
Volume 4, Issue 5, May – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MY11 www.ijisrt.com 63

Better Compiler Optimization Options Generation via

Genetic Algorithm and Simulated Annealing

Mitali Gupta
Computer Science and Engineering

MS Ramaiah Institute of Technology

Bangalore, India

Saheel Nizam

Computer Science and Engineering

MS Ramaiah Institute of Technology

Bangalore, India

Sibi Akash

Computer Science and Engineering

MS Ramaiah Institute of Technology

Bangalore, India

Dr. Parkavi A

Assisstant Professor

Computer Science and Engineering

MS Ramaiah Institute of Technology

Bangalore, India

Abstract:- Finding a good complier optimization is

particularly a difficult task. Even though provided with

various optimizations set levels it requires a good

understanding of the various optimizations provided by

the complier, proving difficult for most experts in this

field. This paper provides case-based approach

integrating genetic algorithm and simulated annealing

to find better and efficient complier optimization option

set (COOS). Implementing the purposed system will

improve various standard benchmark parameters.

Keywords:- Compiler optimization option set; Genetic

Algorithm; Simulated Annealing.

I. INTRODUCTION

There exists more than 60 options for optimization

but the problem with this is that, same COOS is used for
most the programs without keeping in mind the various

benchmark constraints different for different programs.

Also it requires a great deal of understanding and years of

experience to choose for COOS, which is difficult even for

an expert.

GNU compiler collection defines four levels which

are -O1, -O2, -O3 and –O4. Each implements various

Optimization options. User can also specify the COOS but

remembering all 60 options with more than 2^60

combinations is impossible and not necessary.

Mitigating the COOS is a challenge, due to the

complications with how the optimization interacts with

various codes. Thus, explaining why same COOS is used

for almost all the source code.

This paper explores the use of Genetic algorithm and

simulated annealing to find a good COOS. Genetic

algorithm will the source code to find the best COOS while

simulated annealing helps reduce the time to find

optimizations.

This paper is organized as follows. Section II presents

some related work. Section III describes the proposed

approach. Section IV describes possible benchmarks

optimization. Conclusion and future work.

II. RELATED WORKS

In our quest to understand this topic and its many

implications, we stumbled on a variety of papers.

Valluri and john have provided results of evaluation

of the effects of GCC optimization level (superscalar

processor). Tullen and seng validated the above work using
Intel complier.

Our work doest evaluate the levels but finds the best

COOS for different source code which can outperform

compiler optimization level.

Cavazos et al in his paper uses machine learning to

develop a prediction model to mitigate COSP. Park also in

his paper proposed three prediction model using machine

learning. Almagor et al used genetic algorithm to mitigate

COSP. Eigemann and Pan proposed batch elimination,
combined elimination and iterative elimination algorithm to

mitigate COSP.

Raham et al proposed a method to tune optimization

configurations to reduce power consumption. Hardware

performance counter provides feedbacks to calculate and

estimate power consumption, using the results to tune

configurations.

Our approach implements genetic algorithm along

with hardware counters to find the best optimization

configuration.

III. PROPOSED APPROACH WITH ANALYSIS OF

COMPLIER OPTION

A. Principle Of Compiler

Compiler is a computer program which converts or

translates code written in high level language to code

understandable by computer i.e., source code is converted

into object code.

http://www.ijisrt.com/

Volume 4, Issue 5, May – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MY11 www.ijisrt.com 64

A compiler performs all or most of the following

functions: lexical analysis, parsing, preprocessing, semantic
analysis, code generation and code optimization. This

paper targets code optimization.

Figure 1. Clearly explains the main operations of the

compiler.

Fig 1:- functions of complier

B. Optimization of Compiler

Compiler optimization is to minimize certain

benchmarks (or maximize efficiency) i.e. tuning the output

of the compiler. Command ways are to minimize the

execution time, minimize memory occupied etc.

Goal of optimization is to provide best output code

(machine code) from the input code (source code). The

word best depends on the program and not for the compiler

itself. Hence, there arrives a necessity to optimize each

program independently requiring algorithms and other

hardware techniques.

A simple optimization algorithm might include

simply removing the loop invariant while a complex one

might include going through the entire source code to

remove global sub-expression (common). Optimization
might change the code but it shouldn’t change the meaning

of the code i.e. I what the code is supposed to accomplish

must not change. Other optimizations might produce code

which uses specific hardware characteristics.

Four levels of GCC for optimization are –O1, -O2, -

O3 and –O4. Where each level performs a specific

benchmark optimization like –O1 for debugging, -O2 for

development along with deploying the code. Higher the

number better the optimization will be but the compiler

will be slower and take more time to generate the

optimization. Example for basic optimization of a program
(Prgm.c):

gcc –O Prgm.c –o Prgm

C. Compiler optimization with genetic algorithm and

simulated annealing

 The data used are DAG test data. The proposed

system contains three main parts: space generator, COOS

mitigator and COOS validator. Where each performs a

specific task to give a best COOS as required by the

program.

Space Generator: The sample space S store COOS

which acts as a baseline which is generated using simulated

annealing algorithm (heuristic algorithm) depending on the

program or the source code after code generations. This

space S also uses Performance counter set from the

hardware to provide better results of COOS at the baseline

itself.

COOS Mitigator and validator: From the sample

space S which has multiple COOS, a new sample space S’
is created using genetic algorithm. S’ is created by passing

to sample space S to the genetic algorithm and the

algorithm runs to find the best COOS which provides

maximum benchmark benefits for the given program.

Further, S’ contains only the COOS which outperform the

others. Finally, COOS Mitigator selects the top COOS and

gives it to the validator. The validator verifies which COOS

is the best to option to compile the program. This COOS is

compared to the baseline. Acting as conservative step

because if the COOS is similar to baseline. Baseline is

returned as the best COOS.

Fig 2:- decribes the processes on how the best COOS is

achieved

http://www.ijisrt.com/

Volume 4, Issue 5, May – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19MY11 www.ijisrt.com 65

IV. BENCHMARK, CONCLUSION AND FUTURE

WORK

Compilers are a very important and useful component

whose implementation is fairly easy and can help shorten

the time of execution of a program.

Implementing the above proposed system will

increase the effectiveness, reduce time taken to optimize a

code as mentioned in previous session, conservation power

consumption etc.

Future work includes developing the proposed
system. Using real time DAG test data to produce results

and obtaining the expected results.

REFERENCES

[1.] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P.

O’Boyle, and O. Temam, “Rapidly Selecting Good

Compiler Optimizations. using Performance

Counters,”

[2.] S. Purini and L. Jain, “Finding Good Optimization

Sequence Coverin g Program Space”

[3.] Z. Pan and R. Eigenmann, “Fast and Effective
Orchestration of Compiler Optimizations for

Automatic Performance Tuning”.

[4.] M. Valluri and John L, “Is Compiling for Performance

Compilingfor Power?”.

[5.] J. S. Seng and D. M. Tullsen, “The Effect of Compiler

Optimizations on Pentium four Power Consumptio”.

[6.] M. Kandimir, N. Vijay krishnan, M. J. Irwin, and W.

Ye, “Influence of Compiler Optimizations on System

Power”.

[7.] Yang Shen: “Tuning Compiler Optimization Options

via Simu lated Annealing”.
[8.] Park, S. Kulkkarni, and J. Cavazos, “An Evaluation of

Different Modeling Techniques for Iterative

Compilation.”

[9.] Afonso Ferreira, Pascal Rebreyed, Ricardo C. Correa:

“Scheduling multiprocessor tasks with Genetic

algorithm”.

[10.] Scott Robert Ladd, “GCC 4.0: A Review for AMD

and Intel Processors ”

[11.] R. Ma and C.-L.Wang “Lightweight application-level

task migration for mobile cloud computing”.

[12.] Vouk ,”Cloud computing –Issues,Research and
implementions”.

[13.] Jens Wagner, Rainer Leupers “C Compiler Design for

an Industrial Network Processor”

[14.] Hank Shiffman ,“Boosting Java Performance :Native

Code and Compiler”.

[15.] S. S Muchnick,“Advanced Complier Design and

implemention”.

http://www.ijisrt.com/

