3D Mathematical Modeling and Simulation of Heart Movements in Normal and Atrial Fibrillation States


Authors : Dr. Mitat Uysal

Volume/Issue : Volume 10 - 2025, Issue 5 - May


Google Scholar : https://tinyurl.com/2wndf3fn

DOI : https://doi.org/10.38124/ijisrt/25may1736

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : The heart's three-dimensional (3D) motion is a complex physiological process critical for efficient blood circulation. Abnormalities such as atrial fibrillation (AF) disrupt the synchronized contraction, leading to clinical complications. This paper presents a mathematical model for 3D heart motion under normal and fibrillated conditions, followed by simulation-based visualization using Python. The model is grounded in biomechanical principles and fluid- structure interactions, with numerical approximations to represent dynamic tissue deformation.

Keywords : Atrial Fibrillation, Arrhytmia, Heart Motion, Electromechanical Coupling, Mechanical Deformation.

References :

  1. Nattel, S., et al. (2020). Circ. Res., 127(6), 845–865.
  2. McQueen, D. M., & Peskin, C. S. (2000). Journal of Biomechanical Engineering, 122(3), 252–259.
  3. Guccione, J. M., et al. (1995). Journal of Biomechanics, 28(10), 1167–1177.
  4. Henriquez, C. S. (1993). Critical Reviews in Biomedical Engineering, 21(1), 1–77.
  5. Trayanova, N. A. (2011). Journal of Electrocardiology, 44(6), 645–650.
  6. Nash, M. P., & Panfilov, A. V. (2004). Progress in Biophysics and Molecular Biology, 85(2–3), 501–522.
  7. Jacquemet, V., et al. (2003). IEEE Transactions on Biomedical Engineering, 50(1), 10–23.
  8. Courtemanche, M., et al. (1998). American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301–H321.
  9. Kharche, S., et al. (2012). PLoS Computational Biology, 8(12), e1002654.
  10. Clayton, R. H., et al. (2011). Progress in Biophysics and Molecular Biology, 104(1–3), 22–48.
  11. Ten Tusscher, K. H. W. J., et al. (2004). American Journal of Physiology-Heart and Circulatory Physiology, 286(4), H1573–H1589.
  12. Luo, C. H., & Rudy, Y. (1991). Circulation Research, 68(6), 1501–1526.
  13. Vetter, F. J., & McCulloch, A. D. (2001). Journal of Cardiovascular Electrophysiology, 12(5), 578–585.
  14. Krueger, M. W., et al. (2010). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1921), 4191–4209.
  15. Bayer, J. D., et al. (2012). Biophysical Journal, 103(5), 907–916.
  16. Heikhmakhtiar, A. K., & Lim, K. M. (2020). Scientific Reports, 10, 20498.
  17. Karli, D., et al. (2022). Journal of Clinical Medicine, 11(3), 765.
  18. Niederer, S. A., et al. (2011). Biophysical Journal, 101(5), 1065–1073.
  19. Lee, J., et al. (2019). Medical Image Analysis, 55, 216–227.
  20. Gao, H., et al. (2015). Annals of Biomedical Engineering, 43(5), 1124–1136.
  21. Ringenberg, J., & Trayanova, N. (2020). Heart Rhythm, 17(2), 198–205.
  22. Boyle, P. M., et al. (2019). Nature Biomedical Engineering, 3, 930–939.
  23. Lombaert, H., et al. (2014). IEEE Transactions on Medical Imaging, 33(4), 947–956.
  24. Pathmanathan, P., et al. (2010). Progress in Biophysics and Molecular Biology, 102(2–3), 136–155.
  25. Fastl, T. E., et al. (2018). JACC: Clinical Electrophysiology, 4(12), 1561–1571.
  26. Fenton, F. H., et al. (2002). Chaos, 12(3), 852–892.
  27. Coudière, Y., et al. (2005). Mathematical Biosciences, 194(1), 79–96.
  28. Zipes, D. P., & Jalife, J. (2013). Cardiac Electrophysiology: From Cell to Bedside (6th ed.). Elsevier.
  29. Li, W., et al. (2022). Frontiers in Physiology, 13, 820007.
  30. Sundnes, J., et al. (2006). International Journal for Numerical Methods in Biomedical Engineering, 22(10), 927–940.

The heart's three-dimensional (3D) motion is a complex physiological process critical for efficient blood circulation. Abnormalities such as atrial fibrillation (AF) disrupt the synchronized contraction, leading to clinical complications. This paper presents a mathematical model for 3D heart motion under normal and fibrillated conditions, followed by simulation-based visualization using Python. The model is grounded in biomechanical principles and fluid- structure interactions, with numerical approximations to represent dynamic tissue deformation.

Keywords : Atrial Fibrillation, Arrhytmia, Heart Motion, Electromechanical Coupling, Mechanical Deformation.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe