A Brief Review on Molecular Docking - Alzheimer’s Disease


Authors : Khushi Jadhav; Trupti Kadam; Pallavi Namdas; Anushka Guntapelliwar; Omkar Joshi

Volume/Issue : Volume 10 - 2025, Issue 2 - February


Google Scholar : https://tinyurl.com/47m98z5d

Scribd : https://tinyurl.com/4tzk8bep

DOI : https://doi.org/10.5281/zenodo.14917003


Abstract : Alzheimer's disease (AD), a progressive brain disorder, is the most common form of dementia, affecting memory, thought, and behavior. Despite extensive research, effective therapeutic treatments for AD and dementia remain elusive. This study analyzed select transcriptomic datasets to identify disease-associated proteins meeting specific criteria. We then docked these proteins with four existing AD drugs (Donepezil, Galantamine, Memantine, and Rivastigmine) and plant-derived actives from Thymus cilicius, Melissa officinalis, Salvia sclarea, Linum usitatissimum, and Curcuma longa. Notably, binding energy values for mutant proteins differed significantly from wild-type proteins, particularly in the MET proto-oncogene (PDB ID: 3ZXZ). Moreover, plant-derived actives exhibited higher relative stability values when docked with wild-type proteins compared to conventional drugs. Our findings suggest Alpha-Muurolene, Alpha-Atlantone, Alpha- Cadinene, Beta-Bourbonene, Beta-Cubebene, and Germacrene-D as promising alternative therapeutic candidates for Alzheimer's disease.[1,2,3,11,12,13]

Keywords : Alzheimer’s Disease, Dementia, Serotonergic Receptors, Auto Dock Vina.

References :

  1. Kumar A, Nisha CM, Silakari C, Sharma I, Anusha K, Gupta N, Nair P, Kumar A. Current and Novel Therapeutic Molecules and Targets in Alzheimer’s Disease. J Formos Med Assoc; 2016; 115;3-10. 
  2. Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature. 1999;399(6738 Suppl):A23–31.
  3. Goedert M, Spillantini MG, Crowther RA. Tau Proteins and Neurofibrillary Degeneration. 1991;1(4):279–86. Brain Pathol.
  4. Nunan J1, Small DH. Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett. 2000 Oct 13;483(1):6-10.
  5. Epis R, Marcello E, Gardoni F, Di Luca M. Alpha, beta-and gamma-secretases in Alzheimer’s disease. Biosci (Schol Ed). 2012: 1;4:1126-50. Front
  6. Hyman BT, Phelps CH, Beach TG, and others. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease, Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 2012, volume 8, issue 1, pages 1-13.
  7. Hebert LE, Weuve J, Scherr PA and Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology, 2013. Published online before print February 6th, 2013 (DOI:
  8. Vatanabe, I. P., Manzine, P. R., Cominetti, M. R. 2020. Historic concepts of dementia and Alzheimer’s disease: From ancient times to the present. Rev Neurol, 176, 140–147.
  9. Gale, S. A., Acar, D., Daffner, K. R. 2018. Dementia. Am J Med, 131(10), 1161-1169.
  10. Alzheimer’s Disease International, World Health Organization (WHO) Dementia: a public health priority, 2012.
  11. Dening, T., Sandilyan, M. B. 2015. Dementia: definitions and types. Nurs Stand, 29, 37–    42.
  12. Karantzoulis, S., Galvin, J. E. 2011. Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother, 1579-1591.
  13. Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., Jones, E. 2011. Alzheimer’s disease. Lancet, 377, 1019–1031.
  14. Wang, J., Gu, B. J., Masters, C. L., Wang, Y. J. 2017. A systemic view of Alzheimer disease - Insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol, 13, 612-313.
  15. Jia, Y., Nie, K., Li, J., Liang, X., Zhang, X. 2016. Identification of therapeutic targets for Alzheimer’s disease via differentially expressed gene and weighted gene co-expression network analyses. Mol Med Rep, 14, 4844–4848.
  16. Moradifard, S., Hoseinbeyki, M., Ganji, S. M., Minuchehr, Z. 2018. Analysis of microRNA and Gene Expression Profiles in Alzheimer’s Disease: A Meta-Analysis Approach. Sci. Rep, 8(4767).
  17. Howes, M. J. R., Perry, E. 2011. The role of phytochemicals in the treatment and prevention of dementia. Drugs and Aging, 28, 439–468.
  18. Rodda, J., Carter, J. 2012. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ, 344:e2986.
  19. Yiannopoulou, K. G., Papageorgiou, S. G. 2013. Current and future treatments for  
  20. Huang, D. W., Sherman, B. T., Lempicki, R. A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4, 44–57.
  21. Mudunuri, U., Che, A., Yi, M., Stephens, R. M. 2009. bioDBnet: The biological database network. Bioinformatics, 25, 555–556.
  22. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. 2000. The Protein Data Bank. Nucleic Acids Res, 28 235–242.
  23. U.S. Department of Agriculture, Agricultural Research Service. 1992-2016. Dr. Duke's Phytochemical and Ethnobotanical Databases. Home Page, http://phytochem.nal.usda.gov/ http://dx.doi.org/10.15482/USDA.ADC/123927
  24. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., Bolton, E. E. 2019. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res, 47(D1), 11021009.
  25. Allinger, N. L., Yuh, Y. H., Lii, J. H. 1989. Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1. J Am Chem Soc, 111(23), 85518556.
  26. Hockney, R. W., Goel, S. P., Eastwood, J. W. 1974. Quiet high-resolution computer models of a plasma. J Comput Phys, 14, 148–158.
  27. Allouche, A. 2012. Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. J Comput Chem, 32, 174–182.
  28. Valentini, G., Maggi, M., Pey, A. L. 2013. Protein stability, folding and misfolding in human PGK1 deficiency. Biomolecules, 3(4), 1030-1052.
  29. Hipkiss, A. R. 2019. Aging, Alzheimer’s disease and dysfunctional glycolysis; Similar effects of too much and too little. Aging Dis, 10, 1328–1331.
  30. Peng, Y. S., Tang, C. W., Peng, Y. Y., Chang, H., Chen, C. L., Guo, S. L., Wu, L. C., Huang, M. C., Lee, H. C. 2020. Comparative functional genomic analysis of Alzheimer’s affected and naturally aging brains. PeerJ, 8:e8682.

Alzheimer's disease (AD), a progressive brain disorder, is the most common form of dementia, affecting memory, thought, and behavior. Despite extensive research, effective therapeutic treatments for AD and dementia remain elusive. This study analyzed select transcriptomic datasets to identify disease-associated proteins meeting specific criteria. We then docked these proteins with four existing AD drugs (Donepezil, Galantamine, Memantine, and Rivastigmine) and plant-derived actives from Thymus cilicius, Melissa officinalis, Salvia sclarea, Linum usitatissimum, and Curcuma longa. Notably, binding energy values for mutant proteins differed significantly from wild-type proteins, particularly in the MET proto-oncogene (PDB ID: 3ZXZ). Moreover, plant-derived actives exhibited higher relative stability values when docked with wild-type proteins compared to conventional drugs. Our findings suggest Alpha-Muurolene, Alpha-Atlantone, Alpha- Cadinene, Beta-Bourbonene, Beta-Cubebene, and Germacrene-D as promising alternative therapeutic candidates for Alzheimer's disease.[1,2,3,11,12,13]

Keywords : Alzheimer’s Disease, Dementia, Serotonergic Receptors, Auto Dock Vina.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe