
Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP623 www.ijisrt.com 1122

AI Soldier using Reinforcement Learning

Simran Bhojwani

Student, Department of Information Technology

Vivekanand Education Society’s Institute of Technology,

Mumbai

Sagar Ganiga

Student, Department of Information Technology

Vivekanand Education Society’s Institute of Technology,

Mumbai

Harsh Jain

Student, Department of Information Technology

Vivekanand Education Society’s Institute of Technology,
Mumbai

Shravan Jain

Student, Department of Information Technology

Vivekanand Education Society’s Institute of Technology,
Mumbai

Riya Karia

Student, Department of Information Technology

Vivekanand Education Society’s Institute of Technology,

Mumbai

Nausheen Sayed

Student, Department of Information Technology

Vivekanand Education Society’s Institute of Technology,

Mumbai

Jayashree Hajgude

Assistant Professor, Department of Information Technology

Vivekanand Education Society’s Institute of Technology

Mumbai

Abstract:- This paper describes the implementation of

Reinforcement Learning algorithms on FPS Games by

applying AI Agents. The steps undertaken to build an

FPS Game using various game engines and

reinforcement learning are outlined. The game consists

of player AI and opponent AI competing with each

other in which the goal is to kill the opponent. The

algorithm has been tested on different maps of vizDoom

Opensource Library.

Keywords:- Reinforcement Learning, FPS Game,

ViZDoom, Unity ML Agents, A2C, Q-Learning.

I. INTRODUCTION

 First Person Shooter Games

As per Glavin and Madden[7], First Person Shooter

games are famous game genre wherein the player

experiences the perspective of a character (the first person)

and is involved in a competitive, three-dimensional

environment. In this paper, the main concern is to develop a

bot that can play any match with the main objective to

defeat the other players in the Environment.

 Reinforcement Learning

Reinforcement learning is a powerful sort of Machine
Learning algorithm where the agent figures out how to

work in a situation by performing activities and watching

the results. The Action Space is a list of all potential actions

that can be performed by the agent and the list of all states

is known as the state space representing the agent’s view.

A feedback is given to the agent depending on the

action which it has performed and in which state. The

feedback might be a reward (positive points) or a penalty

(negative points). State-action pairs are stored by the policy

of the learner. These represent how useful it is to carry out

a particular action in a given state.

II. RELATED WORK

There exist various inquiries about methodology
choice in FPS recreations as of late. For example, the bot

modeling in Modelling a Human-like Bot in a First Person

Shooter Game[5] considers several parameters to be

considered & list of weapons used along with their utility.

They proved that E-Bot outperforms the standard bots, even

in the hardest difficulty level. The work by McPartland and

Gallagher[4] embraces the neural systems for their bot so as

to improve the choice of fight methodologies by

impersonating human techniques. The best choice to create

bots in an FPS game is to use Interactive Learning.

III. OUR PROPOSED SOLUTION

A. Platform

We have experimented with different game engines

for developing the testing environment of our algorithms.

Below is the list of different game engines which we have

analyzed.

 Unreal Engine

The Unreal Engine is developed by Epic Games. With

its code written in C++, the Unreal Engine features a high

degree of portability and is a tool used by many game
developers today as per Tremblay, Schneider and

Cheston[8]. Unreal provides with its own scripting

language so that we can quickly integrate our AI models

with the built environment. These scripts are high level and

simple to use. Plugins can be used with the Unreal Scripts

to integrate the AI and ML.

 Unity

The Unity Editor features various tools that allow fast

editing and iteration in your development cycles, including

Play mode for quick previews of the work in real-

time(“Products-Unity”, n.d.)[9].

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP623 www.ijisrt.com 1123

 OpenAI Gym

This python library gives a huge number of test
environments to work on our RL agent’s algorithms with

shared interfaces for writing general algorithms and testing

them as evident in the works of Rana[10]. OpenAI gym

provides the current state details of the game means the

environment. It also handles when to do an action which we

want to perform based on the current state/situation.

 VIZDOOM

VIZDOOM facilitates testing AI bots that operate

DOOM using the visual data. It is intended for research in

machine visual learning and deep reinforcement learning.

VIZDOOM is based on ZDOOM, the most popular modern
source-port of DOOM. This means it is compatible with a

large range of tools and resources that can be utilized to

custom scenarios.

B. Environment

 Weapon Selection

In this progression, the incapability of every weapon

the bot is holding is determined and the one with the

smallest value is chosen. Such a value is determined by the

supreme estimation of the contrast between the separation
to the foe and the best scope of a weapon of intrigue.

However, the pistol is so much ineffective than the other

weapons that it is excluded from consideration.

 Shooting and Moving

In the end, the bot shoots and moves as per the

decisions made before in the past dimensions. At the point

when bot loses perspective on its adversary, in the event

that it has ammunition for its weapons, other than for the

essential gun, and the health level over 30, it will pursue the

rival to the last observed spot; otherwise, its state will be

changed to the item-collection state.

 Aim-Point Determination

On a very basic level, the bot goes for the present

position of the rival. In any case, there is some randomness

introduced in this so as to restrain the bot from winding up

excessively powerful and not working as a human player.

This adds to the rival's x, y, and z-pivot positions some

arbitrary numbers produced corresponding to the separation

between a bot and the enemy.

 Procedure Selection
The system technique is to keep the bot moving in the

challenge. On the off chance that it only from time to time

stops or moves with no arrangement amid the fight, its rival

can make a decision on the minute that it is a bot. Then

again, if the bot moves with a fitting system, it is not really

conceivable to be recognized as a bot by the rival. In this

manner, the bot must choose an appropriate procedure. The

bot chooses one from the accompanying four systems: pick

the proximal weapon, pick the proximal curative item,

approach the adversary, and move far from the rival. Table

1 shows how the technique is characterized.

Situation Strategy

The bot does not have

ammunition for its weapons.

Pick the nearest weaponry.

Bots' strength is under 80. Pick the nearest health

package.

The distance from the

opponent is less than 100.

Approach the opponent.

Otherwise. Move away from the

opponent.

Table 1:- Strategy for Situation

IV. ALGORITHM

A. DQN

As mentioned by Yu[11], Q Learning is a traditional

reinforcement learning algorithm first introduced in 1989

by Walkins. It is a widely used off the shelf method that is
usually used as a baseline for benchmarking reinforcement

learning experiments. Q-Learning is an RL technique that is

aimed at choosing the best action for given circumstances

(observation). This implementation exercise allows us to

have a firmer grasp and more intuitive understanding of Q

Learning and Policy Gradients. Each possible action for

each possible observation has its Q value, where ‘Q’ stands

for the quality of a given move. In practice, we usually use

a deep neural network as the Q function approximator and

apply gradient descent to minimize the objective function

LL. A close variant called Double DQN (DDQN) basically

uses 2 neural networks to perform the Bellman iteration,
one for generating the prediction term and the other for

generating the target term. This will assist in reducing the

bias added by the errors of Q network at the starting phase

of training.

inputs:

S : set of states

A : set of actions

γ : discount

α : step size

internal state:
real array Q[S,A]

previous state : s

previous action : a

begin

initialize Q[S,A] arbitrarily

observe current state s

select action a using a policy based on Q

repeat forever:

carry out an action a

observe reward r and state s'

select action a' using a policy based on Q

Q[s,a] ←Q[s,a] + α(r+ γQ[s',a] - Q[s,a])
s ←s'

a ←a'

end-repeat

end

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP623 www.ijisrt.com 1124

B. A2C

Actor-Critic models are a common form of Policy
Gradient model. The Actor-Critic model is an optimized

score function. Instead of waiting till the termination of the

episode as we do in Monte Carlo REINFORCE, we make

an update at each step (TD Learning).

Input: a differentiable policy parameterization (a|s,)

Input: a differentiable state-value parameterization v̂(a|s,𝞱)

Parameters: step sizes 𝛼𝞱 > 0, 𝛼w > 0

Initialize policy parameter 𝞱 ∈ ℝd’ and state-value weights

w ∈ ℝd

Repeat forever:

Initialize S (first state of the episode)

I ← 1

While S is not terminal:

A ~ (.|S,)

Take action A, observe S’, R

𝛿 ← R + 𝛾v̂(S’,w) - v̂(S,w) (if S’ is terminal, then v̂(S’,w) =
0)

w ← w + 𝛼wI𝛿∇wv̂(S,w)

𝞱 ← 𝞱 + 𝛼𝞱I𝛿∇𝞱ln(A|S,𝞱)

I ← 𝛾I

S ← S’

 Implementations

We started with unreal and later shifted to unity for

better python support for building ML agents. The steps

undertaken during the development are:

 Requirement Gathering for an AI Bot in an FPS Game

We contacted many gamers to understand and gather

enough information about the current usage of AI in

modern FPS game. We also discussed the requirements of

playing arena to make it more interesting for the players.

 Implementation of AI Algorithm in Python

We started our algorithm implementation in python

and trained our model on 2D graphics of OpenAI gym

environments. We trained thousands of episodes on
different 2D maps to get better accuracy along with

different learning rates. Along with this we also tested our

model with other Reinforcement Algorithms like SARSA

and A3C.

 Testing AI Algorithm in Doom Game on vizDOOM

Platform

We tested our trained model on different maps and

environments of Doom Game in the vizDoom platform.

This allowed us to test the accuracy of our implementation

and resolve the issues involved in strategic planning and

better the implementation. At the end of testing, we were
able to play our AI agent on different maps over the

DOOM game.

V. RESULTS

A. DQN

Below is the mean reward performance chart of DQN

over 5,000 episodes on VizDoom Basic Map.

As we can see from the graph, DQN initially explores

the environment and takes random action from the q_table.

But after some time of training, it learns to perform better

and starts exploiting the q_table for getting good

performance continuously. It shows that DQN takes less

experimental steps and focuses more on exploiting the

q_table.

Fig 1:- DQN Performance

B. A2C

Below is the mean reward performance chart of A2C

over 10,000 episodes on VizDoom Basic Map.

As we can see from the graph, A2C initially explores

the environment and takes random action from the q_table.

But after some time of training, it learns to perform better

and starts exploiting the q_table for getting good

performance continuously. It shows that A2C takes more

experimental steps and focuses more on frequently
updating the q_table.

Fig 2:- A2C Performance

http://www.ijisrt.com/

Volume 4, Issue 4, April – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19AP623 www.ijisrt.com 1125

VI. CONCLUSION

In this paper, we presented the use of Reinforcement

Learning to train an AI Soldier to play FPS Games. We

tested two different Reinforcement Learning Algorithms

named DQN and A2C to train the AI Soldier to move and

shoot in a partially observable environment of VizDoom

and to observe its behaviour. The aim of the AI Soldier is to

kill the enemies and survive as long as possible and based

on its performance, it is given awards. We observed that

DQN algorithm provided the best result once it found the

optimum strategy it continued using it to exploit the

enemy’s weakness. Whereas in A2C algorithm, the agent

didn’t stopped at optimum strategy and continued exploring
for other strategies. The output of DQN shows that it is

better algorithm for exploiting the weakness whereas A2C

is better algorithm for exploration. We also tried testing

these algorithms on Unity and Unreal environment but

failed to get result as it was too heavy and lacked native

python support. These results shows that Reinforcement

Learning is the best learning method for playing FPS

games.

REFERENCES

[1]. Amar Bhatt, “Teaching Agents with Deep

Apprenticeship Learning”, 2017

[2]. Partha Sarathi Paul, Surajit Goon, Abhishek

Bhattacharya, “History and comparative study of

modern game engine”, International Journal of

Advanced Computer and Mathematical Sciences, Vol

3, 2012.

[3]. Yong Ding, “Research on Operational Model of

PUBG”, SMIMA, 2018

[4]. Michelle McPartland and Marcus Gallagher, “Game

Designers Training First Person Shooter Bots”, 2012.

[5]. A.M. Mora, F. Aisa, P. García-Sánchez, P.A. Castillo,
J.J. Merelo, “Modelling a Human-like Bot in a First

Person Shooter Game”, 2015

[6]. Sule Yildirim, “Serious Game Design for Military

Training”, 2010.

[7]. Frank G. Glavin, Michael G. Madden. "DRE-Bot: A

hierarchical First Person Shooter bot using multiple

Sarsa(λ) reinforcement learners" , 2012 17th

International Conference on Computer Games

(CGAMES), 2012.

[8]. Tremblay, Paul J; Schneider, Kevin; Cheston Grant.

“Exam Prep Flash Cards for Software Development in
an Object-Oriented”, 2019. Retrieved from

https://books.google.com

[9]. “Products-Unity”, n.d. Retrieved from

https://unity3d.com/unity

[10]. Ashish Rana. “Introduction: Reinforcement Learning

with OpenAI Gym”, 2018. Retrieved from

https://towardsdatascience.com/reinforcement-

learning-with-openai-d445c2c687d2

[11]. Felix Yu. “Deep Q Network vs Policy Gradients - An

Experiment on VizDoom with Keras”, 2017.

Retrieved from
https://flyyufelix.github.io/2017/10/12/dqn-vs-pg.html

http://www.ijisrt.com/

	I. INTRODUCTION
	II. RELATED WORK
	III. OUR PROPOSED SOLUTION
	IV. ALGORITHM
	V. RESULTS
	VI. CONCLUSION
	REFERENCES

