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Abstract:- The theory of Graphs is one of the major 

areas of combinatorics that has developed into an 

important branch of Mathematics. The theory of 

domination in graphs is an emerging area of research in 

graph theory today. It has been studied extensively and 

finds applications to various branches of Science & 

Technology. Frucht and Harary [8] introduced a new 

product on two graphs G1 and G2, called corona 

product denoted by G1G2. 

 

In this paper, some results on convexity of 

minimal edge,total edge ;  minimal signed, total signed ;  

minimal Roman and total Roman edge dominating 

functions of corona product graph of a cycle with a star 

are discussed. 
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I. INTRODUCTION 

 

The theory of Graphs is one of the important branches 

of Mathematics. The major development of graph theory 
has occurred in recent years and inspired to a larger degree 

and it has become the source of interest to many 

researchers due to its applications to various branches of 

Science & Technology. 

 

Domination in graphs has been studied extensively in 

recent years. It is introduced by Ore [14] and Berge [4] and 

has become an emerging area of research in graph theory 

today. Many graph theorists, Cockayne and Hedetniemi 

[5,6,7], Reji kumar [15], Sampathkumar [16] and others 

have contributed significantly to the theory of dominating 
sets, domination numbers and other related topics. Haynes, 

Hedetniemi and Slater [9,10] presented a survey of articles 

in the wide field of domination in graphs. 

 

Another type of domination is total domination. Total 

dominating sets are introduced by Cockayane, Dawes and 

Hedetniemi [5]. The concept of edge domination was 

introduced by Mitchell and Hedetniemi [13] and it is 

explored by many researchers. Arumugam and Velammal 

[2] have discussed the edge domination in graphs while the 

fractional edge domination in graphs is discussed in 
Arumugam and Jerry [1]. The complementary edge 

domination in graphs is studied by Kulli and Soner [12]. 

The edge dominating sets are studied by Yannakakis [22]. 

The edge domination in graphs of cubes and  Signed total 

domination is studied by Zelinka [24, 25]. 

 
Product of graphs occurs naturally in discrete 

mathematics as tools in combinatorial constructions. They 

give rise to an important classes of graphs and deep 

structural problems.  Frucht and Harary [8]  introduced a 

new product on two graphs G1 and G2, called corona 

product denoted by G1G2. This new concept enhances the 

study of these graphs and it is interesting to study various 

graph-theoretic parameters of these graphs. 

 

Among the variations of domination, there is an 

extensive study of Y-domination and its variations. The Y 
– domination problem was introduced by Bange et al. [3], 

where Y is a subset of real numbers. A Y – dominating 

function of a graph 𝐺(𝑉, 𝐸) is a function 𝑓 ∶ 𝑉 →  𝑌 such 

that   

 

,1)( 
 vNu G

uf  for each𝑣 𝑉. Then the Y – 

domination problem is to find a Y – dominating function of 

minimum weight for a graph. Analogously Y – edge 

domination is defined. 

 

Recently, dominating functions in domination theory 
have received much attention. A purely graph – theoretic 

motivation is given by the fact that the dominating function 

problem can be seen, in a clear sense, as a proper 

generalization of the classical domination 

problem.Similarly edge dominating functions are also 

studied extensively. 

 

II. CORONA PRODUCT GRAPH  𝑪𝒏𝑲𝟏,𝒎 

 

The corona product of a cycle 𝐶𝑛 with a star graph 

𝐾1,𝑚  form ≥ 2, is a graph obtained by taking one copy of a 

n-vertex graph 𝐶𝑛 and n copies of 𝐾1,𝑚 and then joining the 

ith vertex of 𝐶𝑛 to all vertices of  ith copy of  𝐾1,𝑚. This 

graph is denoted by 𝐶𝑛𝐾1,𝑚 . 
 

The vertices in 𝐶𝑛  are denoted by 𝑣1, 𝑣2,…… . . . , 𝑣𝑛 

and the edges in 𝐶𝑛 by 𝑒1, 𝑒2,…… , 𝑒𝑛 where 𝑒𝑖 is the edge 

joining the vertices 𝑣𝑖 and 𝑣𝑖+1, i≠n. For i = n, 𝑒𝑛 is the 

edge joining the vertices 𝑣𝑛and  𝑣1.  
 

The vertex in the first partition of 𝑖𝑡ℎ𝑐𝑜𝑝𝑦𝑜𝑓𝐾1,𝑚  is 

denoted by 𝑢𝑖 and the vertices in the second partition of 

𝑖𝑡ℎ𝑐𝑜𝑝𝑦𝑜𝑓𝐾1,𝑚 are denoted by 𝑤𝑖1, 𝑤𝑖2, ……… . , 𝑤𝑖𝑚 . The 

edges in the 𝑖𝑡ℎ𝑐𝑜𝑝𝑦𝑜𝑓𝐾1,𝑚 are denoted by 𝑙𝑖𝑗  where  𝑙𝑖𝑗  is 

the edge joining the vertex  𝑢𝑖 to the vertex  𝑤𝑖𝑗 . There are 

another type of edges, denoted by  ℎ𝑖 , ℎ𝑖𝑗 . Here ℎ𝑖 is the 
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edge joining the vertex 𝑣𝑖 in 𝐶𝑛 to the vertex 𝑢𝑖 in the 

𝑖𝑡ℎ𝑐𝑜𝑝𝑦𝑜𝑓𝐾1,𝑚. The edge ℎ𝑖𝑗  is the edge joining the vertex 

𝑣𝑖 in 𝐶𝑛 to the vertex 𝑤𝑖𝑗 in the 𝑖𝑡ℎ𝑐𝑜𝑝𝑦𝑜𝑓𝐾1,𝑚 . 

 

The edge induced sub graph on the set of edges 

 

𝐸𝑖 = {ℎ𝑖 , ℎ𝑖𝑗 , 𝑙𝑖𝑗 : 𝑗 = 1,2,…… . . , 𝑚}is denoted by  𝐻𝑖, for i 

= 1,2,.......,n. 

 

Some basic graph theoretic properties and edge 

dominating sets of 𝐺 = 𝐶𝑛𝐾1,𝑚. are studied in Sreedevi, J 

[17]. Also some results on minimal edge and total edge 

dominating functions (MEDF, MTEDF) of 𝐺 = 𝐶𝑛𝐾1,𝑚. 

are presented in Sreedevi, J [18,19 ]. Further the concepts 

of minimal signed and Roman edge dominating functions 

(MSEDF, MREDF) and minimal total signed and Roman 

edge dominating functions (MTSEDF, MTREDF)are 

studied by Sreedevi, J [ 20,21]. 

 

In this paper we discuss the convexity of variants of 

Y – edge dominating functions and observed that the 
convex combination of these functions is also minimal in 

certain cases and is not minimal in certain other cases. 

 

III. CONVEXITY OF MINIMAL EDGE, SIGNED AND 

ROMANEDGE DOMINATING FUNCTIONS 

 

A study of convexity and minimality of dominating 

functions (MDF) are given in Cockayne et al. [5,6] and Yu 

[23]. Reji kumar [15] developed a necessary and sufficient 

condition for the convex combination of two MDFs to be 

again a MDF. Jeelani Begum [11] studied convexity of 

MDFs of Quadratic Residue Cayley Graphs.  
 

In this section, we discuss the convexity of minimal 

edge, signed and Roman edge dominating functions of the 

corona product graph 𝐺 = 𝐶𝑛𝐾1,𝑚. First we define the 

convex combination of functions and prove some results on 

the convexity of MEDFs, MSEDFs, MREDFs  of G. 

 

Definition: Let G(V,E) be a graph. Let f and g be two 

functions from E to [0,1] and 𝜆 ∈ (0,1). Then the function 

h: E  → [0,1] defined by h(e) = 𝜆f(e) + (1-𝜆) g(e) is called a 

convex combination of  f and g.  
 

First we consider minimal edge dominating sets, 

minimal edge dominating functions and discuss the 

convexity of these functions. 

 

Theorem 3.1:  Let  𝐷1,𝐷2 be two MEDSs of 𝐺 = 𝐶𝑛⊙
𝐾1,𝑚 . Let 𝑓1: E  → [0,1] and  

 

𝑓2: E  → [0,1]be defined by 

 

𝑓1(𝑒) = {
1, if𝑒 ∈ 𝐷1,    
0, otherwise.  

  and  𝑓2(𝑒) = {
1,    if𝑒 ∈ 𝐷2,    
0,   otherwise.   

 

 

Then the convex combination of  𝑓1 and  𝑓2  becomes a 

MEDF of 𝐺 = 𝐶𝑛⊙𝐾1,𝑚 . 
 

Proof: Let  𝐷1,𝐷2 be two MEDSs of 𝐺. Let 𝑓1  and  𝑓2be two 

functions defined as in the hypothesis. Then these functions 

are MEDFs of 𝐺 = 𝐶𝑛⊙𝐾1,𝑚 .[18] 

 

Let ℎ(𝑒) = 𝛼𝑓1(𝑒) + 𝛽𝑓2(𝑒), where 𝛼 +  𝛽 = 1, 0 < 𝛼 <
1 and 0 < 𝛽 < 1. 
 

Case 1: Suppose  𝐷1 ∩𝐷2 ≠ ∅. 
 

Then for 𝑒 ∈ 𝐸, the possible values of h(e) are 

ℎ(𝑒) = {

𝛼,             if𝑒 ∈ 𝐷1 −𝐷2,   
𝛽,             if𝑒 ∈ 𝐷2 −𝐷1,   
𝛼 +  𝛽,    if𝑒 ∈ 𝐷1 ∩ 𝐷2,   
0,             otherwise.             

 

 

Now ∑ ℎ(𝑒)

𝑒∈N[𝑙]

= 𝑠𝛼 +  𝑡𝛽, if s edges of 𝐷1 and t edges of 𝐷2 are in 𝑁[𝑙].  
 

Therefore ∑ ℎ(𝑒)

𝑒∈N[𝑙]

≥ 1 for each l ∈ E . 

 

This implies that h is an EDF. 

Now we check for the minimality of h. 

 

Define  𝑔: 𝐸 → [0,1] by 

 g(e)=

{
 
 

 
 
𝑟,                  if𝑒 = 𝑒𝑖 ∈ 𝐷1 ∩ 𝐷2,                   

𝛼 +  𝛽,         if𝑒 ∈ (𝐷1 ∩ 𝐷2 ) − {𝑒𝑖},           
𝛼,                  if𝑒 ∈ 𝐷1 − 𝐷2,                             
𝛽,                  if𝑒 ∈ 𝐷2 − 𝐷1,                             
0,                  otherwise,                                     

 

 

where  0 < 𝑟 < 1. 
 

Since strict inequality holds at the edge 𝑒𝑖 ∈ 𝐸, it follows 

that 𝑔 < ℎ. 

 

Then ∑ 𝑔(𝑒)

𝑒∈N[𝑙]

= {

𝑟,                                                         𝑖𝑓𝑙 ∈ 𝑖𝑡ℎ𝑐𝑜𝑝𝑦𝑜𝑓𝐾1,𝑚  in G,

𝑠𝛼 +  𝑡𝛽 + 𝑟, if s edges of 𝐷1 , t edges of 𝐷2and 𝑒𝑖  are in 𝑁[𝑙],

𝑠𝛼 +  𝑡𝛽,              if s edges of 𝐷1 and t edges of 𝐷2 are in 𝑁[𝑙].

 

 

This implies that ∑ 𝑔(𝑒)

𝑒∈N[𝑙]

= 𝑟

< 1 for the edges in the 𝑖𝑡ℎ𝑐𝑜𝑝𝑦𝑜𝑓𝐾1,𝑚  in G.  
 

So g is not an EDF. 

 

Since g is defined arbitrarily, it follows that there exists no 

g  < h such that g is an EDF. 

 

Thus h is a MEDF. 
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Case 2: Suppose 𝐷1 ∩ 𝐷2 = ∅. 
 

Then for e∈ 𝐸, the possible values of h(e) are 

ℎ(𝑒) = {
𝛼,            if𝑒 ∈ 𝐷1,    
𝛽,            if𝑒 ∈ 𝐷2,    
0,            otherwise.  

 

 

Now Σ
𝑒∈ N[𝑙]

ℎ(𝑒) = 𝑠𝛼 +  𝑡𝛽, if s edges of 

𝐷1 and t edges of 𝐷2 are in 𝑁[𝑙]. 
 

Therefor ∑ ℎ(𝑒)

𝑒∈N[𝑙]

≥ 1 for each l ∈ E. 

 

This implies that h is an EDF. 

 

Now we check for the minimality of h. 

 

Define 𝑔: 𝐸 → [0,1] by 

 

𝑔(𝑒) = {

𝑟,          if𝑒 = 𝑒𝑖 ∈ 𝐷1,         

𝛼,          if𝑒 ∈ 𝐷1 − {𝑒𝑖},      
𝛽,          if𝑒 ∈ 𝐷2,                   
0,           otherwise,                 

 

 

where  0 < 𝑟 < 𝛼. 
 

Since strict inequality holds at the edge  𝑒𝑖 ∈ 𝐸, it follows 

that 𝑔 < ℎ. 
 

 
 

This implies that 
 

∑ 𝑔(𝑒)

𝑒∈N[𝑙]

= 𝑟 + 𝛽 < 𝛼 +  𝛽 = 1  

 

for the edges in the 𝑖𝑡ℎ𝑐𝑜𝑝𝑦𝑜𝑓𝐾1,𝑚  in G.  
 

So g is not an EDF. 

 

Since g is defined arbitrarily, it follows that there exists no 

g  < h such that g is an EDF. 
 

Thus h is a MEDF. 

 

Now we discuss convexity of MSEDFs of  𝐺 = 𝐶𝑛⊙𝐾1,𝑚 . 
 

Theorem 3.2: Let 𝑓1  and 𝑓2be two minimal signed edge 

dominating functions of𝐺 = 𝐶𝑛⊙𝐾1,𝑚defined from  𝐸 to 

{−1,1} by 

𝑓1  (e) = 

{
−1,             for  

2

1m







 
edges in each copy of 𝐾1,𝑚in 𝐺,   

   1,       otherwise,                                                                   

 

And 

 

𝑓2(𝑒)) = 

{
−1,      for  

2

1m







 
edges in each copy of 𝐾1,𝑚in 𝐺,   

   1,       otherwise,                                                                  

 

 

Then the convex combination h of 𝑓1 and 𝑓2 becomes a 

MSEDF, if  

 

𝑓1(𝑒) = 𝑓2(𝑒)∀  𝑒 ∈ 𝐸.  Otherwise ℎ is not a signed edge 

dominating function of 𝐺.

  

Proof: let 𝑓1  and 𝑓2  be defined as in the hypothesis. Then 

these functions are MSEDSs of  𝐺 = 𝐶𝑛⊙𝐾1,𝑚 . [ 20]. 

Let ℎ(𝑒) = 𝛼𝑓1(𝑒) + 𝛽𝑓2(𝑒)  where 𝛼 + 𝛽 = 1 𝑎𝑛𝑑 0 <
𝛼 < 1,   0 < 𝛽 < 1. 
 

For 𝑒 ∈ 𝐸, the possible values of ℎ(𝑒) are  

ℎ(𝑒)

=

{
 

 
       𝛼 + 𝛽 ,         if 𝑓1(𝑒) = 𝑓2(𝑒) = 1,                                                  

−(𝛼 + 𝛽),         if 𝑓1(𝑒) = 𝑓2(𝑒) = −1,                                             

−𝛼 + 𝛽 ,         if 𝑓1(𝑒) = −1  and 𝑓2(𝑒) = 1,                                

𝛼 − 𝛽,         if 𝑓1(𝑒) = 1 and 𝑓2(𝑒) = −1 .                            

  

Now it is clear that in the case 𝑓1(𝑒) = 𝑓2(𝑒), andℎ(𝑒) 

takes the value either 1 or -1.Hence h  becomes a MSEDF. 

[20].In the case 𝑓1(𝑒) ≠ 𝑓2(𝑒), ℎ is not a signed edge 

dominating function because the functional values of ℎ are 

not either 1 or -1.∎ 

Now we discuss convexity of MREDFs of  𝐺 = 𝐶𝑛⊙
𝐾1,𝑚   . 
 

Theorem  3.3:  Let  𝑓1  and  𝑓2 be two minimal Roman 

Edge Dominating functions of 

𝐺 = 𝐶𝑛⊙𝐾1,𝑚from  E to {0,1,2}defined by  

𝑓1(𝑒)

= {
2,           if𝑒 = ℎ𝑖 ∈ 𝐻𝑖where𝑖 = 1,2, …… . , 𝑛,          
0,         otherwise.                                                          

 

𝑓2(𝑒)

= {
2,            if𝑒 = ℎ𝑖 ∈ 𝐻𝑖where𝑖 = 1,2,…… . , 𝑛,           
0,            otherwise.                                                          

 

Then the convex combination of 𝑓1  and  𝑓2 becomes a 

MREDF. 

Proof:  Let 𝑓1 ,𝑓2 be two functions defined as in the 

hypothesis. 

Then  these functions are MREDFs of  𝐺 = 𝐶𝑛⊙𝐾1,𝑚 . 
[20]. 

 

1. Let h(e) = 𝜶𝒇𝟏(𝒆) + 𝜷𝒇𝟐(𝒆), where 𝜶+  𝜷 = 𝟏, 𝟎 <
𝜶 < 𝟏 and 0 < 𝜷 < 𝟏. 
Then by the definition of the functions  𝑓1 and𝑓2 , it follows 

that 

ℎ(𝑒) = 𝑓1(𝑒) = 𝑓2(𝑒), ∀𝑒 ∈ 𝐸. 
Also  h becomes a MREDF.[20]. 
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IV. CONVEXITY OF MINIMAL TOTAL EDGE, 

SIGNED AND ROMAN EDGE DOMINATING 

FUNCTIONS 

 

A study of convexity and minimality of total dominating 

functions (MTDFs) are given in Cockayne et al.[5]. 

Yu.[23] obtained a necessary and sufficient condition for 

the convex combination of two MTDFs is to be again a 
MTDF.  

 

In this section we consider minimal total edge dominating 

sets, minimal total edge dominating functions and discuss 

the convexity of these functions. Also we discuss the 

convexity of MTSEDFs and MTREDFs of  𝐺 = 𝐶𝑛𝐾1,𝑚 . 
 

Definition: Let  𝐺 ( 𝑉, 𝐸 ) be a graph. Let 𝑓 and 𝑔  be two 

functions from 𝐸 to [ 0, 1 ] and (0,1). Then the function 

ℎ ∶  𝐸 → [ 0, 1 ] defined by  ℎ(𝑒) =   𝑓(𝑒) +
 (1 − ) 𝑔(𝑒), ∀𝑒 ∈ E  is called a convex combination of 

𝑓and 𝑔 . First minimal total edge dominating sets, minimal 

total edge dominating functions are considered and the 

convexity of these functions is discussed. 

 

Theorem 4.1: Let𝐓𝟏and𝐓𝟐be two MTEDSs of 𝑮 =
𝑪𝒏⨀𝑲𝟏,𝒎.   Let𝒇𝟏: 𝑬 → [𝟎, 𝟏]and 

𝒇𝟐: 𝑬 → [𝟎, 𝟏] be defined by  

 

𝑓1(𝑒)

= {
1 ,   if 𝑒  𝜖 T1,                                                                                                    
0 ,   otherwise.                                                                                                 

 

and 

𝑓2(𝑒)

= {
1,    if 𝑒 𝜖 T2,                                                                                                 
0 ,   otherwise.                                                                                              

 

Then the convex combination of 𝑓1  and 𝑓2  becomes a 

MTEDF of  𝐺 = 𝐶𝑛𝐾1,𝑚. 
 

Proof: Let 𝑇1and 𝑇2 be two MTEDSs of G .   

Let  𝑓1, 𝑓2  be two functions defined as in the hypothesis. 

Then these functions are MTEDFs  of𝐺 = 𝐶𝑛𝐾1,𝑚. [ 19]. 

Let ℎ(𝑒) = 𝛼𝑓1(𝑒) + 𝛽𝑓2(𝑒)  where 𝛼 + 𝛽 = 1 𝑎𝑛𝑑 0 <
𝛼 < 1,   0 < 𝛽 < 1.  
 

Case 1: Suppose 𝑇1 ∩ 𝑇2 ≠ 𝜑. 

For Ee , the possible values of ( )h e  are 

ℎ(𝑒) = {

     𝛼 ,          if  𝑒 𝜖 𝑇1 − 𝑇2 ,                                   
     𝛽 ,          if  𝑒  𝜖 𝑇2 − 𝑇1 ,                                 
𝛼 + 𝛽,         if  𝑒  𝜖 𝑇1 ∩ 𝑇2 ,                                    
          0,          otherwise.                                          

 

 

Then ∑ ℎ(𝑙 )
𝑙∈𝑁(𝑒)

= 𝑠𝛼 + 𝑡𝛽 , 𝑠 − edges of  𝑇1and  𝑡

− edges of  𝑇2  are in N(𝑒) . 
 

Therefore ∑ ℎ(𝑙
𝑙𝜖𝑁(𝑒)

) ≥ 1, ∀  𝑒 ∈ 𝐸. 

 

This implies that ℎ is a total edge dominating function.  

Now we check for the minimalityof ℎ. 

Define 𝑔: 𝐸 → [0, 1] by 

𝑔(𝑒)

=

{
 
 

 
 
        𝑟,           if 𝑒 = 𝑒′𝜖 𝑇1 ∩ 𝑇2,                                

𝛼 + 𝛽,           if 𝑒  𝜖 𝑇1 ∩ 𝑇2 − {𝑒
′},                           

     𝛼 ,           if  𝑒 𝜖 𝑇1 − 𝑇2 ,                                     
    𝛽,            if 𝑒  𝜖 𝑇2 − 𝑇1,                                     

         0,             otherwise .                                             

 

 

where 0 < 𝑟 < 1. 
 

Since strict inequality holds at an edge 𝑒′ ∈ 𝑇1 ∩ 𝑇2 ,  it 

follows that 𝑔 < ℎ. 
 

Then 

 
 

This implies that  

∑ 𝑔(𝑙 )
𝑙∈𝑁(𝑒)

= 𝑟 < 1 when 𝑒′

∈ 𝑁(𝑒)and no edge of 𝑇1 𝑎𝑛𝑑 𝑇2  other than 𝑒
′are in 𝑁(𝑒).  

 

So 𝑔 is not a TEDF.Since 𝑔 is defined arbitrarily, it 

follows that there exists no 𝑔 < ℎ such that 𝑔 is a TEDF. 

Thus ℎ  is a MTEDF. 

 

Case 2: Suppose𝑇1 ∩ 𝑇2 = 𝜑. 
For𝑒 ∈ 𝐸,  the possible values of ℎ(𝑒) are 

ℎ(𝑒) = {
𝛼,            if 𝑒 𝜖 T1,                            
𝛽,           if 𝑒 𝜖 T2,                            
0,            otherwise.                       

 

 

Then 

∑ ℎ(𝑙 )
𝑙∈𝑁(𝑒)

= 𝑠𝛼 + 𝑡𝛽, if 𝑠 − edges of 𝑇1 and 𝑡

− edges of 𝑇2  are in N(𝑒) . 
 

Therefore ∑ ℎ(𝑙
𝑙𝜖𝑁(𝑒)

) ≥ 1, ∀  𝑒 ∈ 𝐸. 

 

This implies that h  is a TEDF.  Now we check for the 

minimality of h . 

Define 𝑔: 𝐸 → [0, 1] by  

 

𝑔(𝑒) = {

𝑟,           if  𝑒 = 𝑒′𝜖 𝑇1 ,                                     

𝛼,           if  𝑒 𝜖 𝑇1 − {𝑒
′},                                 

𝛽,          if  𝑒 𝜖 𝑇2,                                              
0 ,         otherwise.                                         

 

 

where 0 < 𝑟 < 𝛼 . 
Since strict inequality holds at an edge 𝑒′ ∈ 𝑇1  it follows 

that 𝑔 < ℎ. 

 

Then 
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 This implies that 

∑ 𝑔(𝑙 )

𝑙∈𝑁(𝑒)

= 𝑟 + 𝛽 < 𝛼 + 𝛽 = 1  

 

when𝑒′

∈ 𝑁(𝑒)and no edge of 𝑇1other than  𝑒
′ are in 𝑁(𝑒).                   

So 𝑔 is not a TEDF.Since 𝑔 is defined arbitrarily, it follows 

that there exists no 𝑔 < ℎ such that 𝑔 is a TEDF. 

Thus ℎ is a MTEDF.■ 

 

Theorem 4.2: Let 𝑓1  and 𝑓2  be two minimal total signed 

edge dominating functions of𝐺 = 𝐶𝑛𝐾1,𝑚  defined from  

𝐸 to {−1,1} by 

 

𝑓1(𝑒)

= {
−1,   for

𝑚

2
edgesineachcopyof𝐾1,𝑚in𝐺ifmiseven , for

𝑚 − 1

2
     edgesineachcopyof𝐾1,𝑚inGifmisodd,          

    1,    otherwise,                                                                                  

 

 

And 

 

𝑓1(𝑒)

= {
−1,   for

𝑚

2
edgesineachcopyof𝐾1,𝑚in𝐺ifmiseven , for

𝑚 − 1

2
     edgesineachcopyof𝐾1,𝑚inGifmisodd,          

    1,    otherwise,                                                                                  

 

 

Then the convex combination h of 𝑓1 and 𝑓2 becomes a 

MTSEDF, if  

𝑓1(𝑒) = 𝑓2(𝑒)∀𝑒 ∈ 𝐸.Otherwise ℎ is not a total signed edge 

dominating function of 𝐺. 
 

Proof: Let 𝑓1  and 𝑓2  be defined as in the hypothesis. Then 

these functions are MTSEDFs of𝐺 = 𝐶𝑛𝐾1,𝑚 . [21]. 

Let ℎ(𝑒) = 𝛼𝑓1(𝑒) + 𝛽𝑓2(𝑒)  where 𝛼 + 𝛽 = 1 and 0 <
𝛼 < 1,   0 < 𝛽 < 1. 
For 𝑒 ∈ 𝐸, the possible values of ℎ(𝑒) are  

 

ℎ(𝑒)

=

{
 

 
𝛼 + 𝛽 , if 𝑓1(𝑒) = 𝑓2(𝑒) = 1,                                              

−(𝛼 + 𝛽), if 𝑓1(𝑒) = 𝑓2(𝑒) = −1,                                      

−𝛼 + 𝛽 , if 𝑓1(𝑒) = −1 𝑎𝑛𝑑 𝑓2(𝑒) = 1,                               

𝛼 − 𝛽 , if 𝑓1(𝑒) = 1 𝑎𝑛𝑑 𝑓2(𝑒) = −1 .                             

  

Now it is clear that in the case 𝑓1(𝑒) = 𝑓2(𝑒), and ℎ(𝑒) 

takes the value either 1 or -1. Hence h  becomes a 

MTSEDF.[21].In the case 𝑓1(𝑒) ≠ 𝑓2(𝑒), ℎ is not a total 

signed edge dominating function because the functional 

values of ℎ are not either 1 or -1.■ 

 

Theorem 4.3:  Let  𝑓1 and  𝑓2  be two minimal total Roman 

Edge Dominating functions of 

 

𝐺 = 𝐶𝑛⊙𝐾1,𝑚from E to {0,1,2}defined by  

 

𝑓1(𝑒)

= {
2,        for𝑒 = ℎ𝑖 , 𝑖 = 1,2,……… ,𝑛 ,                                                     

and for  one edge 𝑙𝑖1 in each copy of𝐾1,𝑚in G,        

0,       otherwise,                                                                                        

 

 

 

𝑓2(𝑒)

= {
2,        for𝑒 = ℎ𝑖 , 𝑖 = 1,2,……… , 𝑛 ,                                                     

and for  one edge 𝑙𝑖1 in each copy of𝐾1,𝑚in G,        

0,        otherwise.                                                                                        

 

 

Then the convex combination of 𝑓1  and  𝑓2 becomes a 
MTREDF. 

 

Proof:  Let 𝑓1 ,𝑓2 be two functions defined as in the 

hypothesis. 

Then𝑓1(𝑒) = 𝑓2(𝑒), ∀𝑒 ∈ 𝐸. 

Then these functions are MTREDFs of  𝐺 = 𝐶𝑛⊙
𝐾1,𝑚 . [21]. 
Let ℎ(𝑒) = 𝛼𝑓1(𝑒) + 𝛽𝑓2(𝑒), where 𝛼 +  𝛽 = 1, 0 < 𝛼 <
1 and 0 < 𝛽 < 1. 
Then by definition of the functions  𝑓1  and𝑓2 , it follows that  

ℎ(𝑒) = 𝑓1(𝑒) = 𝑓2(𝑒), ∀𝑒 ∈ 𝐸. 
Hence   h becomes a MTREDF.[21]. 

 

V. CONCLUSIONS 

 

 Study of corona product graphs arising from 

standard graphs is interesting. Edge dominating functions, 

signed edge dominating functions and Roman edge 

dominating functions of these graphs are studied by the 
authors and these works are published. Introducing a new 

concept i.e., convexity of these functions is quite 

interesting and gives scope to connect graph theory and 

LPP. In this paper an attempt is made for the study of 

convexity of these functions and this throws light on further 

developments of research in this type of corona product 

graphs. 
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