Authors :
Onuh Matthew Ijiga; Nonso Okika; Semirat Abidemi Balogun; Lawrence Anebi Enyejo; Ogboji James Agbo
Volume/Issue :
Volume 10 - 2025, Issue 7 - July
Google Scholar :
https://tinyurl.com/s63twyhz
DOI :
https://doi.org/10.38124/ijisrt/25jul392
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Insider threats remain one of the most challenging cybersecurity concerns for enterprise environments,
particularly in distributed systems where sensitive data is stored and processed using SQL-based infrastructures.
Conventional centralized detection methods often fail to scale securely across multi-tenant architectures, leading to privacy
violations, delayed response times, and limited contextual awareness. This review explores the integration of federated
learning (FL) frameworks for insider threat detection in SQL-based distributed enterprise settings. It evaluates the
effectiveness of FL in maintaining data locality while training shared threat models collaboratively, thereby mitigating data
exfiltration risks and privacy breaches. We analyze existing federated learning architectures—cross-device, cross-silo, and
hierarchical FL—focusing on their suitability, scalability, security guarantees, and resource constraints in enterprise-grade
SQL ecosystems. Furthermore, the paper identifies challenges related to data heterogeneity, model poisoning, latency, and
differential privacy enforcement, and discusses emerging solutions such as blockchain integration and secure aggregation
protocols. The study provides critical insights and design considerations for deploying privacy-preserving, decentralized
threat detection systems in real-world enterprise contexts.
Keywords :
Federated Learning, Insider Threat Detection, Distributed SQL Databases, Enterprise Security, Privacy-Preserving Machine Learning.
References :
- Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep learning with differential privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 308–318. https://doi.org/10.1145/2976749.2978318
- Abiola, O. B. & Ijiga, M. O. (2025), Implementing Dynamic Confidential Computing for Continuous Cloud Security Posture Monitoring to Develop a Zero Trust-Based Threat Mitigation Model. International Journal of Innovative Science and Research Technology (IJISRT) IJISRT25MAY587, 69-83. DOI: 10.38124/ijisrt/25may587.https://www.ijisrt.com/implementing-dynamic-confidential-computing-for-continuous-cloud-security-posture-monitoring-to-develop-a-zero-trustbased-threat-mitigation-model
- Acar, A., Aksu, H., Uluagac, A. S., & Conti, M. (2021). A survey on homomorphic encryption schemes: Theory and implementation. ACM Computing Surveys (CSUR), 54(6), 1–35. https://doi.org/10.1145/3431920
- Aledhari, M., Razzak, R., Hussain, F. K., & Alazab, M. (2020). Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access, 8, 140699–140725. https://doi.org/10.1109/ACCESS.2020.3013541
- Atalor, S. I. (2019). Federated Learning Architectures for Predicting Adverse Drug Events in Oncology Without Compromising Patient Privacy ICONIC RESEARCH AND ENGINEERING JOURNALS JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880
- Atalor, S. I. (2022). Data-Driven Cheminformatics Models for Predicting Bioactivity of Natural Compounds in Oncology. International Journal of Scientific Research and Modern Technology, 1(1), 65–76. https://doi.org/10.38124/ijsrmt.v1i1.496
- Atalor, S. I., Ijiga, O. M., & Enyejo, J. O. (2023). Harnessing Quantum Molecular Simulation for Accelerated Cancer Drug Screening. International Journal of Scientific Research and Modern Technology, 2(1), 1–18. https://doi.org/10.38124/ijsrmt.v2i1.502
- Ayoola, V. B., Ugoaghalam, U. J., Idoko P. I, Ijiga, O. M & Olola, T. M. (2024). Effectiveness of social engineering awareness training in mitigating spear phishing risks in financial institutions from a cybersecurity perspective. Global Journal of Engineering and Technology Advances, 2024, 20(03), 094–117. https://gjeta.com/content/effectiveness-social-engineering-awareness-training-mitigating-spear-phishing-risks
- Azaria, A., Richardson, A., & Brooks, J. (2018). Insider threat detection using supervised learning algorithms on human-behavior data. Journal of Cybersecurity and Privacy, 1(1), 18–35. https://doi.org/10.3390/jcp1010002
- Beekhuizen, J., & De Weerdt, J. (2022). Federated process mining in SQL environments: Architecture and use cases. Information Systems, 108, 102054. https://doi.org/10.1016/j.is.2022.102054
- Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., ... & Ramage, D. (2019). Towards federated learning at scale: System design. Proceedings of the 2nd SysML Conference. https://arxiv.org/abs/1902.01046
- Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., ... & Seth, K. (2017). Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp. 1175–1191). https://doi.org/10.1145/3133956.3133982
- Brdiczka, O., Liu, J., Price, B., Shen, J., Patil, A., Chow, R., ... & Bart, E. (2012). Proactive insider threat detection through graph learning and psychological context. Proceedings of the IEEE Symposium on Security and Privacy Workshops, 142–149. https://doi.org/10.1109/SPW.2012.28
- Cardenas, A. A., Amin, S., & Sastry, S. (2008). Research challenges for the security of control systems. Proceedings of the 3rd USENIX Workshop on Hot Topics in Security (HotSec). https://www.usenix.org/legacy/event/hotsec08/tech/full_papers/cardenas/cardenas.pdf
- Chen, M., Ma, Y., Hao, Y., & Wang, Y. (2022). Federated transfer learning for secure enterprise applications. IEEE Transactions on Services Computing, 15(4), 2035–2047. https://doi.org/10.1109/TSC.2020.3007470
- Chen, Y., Sun, X., Zhang, H., & Guo, L. (2020). FLEX: An efficient federated learning execution system for data-intensive SQL queries. IEEE Transactions on Knowledge and Data Engineering, 33(7), 2397–2411. https://doi.org/10.1109/TKDE.2020.2988394
- Chen, Y., Zhang, X., Liu, H., & Wang, S. (2021). A survey on federated learning for cyber security: Concepts, applications, and challenges. IEEE Transactions on Industrial Informatics, 17(9), 6230–6245. https://doi.org/10.1109/TII.2021.3067490
- Cole, E., & Ring, S. (2006). Insider Threat: Protecting the Enterprise from Sabotage, Spying, and Theft. Syngress. https://scholar.google.com/scholar_lookup?title=Insider%20Threat%3A%20Protecting%20the%20Enterprise
- Eberle, W., & Holder, L. B. (2009). Insider threat detection using graph-based approaches. Journal of Applied Security Research, 4(1), 32–81. https://doi.org/10.1080/19361610802685719
- Eguagie, M. O., Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Okafor, F. C. & Onwusi, C. N. (2025). Geochemical and Mineralogical Characteristics of Deep Porphyry Systems: Implications for Exploration Using ASTER. International Journal of Scientific Research in Civil Engineering. 2025 | IJSRCE | Volume 9 | Issue 1 | ISSN : 2456-6667. doi : https://doi.org/10.32628/IJSRCE25911
- Fallah, A., Mokhtari, A., & Ozdaglar, A. (2020). Personalized federated learning: A meta-learning approach. Advances in Neural Information Processing Systems (NeurIPS), 33, 12230–12242. https://arxiv.org/abs/2002.07948
- Garfinkel, S. L. (2014). De-identification of personal information. NIST IR 8053. https://doi.org/10.6028/NIST.IR.8053
- George, M. B., Ijiga, M. O.& Adeyemi, O. (2025). Enhancing Wildfire Prevention and Grassland Burning Management with Synthetic Data Generation Algorithms for Predictive Fire Danger Index Modeling, International Journal of Innovative Science and Research Technology ISSN No:-2456-2165 Volume 10, Issue 3, https://doi.org/10.38124/ijisrt/25mar1859
- Geyer, R. C., Klein, T., & Nabi, M. (2017). Differentially private federated learning: A client level perspective. arXiv preprint arXiv:1712.07557. https://arxiv.org/abs/1712.07557
- Greitzer, F. L., Kangas, L. J., Noonan, C. F., Brown, C. E., & Ferryman, T. A. (2013). Psychosocial modeling of insider threat risk based on behavioral and word use analysis. Information Systems Frontiers, 15(1), 121–135. https://doi.org/10.1007/s10796-012-9333-2
- Hitaj, B., Ateniese, G., & Perez-Cruz, F. (2017). Deep models under the GAN: Information leakage from collaborative deep learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 603–618. https://doi.org/10.1145/3133956.3134012
- Idoko, I. P., Ijiga, O. M., Agbo, D. O., Abutu, E. P., Ezebuka, C. I., & Umama, E. E. (2024). Comparative analysis of Internet of Things (IOT) implementation: A case study of Ghana and the USA-vision, architectural elements, and future directions. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 180-199.
- Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power generation: The vital role of power electronics in California's renewable energy transformation. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 274-293.
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Ileanaju, S. (2024). Harmonizing the voices of AI: Exploring generative music models, voice cloning, and voice transfer for creative expression
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. *Global Journal of Engineering and Technology Advances*, 19(01), 006-036.
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the potential of Elon Musk's proposed quantum AI: A comprehensive analysis and implications. *Global Journal of Engineering and Technology Advances*, 18(3), 048-065.
- Idoko, I. P., Ijiga, O. M., Harry, K. D., Ezebuka, C. C., Ukatu, I. E., & Peace, A. E. (2024). Renewable energy policies: A comparative analysis of Nigeria and the USA.
- Ihimoyan, M. K., Ibokette, A. I., Olumide, F. O., Ijiga, O. M., & Ajayi, A. A. (2024). The Role of AI-Enabled Digital Twins in Managing Financial Data Risks for Small-Scale Business Projects in the United States. International Journal of Scientific Research and Modern Technology, 3(6), 12–40. https://doi.org/10.5281/zenodo.14598498
- Ijiga, M. O., Olarinoye, H. S., Yeboah, F. A. B. & Okolo, J. N. (2025). Integrating Behavioral Science and Cyber Threat Intelligence (CTI) to Counter Advanced Persistent Threats (APTs) and Reduce Human-Enabled Security Breaches. International Journal of Scientific Research and Modern Technology, 4(3), 1–15. https://doi.org/10.38124/ijsrmt.v4i3.376
- Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. Open Access Research Journals. Volume 13, Issue. https://doi.org/10.53022/oarjst.2024.11.1.0060I
- Imoh, P. O. (2023). Impact of Gut Microbiota Modulation on Autism Related Behavioral Outcomes via Metabolomic and Microbiome-Targeted Therapies International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 2, Issue 8, 2023 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494
- Kairouz, P., McMahan, H. B., & Ramage, D. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2), 1–210. https://doi.org/10.1561/2200000083
- Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2), 1–210. https://doi.org/10.1561/2200000083
- Kent, K. & Souppaya, M. (2006). Guide to computer security log management. NIST Special Publication 800-92. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-92.pdf
- Latifa Albshaier (2025). Federated Learning Workflow with Local Model Training and Centralized Global Model Aggregation. Retrieved from: https://www.mdpi.com/2079-9292/14/5/1019
- Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
- Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2, 429–450. https://proceedings.mlsys.org/paper/2020/file/38a0d7d107a79607e3005b43c301e149-Paper.pdf
- Lin, T., Long, G., Wang, T., Yao, L., & Zhang, C. (2020). Federated learning in distributed SQL systems: An architectural review. IEEE Internet of Things Journal, 7(9), 8450–8461. https://doi.org/10.1109/JIOT.2020.2998883
- Liu, Y., Kang, Y., Zhang, X., & Yang, Q. (2020). Federated forest: Enabling decision tree-based analytics in federated learning. IEEE Transactions on Big Data, 6(3), 45–56. https://doi.org/10.1109/TBDATA.2020.2980738
- Liu, Y., Zhang, Y., Zhang, Y., Fan, L., Tan, Y. A., & Ren, K. (2020). Secure federated transfer learning. IEEE Transactions on Big Data, 6(3), 344–356. https://doi.org/10.1109/TBDATA.2020.2966185
- Manuel, H. N. N., Adeoye, T. O., Idoko, I. P., Akpa, F. A., Ijiga, O. M., & Igbede, M. A. (2024). Optimizing passive solar design in Texas green buildings by integrating sustainable architectural features for maximum energy efficiency. *Magna Scientia Advanced Research and Reviews*, 11(01), 235-261. https://doi.org/10.30574/msarr.2024.11.1.0089
- McMahan, H. B., Moore, E., Ramage, D., & Hampson, S. (2017). Communication-efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 1273–1282. https://proceedings.mlr.press/v54/mcmahan17a.html
- MITRE Corporation. (2019). ATT&CK for Enterprise. MITRE ATT&CK Knowledge Base. https://attack.mitre.org
- Mohri, M., Sivek, G., & Suresh, A. T. (2019). Agnostic federated learning. In Proceedings of the 36th International Conference on Machine Learning (ICML), 97, 4615–4625. https://proceedings.mlr.press/v97/mohri19a/mohri19a.pdf
- Nurse, J. R. C., Agrafiotis, I., Goldsmith, M., & Creese, S. (2014). A threat taxonomy for insider attacks. Proceedings of the 11th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA), 214–235. https://doi.org/10.1007/978-3-319-08509-8_11
- Nwatuzie, G. A., Ijiga, O. M., Idoko, I. P., Enyejo, L. A. & Ali, E. O. (2025). Design and Evaluation of a User-Centric Cryptographic Model Leveraging Hybrid Algorithms for Secure Cloud Storage and Data Integrity. American Journal of Innovation in Science and Engineering (AJISE). Volume 4 Issue 1, SSN: 2158-7205 https://doi.org/10.54536/ajise.v4i2.4482
- Okeke, R. O., Ibokette, A. I., Ijiga, O. M., Enyejo, L. A., Ebiega, G. I., & Olumubo, O. M. (2024). The reliability assessment of power transformers. *Engineering Science & Technology Journal*, 5(4), 1149-1172.
- Ononiwu, M., Azonuche, T. I., Okoh, O. F.. & Enyejo, J. O. (2023). Machine Learning Approaches for Fraud Detection and Risk Assessment in Mobile Banking Applications and Fintech Solutions International Journal of Scientific Research in Science, Engineering and Technology Volume 10, Issue 4 doi : https://doi.org/10.32628/IJSRSET
- Oyebanji, O. S., Apampa, A. R., Idoko, P. I., Babalola, A., Ijiga, O. M., Afolabi, O. & Michael, C. I. (2024). Enhancing breast cancer detection accuracy through transfer learning: A case study using efficient net. World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 285–318. https://wjaets.com/content/enhancing-breast-cancer-detection-accuracy-through-transfer-learning-case-study-using
- Roba H. Alamir, Ayman Noor, Hanan Almukhalfi, Reham Almukhlifi and Talal H. Noor (2025). SecFedDNN: A Secure Federated Deep Learning Framework for Edge–Cloud Environments. Retrieved from: https://www.mdpi.com/2079-8954/13/6/463
- Salem, M. B., Hershkop, S., & Stolfo, S. J. (2008). A survey of insider attack detection research. Recent Advances in Intrusion Detection, 69–90. https://doi.org/10.1007/978-3-540-87403-4_5
- Shokri, R., & Shmatikov, V. (2015). Privacy-preserving deep learning. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 1310–1321. https://doi.org/10.1145/2810103.2813687
- So, J., Smith, V., & Talwalkar, A. (2021). Evaluating the communication efficiency of federated learning. IEEE Transactions on Network and Service Management, 18(1), 5–20. https://doi.org/10.1109/TNSM.2021.3051275
- Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. IEEE Symposium on Security and Privacy, 305–316. https://doi.org/10.1109/SP.2010.25
- Thakkar, H., Niu, M., & Pedersen, T. B. (2021). VIRTUO: A virtualization framework for federated OLAP over SQL-based data lakes. Proceedings of the VLDB Endowment, 14(10), 1909–1921. https://doi.org/10.14778/3476311.3476318
- Truex, S., Liu, L., Chow, K.-H., Gursoy, M. E., & Yu, L. (2019). A hybrid privacy-preserving framework for federated learning. Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, 1–11. https://doi.org/10.1145/3338501.3357370
- Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., & Robinson, S. (2017). Deep learning for unsupervised insider threat detection in structured cybersecurity data streams. Proceedings of the AAAI Workshops, WS-17-01. https://arxiv.org/abs/1710.00811
- Wang, X., Han, Y., Wang, C., & Xu, H. (2022). Tackling non-IID data in federated learning: A unified perspective. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2940–2953. https://doi.org/10.1109/TNNLS.2021.3062373
- Xu, J., Gursoy, M. E., & Velipasalar, S. (2020). Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15, 3454–3469. https://doi.org/10.1109/TIFS.2020.3028705
- Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 1–19. https://doi.org/10.1145/3298981
- Zhang, Y., & Wang, J. (2021). Addressing data skew and schema variation in federated SQL processing. VLDB Endowment, 14(12), 3141–3154. https://doi.org/10.14778/3476311.3476313
Insider threats remain one of the most challenging cybersecurity concerns for enterprise environments,
particularly in distributed systems where sensitive data is stored and processed using SQL-based infrastructures.
Conventional centralized detection methods often fail to scale securely across multi-tenant architectures, leading to privacy
violations, delayed response times, and limited contextual awareness. This review explores the integration of federated
learning (FL) frameworks for insider threat detection in SQL-based distributed enterprise settings. It evaluates the
effectiveness of FL in maintaining data locality while training shared threat models collaboratively, thereby mitigating data
exfiltration risks and privacy breaches. We analyze existing federated learning architectures—cross-device, cross-silo, and
hierarchical FL—focusing on their suitability, scalability, security guarantees, and resource constraints in enterprise-grade
SQL ecosystems. Furthermore, the paper identifies challenges related to data heterogeneity, model poisoning, latency, and
differential privacy enforcement, and discusses emerging solutions such as blockchain integration and secure aggregation
protocols. The study provides critical insights and design considerations for deploying privacy-preserving, decentralized
threat detection systems in real-world enterprise contexts.
Keywords :
Federated Learning, Insider Threat Detection, Distributed SQL Databases, Enterprise Security, Privacy-Preserving Machine Learning.