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Abstract:- Motif finding in biological sequences is a 

widely studied yet not fully solved problem. Exact 

solution to this problem is NP-complete. However, all 

existing computational methods have been based on 

some heuristics. On the other hand biological 

approaches are not efficient both in space and time. 

Fortunately, large amounts of genome sequencing data 

are readily available for researchers for analysis and it 

is possible to build computational model which is also 

biologically significant. Practical solutions should have 

highly conserved instances of the candidate motif 

having biological significance. In this paper, a new 

approach involving the Multi-objective Genetic 

Algorithm is used to find motifs in biological sequences. 

Experiment result shows that the proposed method is 

successful in discovering planted motif in a group of 

DNA sequences with high accuracy.  
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I. INTRODUCTION 

 

Conserved locations within the regulatory are among 

the correlated genes are often termed as motifs. Generally 
motifs are of short (up to 30 nucleotides) length and gapless. 

Although short in length motifs play major role in gene 

regulation and identification of these fragments is critical to 

understand the mechanisms behind DNA transcription 

process. 

 

To find motifs from sequences several key factors and 

techniques are taken into consideration. For example, it is 

observed that genes which are homologous often have 

similar transcription binding sites and can be found by 

simple sequence similarity search. However, from 

computational perspective a potential motif is a set of 
starting locations within a collection of aligned DNA 

sequences (we restrict our study to DNA sequences here). 

So, there can be infinite number of candidate motif locations 

and searching them computationally are both impractical as 

it requires exponential runtime.  

 

To solve this problem, many computational methods 

employing statistical and probabilistic approaches have 

been developed [7-14] etc. In this paper, we propose a new 

method to combine the idea of multi-objective optimization 

with genetic algorithm to find motifs in biological 
sequences. In the proposed method, an individual is defined 

by a set of possible starting locations on the multiple 

sequence alignment of different DNA sequences. The 

fitness value for an individual is evaluated by optimizing 
three different objectives – motif length, sequence 

similarity measure and support (number of sequences 

where the motif is found). By taking the best possible 

values in terms of values in three different objectives, our 

method selects individuals having highly conserved 

regions. Evaluating our method showed that it is capable of 

achieving a higher level of prediction accuracy than the 

competition.  

 

This paper is structured as follows: As you read the 

first section is the introduction. In Section II, we discuss 

some necessary background on motif discovery problem and 
the evolutionary approach. Then section III describes the 

proposed multi-objective algorithm for motif search. Next 

section shows the experimental results and compares the 

results with state of the art algorithm. Finally, we conclude 

the paper in section VI. 

 

II. BACKGROUND 

 

This section briefly discuss the key terminologies 

need to understand the proposals made in this paper. It also 

gives a short overview on the Differential Evolution 
algorithm and multi-objective optimization, which are the 

base methods on top of which the proposed system is built. 

 

A. Motif Identification 

The motif search problem intends to detect conserved 

regions from a set of DNA sequences when they are aligned 

and find good candidate conserved regions or motifs which 

can eventually indicates  transcription factor binding sites.A 

lot of approaches aims to identify motifs only by 

considering the promoter region of a set of co-regulated 

genes from within a single genome. Here the assumption is 

co-expression of genes are the effects of transcriptional co-
regulation.  

 

A more realistic approach would be searching for 

statically overrepresented motifs in the promoter region of 

such a set of co-expressed genes. So, searching for motifs 

are restricted to promoter region of target sequences. 

Computationally this problem is nothing but a Pattern 

Search problem. 

  

B. Genetic Algorithm 

A genetic algorithms (GA) are inspired by the process 
of natural selection. GA is commonly used to generate 

high-quality solutions to optimization and search problems 
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by using operators closely mimicking the evolutionary 

process such as mutation, crossover and selection [21]. 
 

An evolutionary algorithm starts with a set of 

candidate solutions (termed as individuals) which are often 

randomly initialized. This initial set of candidate solutions 

is called the Population. Each candidate solution has a set 

of parameters (variables) known as Genes. Often these 

genes are represented using the string representation. 

Generally presence or absence of certain parameters are 

denoted by these genes with binary strings of 0s and 1s, 

mimicking the gene encoding the chromosome. 

 

The fitness function determines an individual’s value 
in regards to the solution goal of the problem in hand. The 

solution goal may be is to maximize or minimize the fitness 

score of an individual. As a whole it represents whether an 

individual is fit to be considered in the next generation of 

optimization or not. The probability of an individual to be 

used for reproduction is based on its fitness score. So the 

selection phase aims to find the fittest individuals and pass 

then to the next generation. 

  

Crossover is used to introduce the idea of mating or 

individuals and creation of offspring in real life. At the 
implementation phase of GA, a random point within the 

candidate within the genes. Offspring (new candidate 

individuals) are created by exchanging the genes of parents 

among themselves until the crossover point is reached. 

 

Similarly, Mutation is also an operator to create 

random variance. Here instead of using multiple 

individuals, a single candidate solution is randomly 

mutated to mimic the biological mutations occurring during 

the evolutionary process. Generally mutations happened 

with a low random probability. In true implementation 

sense, this implies that some of the bits in the bit string 
representing an individual is randomly flipped. 

 

At the end, a GA terminates if the set of candidate solutions 

(population) converges to an optimal set (does not produce 

offspring which are fitter from the previous generations). 

 

C. Multi-Objective Optimization 

Multi-objective optimization (MOO) approaches 

involve more than one objective function to be optimized 

simultaneously. Typically, it is not possible to get a 

solution which optimizes all objectives to their optimum 
values. However, the trade-off here is we want to find 

solutions which are good overall in all objectives, where a 

single objective value may not be the optimal. So, there can 

exist a (possibly infinite) set of optimal solutions forming 

what is called the Pareto Optimal set.  

 

We call a solution non-dominated or Pareto optimal if 

none of the objective functions can be improved in value 

without degrading one or more of the other objective 

values. 

  
 

III. METHOD 

 
This paper proposes a multi-objective version of the 

well-known Differential Evolution genetic algorithm to find 

a large number of motifs from DNA sequences. The 

proposed method work on three objectives, which will be 

discussed in the objectives subsection. 

 

In this section we describe our proposed method to 

solve motif finding problem. At first, we define structure of 

individuals (Population members), selection scheme, genetic 

operators (crossover and mutation). Then we define the 

objectives that we want to optimize and details of the 

proposed approach. 
  

A. Structure of Individuals  

An individual represents the starting locations of 

potential motif on the all target sequences. Each individual 

is divided into n genes where there are n sequences in our 

data set. The individual also contain the length of this 

potential motif. So the size of an individual is ultimately 

(n+1). Apart from the first location which represents the 

length, genes are positional. The first gene deal with the 

first sequence. The second one deals with the second 

sequence, and so on. The structure of the individual is 
depicted in the figure below. 

 

length S1 S2 . . . . . . Sn 

Fig 1:- Representation of an Individual 

 
Here Si denotes the location of the motif instance in 

the ith sequence and Length denotes motif length 

corresponding to that individual. The value of this field can 

change from 5 to 40 as we restricted algorithm to find a 

motif with length in between them. The Length field gives 

greater flexibility compared to the other evolutionary 

approaches. Here, each individual has fixed length, 

however with the presence of variation operators (mutation 

and crossover) individual phenotype (Motif) has a variable 

length. 

 
B. Initial Population Generation 

We start with a fixed number of randomly initialized 

individuals, which forms the preliminary population. Then 

these individuals are evolved over a series of generations. 

Each member of the initial population is also a potential 

motif having the structure as described in the previous 

section. We start with a population of 200 individuals as we 

found out experimentally that this is an ideal population size 

for the problem in hand. 

 

C. Objectives and Fitness 

Fitness of an individual is assessed based on its value 
in three objectives: motif length, support and similarity. We 

restricted our formulation to three objectives as increasing 

the number of objectives from three increases the 

complexity of the problem to a great extent. As in that case 

most of the individuals will non-dominated by each other 

and try to access the pool of non-dominated solutions, 

called Archive. Now we discuss how the three objectives 
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we want to optimize play the role in defining fitness of an 

individual. 
 

 Motif Length 

It is desirable that we find motifs which are long, 

because a motif with longer length are more likely to be 

biologically significant and has a less chance to occur 

randomly by chance. 

 

 Similarity 

Similarity measures the degree conservation of the 

candidate motif (individual in the population) in a multiple 

sequence alignment. To calculate the score of a candidate 

motif at first Position Weight Matrix (PWM) is generated. 
 

PWM has four columns representing four possible 

nucleotides (A, T, G or C) of a DNA sequence. Number of 

rows will be the same as the length of the candidate. For 

example, for the four DNA sequences shown below the 

position weight matrix is mentioned in Table. 1. 

 

G A C T T C G T C 

 G T G T A C G A C 

 G C G T G C A T C 

      G A G T C T A C T 

Table 1:- Example Candidate Motif in a Set of DNA 

Sequence 
 

The corresponding PWM is: 

 

 1 2 3 4 5 6 7 8 9 

A 0 0.50 0 0 0.25 0 0.5 0.25 0 

T 0 0.25 0 1.0 0.25 0.25 0 0.50 0.25 

G 1.0 0 0.75 0 0.25 0 0.5 0 0.25 

C 0 0.25 0.25 0 0.25 0.75 0 0.25 0.50 

Table 2:- Position Weight Matrix of Table 1 

 

Next, for each column of the PWM, the nucleotide 

with maximum weight is determined. This value is termed 

as the maximum value (max). The objective value score is 

determined by the following formula: 

 

Similarity = ∑ maxi /N, 

Where N = no of columns in the PWM 

 

 Support 
We assume that a motif may not be present in all the 

sequences. To handle this scenario, we consider the value 

of support as the third objective in the proposed method. 

Number of sequences containing a motif is termed as the 

support of that motif sequence. 

 

D. Configuration of Genetic Operators 

The proposed method uses very simple crossover and 

mutation parameters. Crossover rate was fixed at 0.9. It 

actually dominates how often the recombination of the 

parent individuals take place to form the child population. 

This high cross over rate ensures that the set of individuals 
are not biased or skewed towards certain individuals from 

the population. 

 

Each individual is defined as a list of starting positions 
of a candidate motif. As a result, to implement mutation 

simple left or right shift operations were used thereby 

create new candidate motif positions. 

 

E. Algorithm Details 

Here, based on the parameter choice discussed so far, 

our work towards using the Differential Evolution genetic 

algorithm and converting it into a multi-objective algorithm 

is discussed formally. At first we introduce few 

terminologies used to depict the algorithm (Table 3) and 

then present the  

 

Generation Number 
Problem Dimension 

No of initial population 

Maximum generation count 

A single individual 

Initial population 

Crossover Ratio 

Rate of Mutation 

External archive of  G 

G 
D 

NP 

MAX_GEN 

Xi,G = X1
i,G ,…………,XD

i,G 

PG = X1,G,X2,G,……,XNP,G 

CR 

F 

AG 

Table 3:- Key Terms and Notations Used in Algorithm 1 

 

G <-0 

PG <- Randomly Initialize 
AG <- PG 

While G < MAX_GEN do 

For all i where 1<=i<=NP do 

jrand <- (int)random num in [0,D) 

for all j where 0<=j<=D-1 do 

/** Cross Over **/ 

urand <- random numb in [0,1) 

if urand < CR or j = jrand then 

/** Mutation **/ 

Vi,j = Xbest,j+F*(Xr1,j-Xr2,j) 

+F(Xr3,j-Xr4,j) 
else 

Vi,j = Xi,j 

endif 

endfor 

Copy better of Trial(Vi,G)and  Target(Xi,G) [from 

SELECTION phase] to generation G+1 

endfor 

endwhile 

 

SELECTION Phase 

for all i where 1<=i<=NP do 

if Xi,G dominates Vi,G then 
reject Vi,G 

else if Vi,G dominates Xi,G then 

Xi,G+1 = Vi,G, update AG 

else 

Xi,G+1=less-crowded(Xi,G+1,Vi,G),ref: AG 

endif 

endfor 

 

Algorithm1:- Multi-Objective DE to Find Motif 
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IV. RESULTS 

 
This section discusses in details the evaluation of the 

proposed genetic algorithm for motif finding in biological 

sequences. At first the experiment environment and the 

required parameter setting for the initiation and running of 

the genetic algorithm are discussed. Then a brief overview 

of the data sets is given. Finally, the outcome of the 

experiment is presented and discussed. 

 

A. Environment Setup 

All the experiment is conducted on a PC having 2.6 

GHz Intel Core i5 processor, 16GB of main memory and 

running the Ubuntu 16.04 as the operating system.  
 

B. Parameter Setup 

Multi-objective Differential Evolution is a stochastic 

search method. So, results obtained using such method 

highly depends on the optimal parameter setting. 

  

Two other parameters which are very much important 

are - Threshold and ATcount. For a particular individual 

Threshold is defined to be (Length * 0.5). Then we only 

consider those sequences having distance to consensus 

sequence smaller or equal to this value.  
 

Paramters Value 

Population Size 

Archive Size 

Maximum Generations 

Crossover Probability (CR) 

Mutation Probability (F) 

Threshold_Support 

 

ATCount 

300 

600 

5000 

0.9 

0.3 

floor(No of Sequence *0.5 

+ 0.5) 

0.6 

Table 4:- Parameter Setting 

 

As we described in the previous chapter this defines 

individual performance in the second objective function 
support. The parameter ATcount defines the percentage of A 

and T in a candidate motif defined by an individual. If the 

percentage crosses 60%, then we consider that individual as 

the TATA box.  

 

Another related parameter is Threshold_support. It is 

related to the objective support and if the value of support 

decreases from the Threshold_support, then we do not 

consider that individual for our operation. The parameter 

settings are summarized in Table 4. 

 

C. Data Sets 
For experiment, three standard data sets were used, 

which were also used as benchmark in analyzing 

performance of state of the art computational approaches 

for sequence motif identification approaches. 

 

First two data sets were taken from the TRANSFAC 

[3] database, named yst04r and yst08r, representing 

sequence data of yeast species.  

 

Apart from these data sets, sequence data taken 

directly from the yeast transcriptional regulation site is also 
used. This data set was taken from SCPD (Promoter 

Database of Saccharomyces cerevisiae) [4].  

 

D. Result of Experiment on Yst04r 

The data set yst04r contains 7 sequences. Each 

sequence is 1000 bases long. A subset of the non-

dominated solutions found by our method is shown in the 

following table (Table. 5).  

 

For the sake of comparison we include two columns 

for the Similarity value, one for our scheme and the other 

for the method proposed by Mehmet [5]).  
 

Support Length Similarity 

 Mehmet’s 
Scheme 

Proposed 
Method 

   

4 24 0.76 0.81 

4 20 0.78 0.80 

4 15 0.81 0.85 

5 15 0.82 0.81 

5 14 0.84 0.84 

6 14 0.77 0.78 

6 13 0.81 0.84 

7 9 0.80 0.79 

7 8 0.84 0.82 

Table 5:- Experiment Results on Data Set yst04r 

 

Although the solutions vary in each of the objectives it 

was done so to show a direct comparison between these 
two methods.  

 

It is also justified to compare two methods based on 

similarity value while keeping other objective values 

constant, as we know the closer the similarity value is to 1. 

0, it is more probable for the corresponding individual to be 

discovered as a motif. 

 

Apart from these, some of the promising results 

explicitly found by the proposed method are listed in Table 

6. 

 

Support Length Similarity 

4 16 0.82 

5 20 0.80 

6 12 0.83 

6 19 0.76 

7 14 0.81 

Table 6:- Novel Finding of Proposed Method on Yst04r 
Data 

 

E. Result of Experiment on Yst08r 

The second data has 11 sequences, each of which is 

1000 base pairs in length. The comparison results of the 
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experiment outcome for the proposed method and the 

Mehmet’s scheme [5] are listed in Table. 7 below. 
 

Support Length Similarity 

 Mehmet’s 

Scheme 

Proposed 

Method 

   

7 20 0.75 0.81 

7 15 0.84 0.85 

8 15 0.79 0.84 

8 14 0.83 0.84 

8 13 0.85 0.88 

9 13 0.82 0.85 

9 12 0.84 0.84 

10 12 0.79 0.84 

10 11 0.82 0.86 

11 11 0.80 0.85 

Table 7:- Experiment Results on Data Set Yst08r 

 

Like the ys04r data set, for yst08r data set the 

proposed method explicitly found motifs of certain lengths 

and similarity score as listed in Table 8. 
 

Support Length Similarity 

7 16 0.84 

7 14 0.83 

8 20 0.81 

8 17 0.82 

10 16 0.78 

10 15 0.80 

Table 8:- Novel Finding of Proposed Method on Yst08r 

Data 

 

F. Result From Yeast Transcriptional Regulation Site 

The database SCPD (Promoter Database of 

Saccharomyces cerevisiae) [4] contains the promoter 

regions of 6000 genes and ORF in yeast genome. The 

regulon in the database is a set of co-regulated genes whose 

promoter share binding sites for the same transcription 

factors. 

 
We extracted the promoter regions from the two 

regulon families from SCPD. The families chosen are MCB 

and LEU3. The reason behind choosing these two families 

was to show comparison with the result found by Paul and 

Iba [6]. 

 

For MCB transcription factors. We extracted six 

sequences from the positions -500 to +50 of transcription 

start site of regulated genes of Saccharomyces cerevisiae.  

 

The motifs embedded in these sequences are 
ACGCGT. ACGCGA.CCGCGT. TCGCGA.ACGCGT, 

ACGCGT and the consensus sequence is WCGCGW. Here 

we found the following motifs: ACGCGT. ACGCGT 

ACGCGT. ACTCGA. ACGCGT. ACGCGT and the 

consensus sequence is ACCCCT. The following table 

(Table. 9) shows the results found by our method and Paul 

and Iba's [6] method. 
 

Proposed Method Paul and Iba’s Method 

ACGCGT ACGCGT 

ACGCGT ACGCGT 

ACTCGA ACTCGA 

ACGCGT ACGCGT 

Table 9:- MCB Transcription Factor Binding Sites 

Detection Results 

 

On the other hand for the LEU3 transcription factor, 

we extend two sequences from position -500 to +500 of the 

transcription start site of the two regulated genes of 

Saccharomyces cerevisiae. The consensus motif is 
CCGNNNNCGG. The motifs found by the proposed 

method and the Paul and Iba’s method are shown in Table. 

10. 

 

Proposed Method Paul and Iba’s Method 

CCGGGACCGG 

GCGGAACCGG 

CCGGAACCGG 

CCGGGACCGG 

CCGTAACCGG 

CCGGAACCGG 

CCGGAACCGG 

CCGTAACCGG 

Table 10:- LEU3 Transcription Factor Binding Sites 

Detection Results 

 

It is evident from the tabular data that both the 

proposed method and Paul and Iba’s method found almost 
the same result. 

  

V. RELATED WORK 

 

Finding motifs in biological sequences has been 

studied heavily in the last decade or so. Here we limit our 

discussions only to the closely related approaches. 

 

Among the deterministic approaches graph and tree 

based methods were most successful [7, 8, 9, 10]. However 

these methods miss many biological factors associated with 

the presence of motif and hence produce a lot of false 
positives and false negatives. 

 

Probabilistic approaches [11, 12, 13, 14] produce 

more false positives, however gives less false negatives. As 

a result these approaches laid the foundation for more 

sophisticated evolutionary algorithms. EM algorithm [14] 

developed by Lawrence and Reilly is a greedy algorithm 

based method to find motifs. The EM algorithm finds 

motifs in unaligned biological sequences. They collects 

candidate motifs for a given weight matrix using random 

walk (expectation step) and updates the candidate list with 
motifs of higher expected values (maximization step). 

Similarly, GibbsDNA [13] tries to maximize the similarity 

among subsequences to identify potential motif locations. 

 

Evolutionary approaches uses the natural selection 

mechanism of evolutionary theory to drive its operation. 

Genetic algorithms [15, 16, 17, 18, 19, 20] are found to be 

finding motifs in sequences with high accuracies.  In this 
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work, we applied the genetic algorithm based approach 

with the principle of multi-objective optimization and 
found better results compared to state of the art genetic 

algorithm for motif finding algorithm MOGAMOD [5]. 

 

VI. CONCLUSION 

 

In this paper, we proposed a new technique based on 

Multi-objective genetic algorithm to look for motifs in DNA 

sequences. Evaluation results proved the effectiveness of the 

proposed method.  

 

However, there are few possibilities to further extend 

this work which we plan to investigate next: 
 

 At present our method cannot work with the gapped 

motif which we are currently working on.    

 The similarity measure can be improved to improve the 

proposed method to make it work with all kinds of 

sequences. 

 Automatic evolution of control parameters of the 

Differential Evolution parameters can be an important 

improvement of the proposed method as its success 

depends on correct choice of parameter values. 
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