Comparative Evaluation of the Efficacy of Ozonated Water and Chlorhexidine Irrigation along with Scaling and Root Planing and Scaling and Root Planing alone in Chronic Periodontitis Patients
A Clinico-Microbiological Study

Dr. Nagarathna D. V.
Professor, Department of Periodontology
A.J. Institute of Dental Sciences
Mangalore, India

Aishwarya Shastry
Intern
A.J. Institute of Dental Sciences
Mangalore, India

Dr. Niketa R. Sabhachandani
Post Graduate, A.J. Institute of Dental Sciences,
Mangalore, India

Abstract: Periodontal disease is a multifactorial inflammatory disease associated with oral anaerobic species like Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans in the subgingival environment. Traditionally elimination of periopathogen containing biofilms was done by scaling and root planing. Subsequently adjunctive antimicrobial agents such as topical antibiotics and antiseptics were used along with scaling and root planing. Chlorhexidine was commonly used as an adjunct in periodontal therapy. But prolonged use of chlorhexidine may cause mucosal desquamation, tooth staining, altered taste sensation, impaired wound healing and reduced attachment of fibroblast. In recent decades, ozone is considered to be an alternative oral antiseptic agent because it is a stronger antimicrobial agent and does not induce microbial resistance. Hence the aim of the study was to compare and evaluate the effect of scaling and root planing with and without oral irrigation using 0.2% chlorhexidine and 0.8% of ozonated water on clinical and microbiological parameters in chronic periodontitis. A randomized controlled trial, 45 patients were examined and were divided into 3 groups depending on the treatment plan. Scaling and root planing alone in group 1, chlorhexidine irrigation along with scaling and root planing in group 2, and ozonated water irrigation along with scaling and root planing in group 3. The deepest pocket present was taken as the site for clinical evaluation and microbiological assessment. The assessment was carried out on the baseline, at 20 days and 40 days. On clinical evaluation, group 3 showed considerable reduction on 20th and 40th days, followed by group 2 and group 1. On Microbiological examination, group 3 showed highest reduction on the 20th day followed by group 2 and group 1, but by the 40th day group 2 showed better results followed by group 3 and group 1. It was concluded that ozonated potential has a potential antimicrobial action on chronic periodontitis and can be used as an adjunct to scaling and root planning for better action. Ozonated water irrigation can also be considered as an alternative treatment modality for aggressive periodontitis.

Keywords: Chronic Periodontitis; Ozonated Water Irrigation; Subgingival Irrigation; Chlorhexidine Irrigation; Porphyromonas Gingivalis; Aggregatibacter Actinomycetemcomitans.

I. INTRODUCTION

Ozone a naturally found gas in the upper atmosphere filters potentially damaging ultraviolet light from reaching the earth’s surface. It is triatomic molecule, consisting of three oxygen atoms and molecular weight 47.98 g/mol. It has many applications in various fields including the field of medicine [1].

Ozone therapy was accepted as an alternative medicine in the USA since 1880 and has been used since then in 20 countries for over 130 years. During World War I, ozone was used for treating post traumatic gangrene and infected wounds [2]. E. A. Fisch was the first dentist to use ozone in his practice in 1930s. He used ozonated water during dental surgeries to aid in disinfection and better wound healing. Ozone therapy can be defined as a versatile bio-oxidative therapy in which oxygen/ozone is administered in gaseous form or dissolved in water or oil bare, to obtain therapeutic benefit [3].

A. Biological actions in the body

Ozone has several known biological actions in the human body, such as immunostimulating, analgesic, antihypoxic, detoxicating, antimicrobial (bactericidal, virucidal and fungicidal), bioenergetics, and biosynthetic (activation of the metabolism of carbohydrates, proteins, lipids) hemostatic, etc[4].
1) **Antimicrobial effect:**

 It is a result of the action on cells by damaging the cytoplasmic membrane. This action is selective to microbial cells and is effective against antibiotic resistant strains. Gram positive bacteria are more sensitive to the action of ozone than Gram negative bacteria. The viricidal activity is due to the inhibition of synthesis of viral proteins[1].

2) **Immunostimulating Effect:**

 Ozone influences cellular and humoral immune system by stimulating proliferation of immunocompetent cells and synthesis of immunoglobulins respectively. It also activates the function of macrophages and increases sensitivity of microorganisms to phagocytosis following which cytokines are released. They in turn activate other immune cells, setting off a cascade of positive change throughout the immune system, which is stimulated to resist diseases. It also produces interleukins, leucotrienes and prostaglandins which is beneficial in reducing inflammation and helps in wound healing[1]. Ozone in high concentration causes immunosuppressive effect and in low concentration causes immunostimulating effect[5].

3) **Antihypoxic Effect:**

 Ozone brings about a rise in the po2 in tissues and improves the transportation of oxygen in the blood, resulting in a change in cellular metabolism, activation of aerobic processes. Repeating low doses of ozone can activate enzymes (superoxide dismutase, catalases, dehydrogenase, and glutathione peroxidases) which can protect organisms against the action of oxygen free radicals. It also prevents formation of erythrocyte aggregates and increases their contact surface for oxygen transportation. Its ability to stimulate circulation can be used in circulatory disorders. Ozone improves the metabolism of inflamed tissues by increasing their oxygenation and reducing local inflammatory processes.

4) **Biosynthetic Effect:**

 Ozone activates the mechanisms of protein synthesis. On a cellular level there is an increase in mitochondria and ribosomes which elevates regeneration potential and functional activity of the tissues[1].

5) **Vasodilatation:**

 Ozone causes secretion of vasodilators like nitrous oxide, responsible for dilation of arterioles and venules[1].

 The average concentration of ozone used in treatments is 25g per ml of oxygen/ozone gas mixture that translates into 0.25 parts of ozone to 99.75 parts of oxygen. This concentration effectively kills bacteria, fungi, viruses and parasites. According to most authors, a 10sec application of ozone causes destruction of 99% bacteria and 20sec application causes destruction of 99.9% bacteria.

 B. **Modes of Ozone Delivery**

1) **Gaseous Ozone:**

 It is frequently used in restorative dentistry and endodontics[6].

2) **Ozonated Water:**

 It is effective against microorganisms, and also less expensive compared to other chemical cleansers. Hence can be used to control oral infections and various pathogens[4].

3) **Ozonized Oil:**

 Sunflower ozonized oil also seems extremely convenient. The wide accessibility of sunflower oil makes this form of ozone, a competitive antimicrobial agent[4].

 Many chemical adjuncts like chlorhexidine are widely used to improve the outcome of mechanical therapy. Chlorhexidine is a broad-spectrum antiseptic with pronounced effects on both gram positive and gram-negative bacteria, some viruses and fungi. Chlorhexidine has extensively been proved to show better results than mechanical debridement alone. The various modes of delivery include – rinsing, using oral irrigators and subgingival irrigation at different concentrations (2%, 1.2% and 0.2%). The adverse effects of chlorhexidine include – taste changes, tooth staining, sore mouth and for sore throat, Tongue irritation and wheezing/shortness of breath[7]. An alternative approach to conventional antimicrobial or antiseptic agents in the suppression of subgingival bacteria is to inhibit their growth by changing the subgingival environment, which has shown to be highly anaerobic with a prevailing low oxygen tension[6]. This has led to the concept of oxygenating the periodontal tissues as a means of therapy, a concept which has been periodically revived since first advocated by Dunlop in 1913[1]. The agents that have been used are molecular oxygen [8], hyperbaric oxygenation [9] and hydrogen peroxide [10]. It has been shown that repeated subgingival oxygen irrigation in previously untreated deep periodontal pockets resulted in changes in the subgingival micro flora and lead to significant healing of the periodontal conditions[1].

Hence this study is designed to compare the efficacy of ozonated water and chlorhexidine irrigation along with the scaling and root planning and scaling and root planning alone on clinical and microbiological parameters.

II. AIMS AND OBJECTIVES

- Compare the effect of scaling and root planing with and without subgingival irrigation on clinical and microbiological parameters.
- Compare the effect of a single episode of subgingival irrigation with 0.8% ozonated water and 0.2% chlorhexidine on clinical parameters such as Plaque Index, Gingival Index, Bleeding on probing and Probing Pocket Depth.
- Assess and compare the effect of single episode subgingival irrigation with 0.8% ozonated water and 0.2% chlorhexidine on specific periopathogenic
microorganisms such as bacteria, including Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg) and Tannerella forsythia (Tf) and Prevotella intermedia (Pi).

III. METHODOLOGY

A total of 45 patients aged 30-60 years, of both gender visiting the outpatient department of A.J. Institute of Dental Sciences, Mangalore, were enrolled for the study. All the 45 patients were suffering from chronic periodontitis (AAP International Workshop for Classification of Periodontal Diseases, 1999) and minimum of 20 teeth were present in each case, 4 sites with 5-6mm of pocket depth and 6 sites that bled on probing. Patients suffering from known systemic conditions predisposing to periodontal disease, patients with history of periodontal surgical and non-surgical therapy 6 months prior to the onset of the study, aggressive periodontitis, antibiotic therapy/ chemotherapeutic mouth rinses/oral irrigation in the last 6 months, smokers, pregnant or lactating patients were excluded. The 45 Patients were randomly divided into 3 equal study groups (15 patients each) depending on the treatment provided. In the first group only scaling and root planing was done, in the second and third groups, subgingival irrigation with 0.2% chlorhexidine and 0.8% ozonated water was done respectively along with scaling and root planing. The study protocol was reviewed and ethical clearance was provided by the ‘Ethical Committee’ of A.J. Institute of medical sciences. The study was carried out by a single examiner throughout the study period.

A. Periodontal Status Evaluation

All patients were informed about the procedure being performed and an informed consent was obtained. A printed Performa was used to collect demographic data of the patient. The Performa also included the clinical parameters to be recorded along with other intraoral findings.

Full mouth scaling and root planing was done in all the 3 groups using ultrasonic scaler unit (Satellite Inc), prior to which clinical and microbiological parameters were recorded for all the 3 groups. The site with the deepest pocket and highest score was taken as the site of evaluation. The same clinical and microbiological parameters were assessed on 20th and 40th days for all groups. In the second group, along with full mouth scaling and root planing, subgingival irrigation with 0.2% chlorhexidine solution delivered via “WATER PIK” with a medium power setting for 7-10 minutes. In the third group subgingival irrigation was carried out with ozonated water using “KENT OZONE DENTAL JET TY-820” irrigation device. A fine 20-gauge needle was bent and attached to the tip of the jet and the needle was inserted 3mm sub gingivally. Irrigation was carried out for 7-10 minutes.

For homogeneous maintenance of oral hygiene among all the 3 groups, after irrigation the patients were instructed to perform regular oral hygiene habits like brushing twice daily using the roll-on technique for a minimum of 2 minutes. A standard toothbrush and toothpaste were provided to them for the same. The patients were instructed to report subsequently on the 20th and 40th days.

1) Clinical Parameters:

The parameters used were Plaque Index given by Silness And Loe (1964) with the help of an explorer and mouth mirror[11], Gingival Index given by Loe and Silness (1963)[11] and Modified Sulcular Bleeding Index given by Mombeli et al[11].

2) Probing Pocket Depth:

The depth of the pocket was recorded as the distance between the free gingival margin and the base of the sulcus using Williams graduated periodontal probe.

3) Clinical Attachment Level Measurement:

The clinical attachment level was recorded as the distance between the cemento-enamel junction and base of the pocket using Williams graduated periodontal probe.

Probing Pocket Depth and Clinical Attachment Loss were recorded in all the teeth except the third molars. The parameters were assessed at baseline, 20th and 40th days.

B. Microbiological Assessment Procedure

After clinical assessment of all the 45 patients, microbiological analysis was carried out using their plaque samples. Supragingival plaque removal was done for all the teeth with sterile set of instruments, immediately after which the site selected for sampling were dried and isolated. The selected site was sampled for subgingival microflora with the help of sterile absorbent paper point.

The samples were dispensed in separate vials containing Reduced Transport Fluid (RTF), which was used as a carrier medium for the plaque samples. The vials were closed and labelled. The labelled vials were sent for microbiological examination within 24 hours. The samples were vortexed and inoculated in culture media according to the requirement in enriched and selective media. The samples were quantified for Porphyromonas gingivalis, Tannerella forsythia, Aggregatibacter actinomycetemcomitans and Prevotella intermedia by bacterial culture method.

C. Statistical Analysis

The results were expressed as mean ± SD and proportions as percentages. Intergroup and intragroup comparisons were made by ANOVA and KRUSKALWALLIS test. A P-value of 0.05 or less was considered for statistical significance.
IV. RESULTS

A. Periodontal Status

- **Comparison of Plaque and Gingival Index between the three Groups on 20th Day.**

 All the subjects were regularly monitored for oral hygiene maintenance and instructions for plaque control were emphasized at each visit. All the three groups did not show significant reduction in plaque scores (P>0.376) overall it was found that there is decrease in mean plaque index from baseline to 20th day. Highest reduction in mean plaque index was recorded in Group III (1.000), followed by Group II (1.000) and Group I (1.067) respectively (Table 1). There was a significant reduction in the mean gingival index from baseline to 20th day between all 3 groups (P<0.014). Highest reduction in mean gingival index was recorded in Group II (0.600), followed by Group III (0.667) and Group I (1.267) respectively (Table 2).

- **Comparison of plaque and gingival index between the three groups on 40th day.**

 The reduction in the plaque index was significant in all the groups. The highest reduction was noted in Group III (1.067), followed by Group II (1.200), and Group I (1.400) respectively (Table 1). Highest reduction in mean gingival index was observed in Group III (0.600), followed by Group II (1.200) and group I (1.600) respectively. The difference in the mean gingival index between the groups was statistically very highly significant (P<0.001), this indicated that Group III has the greatest reduction and highest significance up to 40th day (Table 2).

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. deviation</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>I</td>
<td>15</td>
<td>2.2667</td>
<td>0.59362</td>
<td>0.08</td>
<td>0.920</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>2.2667</td>
<td>0.45774</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>2.3333</td>
<td>0.48795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20th</td>
<td>I</td>
<td>15</td>
<td>1.0667</td>
<td>0.25820</td>
<td>1</td>
<td>0.376</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>1.000</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>1.000</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40th</td>
<td>I</td>
<td>15</td>
<td>1.400</td>
<td>0.50709</td>
<td>3.56</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>1.200</td>
<td>0.41404</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>1.0667</td>
<td>0.25820</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Plaque Index

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. deviation</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>I</td>
<td>15</td>
<td>2.7333</td>
<td>0.45774</td>
<td>2.61</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>2.3333</td>
<td>0.48795</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>2.4667</td>
<td>0.51640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20th</td>
<td>I</td>
<td>15</td>
<td>1.2667</td>
<td>0.45774</td>
<td>4.75</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>0.6000</td>
<td>0.63246</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>0.6667</td>
<td>0.81650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40th</td>
<td>I</td>
<td>15</td>
<td>1.6000</td>
<td>0.50709</td>
<td>10.23</td>
<td><0.001vhs</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>1.2000</td>
<td>0.56061</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>0.6000</td>
<td>0.73679</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Gingival Index

- **Comparison of modified sulcular index (MSBI) between the groups on 20th day. (Table 3)**

 A reduction in mean MSBI was recorded in Group III (0.200), followed by Group II (1.733) and Group I (1.933) respectively. The difference in the mean MSBI was statistically highly significant (P<0.001) and overall it was found that there was a decrease in the mean MSBI from baseline to 20th day with greatest reduction in Group III.

- **Comparison of modified sulcular index (MSBI) between the groups on the 40th day. (Table 3)**

 Higher reduction in MSBI was recorded in Group III (0.200), followed by Group II (1.667) and Group I (1.867) respectively. The difference in the mean MSBI was statistically very significant (P<0.001). This indicated that there was consistent reduction in the mean MSBI from 0 to the 40th day in all the three groups with Group III having the greatest reduction.
Comparison of the probing pocket depth between the three groups on the 20th day. (Table 4)

The reduction in the pocket depth values in all three groups was not significant from baseline to 20th day. Higher reduction was recorded in Group III (3.7333), followed by Group II (3.8667) and Group I (4.2667) respectively. Overall there was a decrease in mean probing pocket depth from baseline to 20th day, with greatest reduction and highest significance in Group III.

Comparison of clinical attachment loss (CAL) between the three groups on the 20th day. (Table 5)

Highest reduction in mean CAL was recorded in Group III (3.6667), followed by Group II (3.7333) AND Group I (5.0000) respectively. The reduction in mean CAL between the groups from baseline to 20th day was statistically significant (P<0.027) and the greatest reduction and highest significance was found in Group III.

Comparison of the probing pocket depth between the three groups on the 40th day. (Table 4)

Highest reduction was seen in Group III (2.5333), followed by Group II (3.4667) and Group I (4.6667) respectively. The difference in the mean pocket probing depth was statistically very significant (P<0.001). This indicated that there was consistent reduction in the mean pocket probing depth from 0 to the 40th day in all the three groups with Group III having the greatest reduction.

Comparison of clinical attachment loss (CAL) between the three groups on the 40th day. (Table 5)

Highest reduction in mean CAL was recorded in Group III (2.5333), followed by Group II (3.4667) AND Group I (4.6667) respectively. The difference in the mean CAL consistently decreased from 0 to 40th day with Group III having the highest reduction.
B. Microbiological parameters

> Comparison of *Tannerella forsythia* between the three groups on the 20th day. (Table 6)

Highest reduction in the mean Tf was recorded in Group III (0.000), followed by Group I (3.667) and Group II (4.933) respectively. The difference in mean Tf between the groups was statistically significant (P<0.016). There was reduction in mean value of Tf from baseline to 20th day with greatest reduction and highest significance in Group III.

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. deviation</th>
<th>H</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>I</td>
<td>15</td>
<td>10.2667</td>
<td>11.31034</td>
<td>0.56</td>
<td>0.755ns</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>17.4000</td>
<td>21.27977</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>15.5333</td>
<td>27.60659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20th</td>
<td>I</td>
<td>15</td>
<td>3.6667</td>
<td>5.56349</td>
<td>87.28</td>
<td>0.016 sig</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>4.9333</td>
<td>7.66687</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40th</td>
<td>I</td>
<td>15</td>
<td>5.8000</td>
<td>8.01071</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>4.8000</td>
<td>8.30834</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>6.6667</td>
<td>8.19988</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6

> Comparison of *Porphyromonas gingivalis* between three groups on 20th day. (Table 7)

Higher reduction in the mean Pg was recorded in Group III (0.000), followed by Group II (6.627) and Group I (15.933) respectively. The difference in mean Pg between the Groups from baseline to 20th day was statistically very highly significant (P<0.001) with greatest reduction and highest significance in Group III.

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. deviation</th>
<th>H</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>I</td>
<td>15</td>
<td>37.7333</td>
<td>36.79376</td>
<td>0.99</td>
<td>0.61ns</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>22.2000</td>
<td>20.25269</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>39.2667</td>
<td>43.3396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20th</td>
<td>I</td>
<td>15</td>
<td>15.9333</td>
<td>18.18346</td>
<td>26.43</td>
<td><0.001vhs</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>6.2667</td>
<td>9.98904</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40th</td>
<td>I</td>
<td>15</td>
<td>29.8000</td>
<td>30.37198</td>
<td>10.32</td>
<td><0.001vhs</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>15</td>
<td>7.2667</td>
<td>16.30279</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15</td>
<td>16.0000</td>
<td>15.83396</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7

> Comparison of *Prevotella intermedia* between the three groups on the 20th day. (Table 8)

The difference in the mean Pi between the groups was statistically significant (P<0.008), highest reduction in mean Pi was recorded in Groups III (0.000), followed by Group II (1.200) and Group I (7.000) respectively. There was a significant decrease in mean Pi from baseline to 40th day with greatest and highest significance in Group III.

> Comparison of *Porphyromonas gingivalis* between three groups on 40th day. (Table 7)

Highest reduction in mean Pg was recorded in Group II (7.267), followed by Group I (16.000) and Group I (29.800) respectively. The difference in the mean Pg between the groups was statistically significant (p<0.001). There was a regrowth of organisms from 20th to 40th days in all the three groups with Group II having greatest reduction and highest significance.

> Comparison of *Prevotella intermedia* between the three groups on 40th day. (Table 8)

Highest reduction in mean Pi was recorded in Group II (1.200), followed by Group III (4.867) and Group I (10.733) respectively. The difference in mean Pi was statistically not significant (P>0.065). This indicated that there was regrowth of the organism from the 20th to 40th day with Group II having consistent reduction and highest significance.

> Comparison of *Prevotella intermedia* between the three groups on the 40th day. (Table 8)

Highest reduction in mean Pi was recorded in Group II (1.200), followed by Group III (4.867) and Group I (10.733) respectively. The difference in mean Pi was statistically not significant (P>0.065). This indicated that there was regrowth of the organism from the 20th to 40th day with Group II having consistent reduction and highest significance.
The results of this study were similar to the results obtained by the current study. The difference in mean Aa between the three Groups was statistically not significant (P<0.184). highest reduction in mean Aa from baseline to 20th da was recorded in Group III (6.0000, followed by Group II (6.933) and Group I (14.067) respectively.

Another study conducted by K. Dhingra and K.L. Vandana IN 2011 evaluated the effect of ozonated water irrigation in orthodontic patients with gingivitis on 15 patients. The assessment concluded that a single episode of ozonated water irrigation was successful in reducing the gingival inflammation [12]. The results of this study were similar to the results obtained by the current study.

Also, Dodwad et al in 2011 compared the effect of oral irrigation with ozonate water, 0.2% chlorhexidine and 10% povidone iodine in patients with chronic periodontitis on 30 patients. At the end of 1-month time period a higher reduction percentage of clinical parameters and higher reduction in spirochetes was seen with ozonated water as compared to chlorhexidine and povidone iodine. The study concluded that local ozone application can serve as potent atraumatic antimicrobial agent to treat periodontal disease [13].

In the microbiological aspects of the present study a study conducted by Nagayaoshi et al (2004) showed that ozonated water (0.5-4mg/l) was highly effective in killing both gram positive and gram-negative oral microorganisms such as Porphyromonas endodontalis and Porphyromonas gingivalis [14]. K. Dhingra (2011) in his study also showed that ozonated water was effective against Candida or Enterococcus fecalis and periodontopathic bacteria such as A. actinomycetemcomitans and P. gingivalis [12].

Similarly, Huth et al (2011) found significant reduction in periodontal pathogens namely P. gingivalis, Parvimonas micra, Tannerella forsythia on irrigation with gaseous/aqueous ozone as compared to 0.2% CHX [15]. It
was also found that by the 40th day, chlorhexidine was sustained better than ozone and prevented the regrowth of organisms better than ozone, therefore, was more effective than ozone for bacteria like Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia. This may be due to better substantivity property of chlorhexidine. Lander PE IN 1986 concluded by his study that the effect of a single episode of chlorhexidine irrigation had its peak action at 2 to 4 weeks [16]. Similarly, our present study showed maximum effect of chlorhexidine on microbial growth between 20th and 40th days, suggesting that chlorhexidine has a sustained effect on microorganism up to 40 days.

Ozone showed greater reduction in the reduction of Aggregatibacter actinomycetemcomitans when compared to chlorhexidine even on the 40th day. This may suggest the use of ozone as a better adjunct than chlorhexidine in the treatment of aggressive periodontitis. In accordance with our results, a study done by Ramzy et al (2005) found a significant improvement in Pocket probing depth. Plaque index, Gingival index, treated by Scaling and Root Planing along with ozone application in patients with aggressive periodontitis [17].

Despite the substantivity of chlorhexidine, ozonated water irrigation has shown better results in terms of clinical parameters and microbial count of A.a up to the 40th day and showed better antimicrobial action on P.g, T.f, P.i up till the 20th day. Considering the limitation of this study in terms of short-term duration, ozone can be considered as a promising antimicrobial agent in periodontal therapy, further long-term studies are required to adequately assess the efficacy of ozone in vivo.

LIMITATIONS OF THE STUDY

➢ The study was of a short duration i.e. 40 days, hence long-term effect of these irrigants still needs to be assessed.
➢ Only single episode of subgingival irrigation was performed in 40 days, hence the substantivity of the subgingival irrigation has not been assessed.
➢ The antimicrobial activity of ozone on the other periodontopathogens needs to be assessed.

REFERENCES

ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

Volume 4, Issue 5, May – 2018