =  m  =  s  =0, on the interval ( )0, . This 

end the proof of the proposition. 

Now we can state the following 

 

Theorem 6.5 The attractor of the semi group { }S(t)

t0

 is a 

one point attractor.  

Proof: By direct application of A.V. Babin and M.I. 

Vishik [3] [Theorem 10.2, page 2.4], we can deduce the 
statement of the Theorem. 

 

We next place sufficient conditions on the g
i
 and show 

that in certain special cases, f will decay exponentially to 0, 

via the following Lemma. 

 

Lemma 6.6.  Consider the model system (1)- (4). If the 

reaction term in the equation for r is not positive, then for 

any constant g
i
, i=1,3,4,5,7,8,9, and f

0
,m

0
L

2
(), we can 

choose g
2

,g
6

, s.t f,m0 , exponentially in the L
2
() norm.  

 

Proof: If the reaction term on r is not positive, r 

trivially goes extinct leading to the extinction of s. This 

reduces (1)- (4) to 
 

      
t
f=d

1
f+g

1
fmg

2
(f,m)f,                     (75) 

 


t
m=d

2
m+g

3
fmg

6
(f,m)m,                   (76) 

with Dirichlet boundary conditions. For the sake of 

simplicity let us assume g
2
(f,m)=C

1
f
2

, g
6

(f,m)=C
2
m

2
, 

 

where C
1
,C

2
, will be chosen later. Then multiplying (75) 

by f and (76) by m and integrating by parts over  yields 

1

2
 
d

dt
||f||

2

2
+d

1
||f||

2

2
+C

1
||f||

4

4
=g

1
 



 f
2

mdx,           (77) 

  

 
1

2
 
d

dt
||m||

2

2
+d

2
||m||

2

2
+C

2
||m||

4

4
=g

3
 



 m
2

fdx.       (78) 

 

Using Poincare’s and Young’s inequality with  we obtain 

1

2
 
d

dt
||f||

2

2
+C

3
||f||

2

2
+C

1
||f||

4

4
 

g
1

2
2

||f||
4

4
+ 

g
1

2

2
||m||

2

2
,                  

(79) 

 
1

2
 
d

dt
||m||

2

2
+C

4
||m||

2

2
+C

2
||m||

4

4
 

g
3

2
2

||m||
4

4
+ 

g
3

2

2
||f||

2

2
.   (80) 
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Choosing  small enough that is <min(  

C
3

g
1

,  

C
4

g
3

), 

and C
1
,C

2
 large enough that is C

1
> 







 

g
1

2
 









 

1

min( 

C
3

g
1

, 

C
4

g
3

)

, 

we add up the above to obtain 

          
1

2
 
d

dt
||f||

2

2
+ 

1

2
 
d

dt
||m||

2

2
+C

5
||f||

2

2
+C

6
||m||

2

2
0.            (81) 

Defining V=m+f, and C
7
=min(C

5
,C

6
), we obtain 

                      
1

2
 
d

dt
||V||

2

2
+C

7
||V||

2

2
0.                             (82) 

This yields 

                       ||V||
2

2
e
2C7t

||V
0
||
2

2
,                            (83) 

thus we have 

                      
lim

t
||V||

2

2
0,                                 (84) 

which implies 

 

            
lim

t
||f||

2

2
0, 

lim

t
||m||

2

2
0                     (85) 

exponentially. This proves the Lemma. 

 
Remark 13 Note we must choose g

2
,g

6
 super linear at the 

very least, because choosing them as constant or sub linear 

can lead to blow-up in finite time for sufficiently large 

initial data, and then no convergence to equilibrium (or 

extinction state) is guaranteed [30].  

 

Remark 14. In the special case that r goes extinct, which 

happens if the reaction term in (4) is non positive, s follows 

suit trivially. Then we are essentially left with a 2 species 

system for f,m. Special cases of this are tackled in [49] See 

pg.133, example 1.10 and references therein. Although 
under certain restrictions on the reaction terms existence of 

a global attractor can be proved (via the Simon-

Lojasiewicz type techniques), convergence to equilibrium is 

another matter. For example, let us (assuming r,s0 ) 

choose g
1

=2C
1

,g
2

=C
2
fC

3
,g

3
=2,g

6
=m . Then upon 

analyzing the Jacobian we see that if we choose 

C
1

= 
5

8
,C

2
= 

1

8
 then C

4
= 

1

2
 (where C

4
=C

1
C

2
), what we 

obtain is J
11

|
(f*,m*)

= 

3C
3

2
, while J

22
|
(f*,m*)

= 

C
3

C
4

. Since 

all constants are positive this says J
11

J
22

<0, and standard 

pattern formation results [64] tell us that there exist 

diffusion coefficients d
1
,d

2
 for which Turing instability will 

occur. Thus the base equilibrium state is driven unstable 

because of diffusion, and one will not have convergence to 

the spatially homogenous equilibrium solution.  

 

6.3.  Asymptotic Compactness of the Semi-ggroup In X 

In this section we demonstrate the asymptotic 

compactness property. We show calculations for f, the other 
variables follow similarly. Showing asymptotic 

compactness in H
2
(), would involve making uniform 

H
3

() estimates and then using the Sobolev embedding of 

H
3

()↪H
2

(). This will be quite cumbersome, and so is 
circumvented altogether via the following strategy. We 

rewrite (1) as  

 

d
1
f= 

f

t
+a

1
f
1+1

m
1+1

a
2

f
2+1

m
2.                 (86) 

 

We will demonstrate that every term on the right hand side 

of (86) is uniformly bounded in L
2

(). Thus we obtain that 

f is uniformly bounded in L
2

(), which will imply via 

elliptic regularity the uniform boundedness of f in H
2
(). 

Since this can be done for the other variables, the 

asymptotic compactness in X follows. To demonstrate this 

we state the following Lemma 

 

Lemma 6.7.  The semi-group { }S(t)

t0

 associated with the 

dynamical system (1)- (4) is asymptotically compact in X.  

 

Proof: Let us denote f
n
(t)=S(t)f

0,n
 and u(t

n
)= 

f
n

t
|
t=tn

. 

We have that 

 

Error! 

Via Lemma 5.5 we have for tt


6
  

 





 

f

t
2

C. 

Hence for n large enough t
n
t


6
 and we obtain  

 









 

f
n

t
2

|
t=tn

C. 

Also via Lemma 5.1 we have the estimate  

 

||f||
2
C. 

Hence for n large enough t
n
t


6
 and we obtain  

 

||f
n

||
2
C. 

These uniform bounds allow us to extract weakly 

convergent subsequences. Thus we obtain  

 

u
n

(t
n

)u weakly in H
1

0
(). 

f
n
(t

n
)f weakly in H

1

0
(). 

Now it trivially follows from the form of the reaction terms, 

and the simple algebraic inequality  
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 ||F
n

(f
n

,m
n
)F(f,m)||C ( )||f

n
f||

2
+||m

n
m||

2
.  

Here 

F
n

(f
n

,m
n

)=a
1

f
1+1

n
(t

n
)m
1+1

n
(t

n
)a

2
f
2+1

n
(t

n
)m
2

n
(t

n
) 

Thus from the classical functional analysis theory, see [], 

and the compact embedding of  

 

H
1

0
()↪L

2
(),  

we obtain  

 

u
n

(t
n

)u strongly in L
2

(),  

 

f
n
(t

n
)f strongly in L

2
(),  

 

F
n

(f
n

)F(f) strongly in L
2
(). 

Using these convergent subsequences we obtain  

 

f
n
f strongly in L

2
(). 

However this implies via elliptic regularity that  

 

f
n
f strongly in H

2
(). 

 

This proves the Lemma. 

We can now state the following result 

 

Theorem 6.8.  Consider the reaction diffusion system 

described via (1)-(4). Under the conditions (20)-(23), there 

exists a (H,X) global attractor A for this system which is 

compact and invariant in X and attracts all bounded 

subsets of H in the X metric.  

Proof: The system is well posed via proposition 2, 

hence there exists a well defined semi-group { }S(t)

t0

 for 

initial data in L
2

(). We already have the existence of an 

(H,H) global attractor via lemma 6.4. The estimates derived 

via Lemma 6.5 give us the existence of bounded absorbing 

sets in X. Lemma 6.7 proves the asymptotic compactness of 

the semi-group { }S(t)

t0

 for the dynamical system 

associated with (1)-(4), in X. These results in conjunction 
prove the Theorem. 

 

Remark 15 Via standard methods [60] we can provide 

upper bounds on the Hausdorff and fractal dimensions of 

the global attractor in terms of parameters in the model. To 

derive these estimates we consider a volume element in the 

phase space, and try and derive conditions that will cause it 

to decay, as time goes forward. This enables an explicit 

upper bound for the Hausdorff dimension of the attractor 

                d
H

(A) 








 

C(a
i
,b

i
,

i
,

i
)

K
1

 
3

2
||+1,         (87) 

Numerical simulations show that this attractor is a one 

point attractor, see section 7. 
 

VII. NUMERICAL SIMULATIONS 

 

7.1  The basic model 

We now provide the results of numerical simulations 

on (88) -(91). In order to demonstrate the proposed strategy 

we simulate (88) -(91), under a varied choice of parameters, 
and function g. When g=1, we have the TYC model, 

without a logistic control term. When g=(1(f+m+r+s)/K)) 

the classical TYC model [43] is recovered. 

 

       
t
f=d

1
f+a

1
fmgb

1
f,                                           (88) 

    
t
m=d

2
m+a

2
fmg+b

2
fsg+c

2
mrge

2
m,                 (89) 

          
t
s=d

3
s+a

3
mrg+b

3
rsge

3
s,                           (90) 

             
t
r=d

4
r+b

4
r.                                       (91) 

In the simulations =[0,], so we are in a 1d spatial 

domain. We prescribe Dirichlet boundary conditions. The 

system is simulated in MATLAB R2014, using the PDE 

solver PDEPE. We experiment with various parameters, to 
obtain the spatio-temporal profiles of the solutions.  

  

 
Figure 1:  We fix x=/2 and follow a trajectory in time for 

(88) -(91). The blue is the true trajectory, compared to 

e
(0.012)t

 in green. The clear exponential attraction of 

normal females to the extinction state is observed. The 

parameters are  d1 = d2 = d3 =d4 = 0:001; a1 = a2 = 0:002; a3 

= b1 = b2 = b3 = e2 = 0:001; b4=0:05; e3 = 0:03;µ = 0:5.  The 

initial data is taken to be e
(x)2

. 
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Figure 2:  Here we consider a superlinear source term 

=(r)=r
2

. In this case r, will blow up in finite time. We 

investigate if this source term can cause a faster decay in 

the female species, in comparison to a constant  perse. 

Surprisingly this is not so. We fix a spatial location and 

look at the decay of the trajectory of the female f. Here we 

are comparing (88) -(91) with g=1 to (88) -(91) with g=1 

and =r
2

,   and same parameter set as in Fig.1 We 

observe that there is a sharper decay in f with a constant , 

than with =r
2
. 

 

7.2  Optimal Control 

Motivated by the results in Fig. 1- 2 we consider the 

following ODE version of (88) -(91),  

 

 

1 1

2 2 2 2

3 3 3

4

f
=a fmg-b f,

=a fmg+b fsg+c ,

=a mrg+b ,

= -b

t

m
mrg e m

t

s
rsg e s

t

r
r r

t




















                               

(92) 

  (92) 

We want to compare the following 3 cases: 

1. Case 1. g=1,(r)=; 

2. Case 2. g=1 
f+m+s+r

K
,(r)=; 

3. Case 3. g=1,(r)=r
2

.   

 

We will use optimal control theory to illustrate which 

strategy is better for the eradication of wild females and 

wilde males. Here, consider the control problem  

        J()=max 

0

T

 (f+m) 
1

2


2
dt.                                            

(93) 

We search for the optimal controls in the set U where 

        

U={| measurable, 0<, t[0,T], T}.                    (94) 

The goal is to seek an optimal 
*

 s.t.,  

J(
*
)=max 

0

T

 (f+m) 
1

2


2
dt                                    (95) 

We use the Pontryagin’s maximum princinple to derive 

the necessary conditions on the optimal control. The 

Hamiltonian for J is given by  

 

H=(f+m) 
1

2


2
+

1
f
'
+

2
m

'
+

3
s
'
+

4
r
'
.                       (96) 

 

We use the Hamiltonian to find a differential equation of 

the adjoint 
i
,i=1,2,3,4.  

 

7.3  g=1,(r)=
 

     

   

   

   

1 1 1 1 2 2 2

2 1 1 2 2 2 2 3 3

3 2 2 3 3 3

4 2 2 3 3 3 4 4

' =1- b - +sb ,

' =1- - +rc - ra ,

' =- b - +e ,

' =- m- +sb + ,

t ma ma

t a f fa e

t f rb

t c ma b

  

   

  

   





       (97) 

with the transversality condition gives as  


1

(T)=
2

(T)=
3

(T)=
4
(T)=0                                    (98) 

 
Now considering the optimality conditions, the 

Hamiltonian function is differentiated with respect to 

control variable  resulting in 

 

               
H


=

4
                             (99) 

 

Then a compact way of writing the optimal control  is  

 

        
*

(t)=max(0,
4

)                             (100) 

Theorem 7.1 An optimal control 
*
U for the system (92) 

with g=1,(r)= that maximizes the objective functional J 

is characterized by (100).  

7.4. g=1 
f+m+s+r

K
,(r)=; 
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 

 

1 2 2

1 1 1 1 2 2 2

3 3

3 2

1 2 2 2

2 1 1 2 2 2 2

3 3

3 3

' =1- -b - +gsb

+ + , (101. )

' =1- - +grc

- ,

fma fma mrc
t gma gma

K K K

mra rsb
gma a

K K

fma fma fsb mrc
t fga fga e

K K K K

mra rsb
gra

K K

  



  



   
     

   

 
 

 

   
        

   

 
   
 

 

 

 

1 2 2 2

3 1 2 2

3 3

3 3 3

1 2 2 2

4 1 2 2

3 3

3 3 3 4 4

' = +

, (101. )

' = +

fma fma fsb mrc
t fgb

K K K K

mra rsb
grb e b

K K

fma fma fsb mrc
t gmc

K K K K

mra rsb
gma gsb b

K K

  



  

 

 
   

 

 
    

 

 
    
 

 
      

 

             

with the transversality condition gives as  

 

             
1

(T)=
2
(T)=

3
(T)=

4
(T)=0                (102) 

Now considering the optimality conditions, the 

Hamiltonian function is differentiated with respect to 

control variable  resulting in 

                          
H


=

4
                                  (103) 

Then a compact way of writing the optimal control  is  

          
*

(t)=max(0,
4
)                             (104) 

Theorem 7.2 An optimal control 
*
U for the system 

(9292) with g=1 
f+m+s+r

K
,(r)= that maximizes the 

objective functional J is characterized by (104).  

 

7.5  g=1,(r)=r
2

 

     

   

   

   

1 1 1 1 2 2 2

2 1 1 2 2 2 2 3 3

3 2 2 3 3 3

4 2 2 3 3 3 4 4

' =1- b - +sb ,

' =1- - +rc - ra ,

' =- b - +e ,

' =- m- +sb + ,

t ma ma

t a f fa e

t f rb

t c ma b

  

   

  

   





               (105) 

with the transversality condition gives as  

 

                
1

(T)=
2

(T)=
3

(T)=
4
(T)=0                      (106) 

Now considering the optimality conditions, the 

Hamiltonian function is differentiated with respect to 

control variable  resulting in 

                                
H


=r

2


4
                                    (107) 

Then a compact way of writing the optimal control  is  

            
*
(t)=max(0,r

2


4
)                                   

(108) 

Theorem 7.3 An optimal control 
*
U for the system (92) 

with g=1,(r)=r
2

 that maximizes the objective 
functional J is charcterized by (108). 

 

7.6  Numerical Results for Optimal Control 

In this subsection, we numerically simulate the model 

(92) with the 3 different cases. The following parameters 

will be used in the simulation, 

a
1

=a
2

=a
3

=b
2

=c
2

=0.0045;b
2

=b
3
=0.009;b

4
=e

2
=e

3
=0.12.  

Firstly, we set the initial population as follows  

 f
0
=20,m

0
=20,s

0
=3,r

0
=1. (109) 

  
Fig 3:- Here, we simulate case 1 where g=1 and (r)= . 

 
  

Fig 4:- Here, we simulate case 2 where g=1 
f+m+s+r

K
 and 

(r)=. 
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 Fig 5:- Here, we simulate case 3 where g=1 and (r)=r
2

. 

  
                     A                                     B 

Figure 6: We take the initial conditions as 

f
0
=20,m

0
=20,s

0
=3,r

0
=1  and compare the decay 

rate of both females and males in each case.  

 
Then we simulate the system with larger initial conditions,  

               f
0
=90,m

0
=90,s

0
=8,r

0
=6.        (110) 

  
Fig 7:- Here, we simulate case 1 where g=1 and (r)=. 

 Fig 8: Here, we simulate case 2 where g=1 
f+m+s+r

K
 and 

(r)=. 

 

 Fig 9:- Here, we simulate case 3 where g=1 and (r)=r
2
. 

 

For small initial population, cases 1-3 are all effective 

to eradicate wild females and males; however, case 3 

requires larger  for a certain period which is shown in 

Fig.3-5. As for case 1 and case 2, it seems that Introducing 

 does not help to eradicate the invasive species, so the 

optimal control 
*
 is almost identically 0. In the Fig.6, we 

can clearly see there is a sharper decay in both f and m 

under optimal control. The decay rate for case 1 and 3 are 

almost the same under the optimal control. 
 

For large initial population, case 1 and case 3 do not 

eradicate the whole population no matter how large  is, 

which is shown in Fig.7 and Fig.9. We can also conclude 

that large  does not help to eradicate the population, and 

depending on parameters and initial conditions, the 

population could blow up when g=1. However, even with 

large initial population, case 2 can always eradicate the 

whole population as long as we can provide enough , 

which is shown in Fig.8. 
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VIII. DISCUSSION AND CONCLUSIONS 

 
The use of Trojan sex chromosomes is an approach 

for eradicating invasive species that have a XY sex 

determination system and for which it is feasible to force 

sex reversal. It was clearly established that extinction is 

possible in the supermale dynamical system as a function of 

the rate  of introduction of supermales (s). The TYC 

system depends upon parameters that can be deduced from 

observations, including the carrying capacity (K), the death 

coefficients (g
1

, g
2

, g
3

), and the birth coefficients  (g
2

, g
5

, 

g
6

), see (7). Further refinement to these parameters should 

be made from current field data [62-15]. 

 

The existence of a bounded absorbing set indicates 

that for either eradication or invasion the final state of the 

population is stable. Via Theorem 6.8 we showed that given 

the initial population and values for the parameters, it is 

possible to find an explicit time such that for times greater 

than this, an attractor is reached, in which the population is 

confined to finite sized sets in H. That is there is a compact 

subset of the phase space, that attracts all trajectories, in the 

dynamical system. Furthermore, knowing the analytical 
form of the bounded absorbing sets, helps guide the 

exploration of the parameter space. This and related 

problems are the subject of current investigation [33, 32]. 

We numerically see that the attractor is a one point 

attractor, depending on parameter values. Furthermore, 

what is also tried in the numerical experiments, is that the 

form of  is changed from a constant, to being state 

dependent. 

 

Also we tried numerical experiments, where we use a 

bad source term such as r
2

. In this case we compare (88) -

(91), with g as a logistic term, with the same system when 

 is replaced with r
2

. Surprisingly, this causes a slower 

decay in the female species, than if one were to use , see 

Fig2. We also tried simulations with r
3

 and r
4
. What we 

observe is that as the power on the source term increases, 

the decay rate of the female species gets slower. The point 

here is one can always stop the influx of the feminized 

supermale, before the actual blow up, if the bad source 

actually “sped up" the extinction, but this is not seen to 

happen. It is however worth investigating other source 

terms, in this context. The optimal control experiments tell 

us that in general, whether the initial population of the 

invasive species is large or small, the classic TYC strategy 

(case 2) is always effective from the perspective of 
eradication of the invasive species. The larger the initial 

population of the invasive species, the larger the 

introduction of superfemales (s) has to be to achieve 

eradication. Optimal control of the TYC system under 

various parameter regimes is also an area of current 

investigations [63] that should be pursued further. 

 

We would like to point out that since g
i
,1i10 are all 

constants in some of our simulations, the conditions for 
global existence via (20)-(23) are not met. That is there can 

be various range of large initial data, and parameters, for 

which we have finite time blow up. The point here is to 

show that in the good parameter range of data and 
parameters, the asymptotic behavior of the system is a one 

point attractor, that is, for a given set of parameters and 

data where we have global existence, the solutions in long 

time tend towards a steady state (not necessarily spatially 

uniform in all components). Furthermore, this can be the 

extinction state, depending on the size parameter . Thus 

the system can always be driven to the extinction state, via 

the introduced genetically modified organism. This 

validates our control strategy, and asserts that in principle, 

we can always combat invasive species even when used in 

the context of bio-terrorism, via our proposed strategy [53, 

54 and 55]. 

 
The analysis of global attractors can be helpful to 

estimate times to extinction in complex spatial domains. 

We have determined that for Dirichlet boundary conditions 

on a connected domain there exists an extinction state as a 

result of the introduction of s. However, more complicated 

geometries or boundary conditions could have an influence 

in coexistence or extinction. Increasing the level of 

sophistication of the eradication strategy, the distribution of 

s individuals could be variable in space as opposed to the 

constant level that has been studied, i.e. s could be a 

population density dependent function intended to 

minimize the introduction of s individuals and therefore 
minimize costs of implementation. Also under our 

proposed strategy, the system can always be driven to the 

extinction state, at an exponential rate. This is seen 

numerically as well in Fig1, where we compare the 

trajectories of normal males and females to the function 

e
(0.012)t

. Clearly, exponential attraction to the extinction 

state is seen. It would be interesting to try and rigorously 

prove the existence of an exponential attractor, in this 

setting. 
 

The viability of YY individuals remains an open 

question. The supermale model assumes that phenotypes 

are stable after maturation, but this could be problematic 

for species whose sex determination involves many genes, 

or when there is environmental pressure to feminization or 

masculinization. To incorporate this we choose death 

coefficients so that the supermales die at a faster rate than 

the normal males, as these are not considered as fit as their 

normal counterparts, [34], and so fitness penalty should be 

exercised. Another potential problem is hybridization with 
compatible species, which would extend the eradication 

pressure beyond the initial target; however, this effect 

should disappear by the interruption of the influx of s. Also 

it would make for very interesting future work if we could 

perhaps place sufficient restrictions on the reaction terms in 

question to show via Simon-Lojasiewicz gradient 

inequality techniques [49], to show that convergence to the 

spatially homogenous equilibrium state is guaranteed. 

 

To summarize, we have rigorously shown that 

introduction of phenotypically manipulated supermales into 

an established population can lead to local extinction. 
Moreover, this can be done even if the population dynamics 
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of the species involved, is not governed by a logistic type 

control term. 
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