A Comprehensive Review of Federated Learning Architectures for Insider Threat Detection in Distributed SQL-Based Enterprise Environments


Authors : Onuh Matthew Ijiga; Nonso Okika; Semirat Abidemi Balogun; Lawrence Anebi Enyejo; Ogboji James Agbo

Volume/Issue : Volume 10 - 2025, Issue 7 - July


Google Scholar : https://tinyurl.com/s63twyhz

DOI : https://doi.org/10.38124/ijisrt/25jul392

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : Insider threats remain one of the most challenging cybersecurity concerns for enterprise environments, particularly in distributed systems where sensitive data is stored and processed using SQL-based infrastructures. Conventional centralized detection methods often fail to scale securely across multi-tenant architectures, leading to privacy violations, delayed response times, and limited contextual awareness. This review explores the integration of federated learning (FL) frameworks for insider threat detection in SQL-based distributed enterprise settings. It evaluates the effectiveness of FL in maintaining data locality while training shared threat models collaboratively, thereby mitigating data exfiltration risks and privacy breaches. We analyze existing federated learning architectures—cross-device, cross-silo, and hierarchical FL—focusing on their suitability, scalability, security guarantees, and resource constraints in enterprise-grade SQL ecosystems. Furthermore, the paper identifies challenges related to data heterogeneity, model poisoning, latency, and differential privacy enforcement, and discusses emerging solutions such as blockchain integration and secure aggregation protocols. The study provides critical insights and design considerations for deploying privacy-preserving, decentralized threat detection systems in real-world enterprise contexts.

Keywords : Federated Learning, Insider Threat Detection, Distributed SQL Databases, Enterprise Security, Privacy-Preserving Machine Learning.

References :

  1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep learning with differential privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 308–318. https://doi.org/10.1145/2976749.2978318
  2. Abiola, O. B. & Ijiga, M. O. (2025), Implementing Dynamic Confidential Computing for Continuous Cloud Security Posture Monitoring to Develop a Zero Trust-Based Threat Mitigation Model. International Journal of Innovative Science and Research Technology (IJISRT) IJISRT25MAY587, 69-83. DOI: 10.38124/ijisrt/25may587.https://www.ijisrt.com/implementing-dynamic-confidential-computing-for-continuous-cloud-security-posture-monitoring-to-develop-a-zero-trustbased-threat-mitigation-model
  3. Acar, A., Aksu, H., Uluagac, A. S., & Conti, M. (2021). A survey on homomorphic encryption schemes: Theory and implementation. ACM Computing Surveys (CSUR), 54(6), 1–35. https://doi.org/10.1145/3431920
  4. Aledhari, M., Razzak, R., Hussain, F. K., & Alazab, M. (2020). Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access, 8, 140699–140725. https://doi.org/10.1109/ACCESS.2020.3013541
  5. Atalor, S. I. (2019). Federated Learning Architectures for Predicting Adverse Drug Events in Oncology Without Compromising Patient Privacy ICONIC RESEARCH AND ENGINEERING JOURNALS JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880
  6. Atalor, S. I. (2022). Data-Driven Cheminformatics Models for Predicting Bioactivity of Natural Compounds in Oncology. International Journal of Scientific Research and Modern Technology, 1(1), 65–76. https://doi.org/10.38124/ijsrmt.v1i1.496
  7. Atalor, S. I., Ijiga, O. M., & Enyejo, J. O. (2023). Harnessing Quantum Molecular Simulation for Accelerated Cancer Drug Screening. International Journal of Scientific Research and Modern Technology, 2(1), 1–18. https://doi.org/10.38124/ijsrmt.v2i1.502
  8. Ayoola, V. B., Ugoaghalam, U. J., Idoko P. I,  Ijiga, O. M & Olola, T. M. (2024). Effectiveness of social engineering awareness training in mitigating spear phishing risks in financial institutions from a cybersecurity perspective. Global Journal of Engineering and Technology Advances, 2024, 20(03), 094–117. https://gjeta.com/content/effectiveness-social-engineering-awareness-training-mitigating-spear-phishing-risks
  9. Azaria, A., Richardson, A., & Brooks, J. (2018). Insider threat detection using supervised learning algorithms on human-behavior data. Journal of Cybersecurity and Privacy, 1(1), 18–35. https://doi.org/10.3390/jcp1010002
  10. Beekhuizen, J., & De Weerdt, J. (2022). Federated process mining in SQL environments: Architecture and use cases. Information Systems, 108, 102054. https://doi.org/10.1016/j.is.2022.102054
  11. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., ... & Ramage, D. (2019). Towards federated learning at scale: System design. Proceedings of the 2nd SysML Conference. https://arxiv.org/abs/1902.01046
  12. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., ... & Seth, K. (2017). Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp. 1175–1191). https://doi.org/10.1145/3133956.3133982
  13. Brdiczka, O., Liu, J., Price, B., Shen, J., Patil, A., Chow, R., ... & Bart, E. (2012). Proactive insider threat detection through graph learning and psychological context. Proceedings of the IEEE Symposium on Security and Privacy Workshops, 142–149. https://doi.org/10.1109/SPW.2012.28
  14. Cardenas, A. A., Amin, S., & Sastry, S. (2008). Research challenges for the security of control systems. Proceedings of the 3rd USENIX Workshop on Hot Topics in Security (HotSec). https://www.usenix.org/legacy/event/hotsec08/tech/full_papers/cardenas/cardenas.pdf
  15. Chen, M., Ma, Y., Hao, Y., & Wang, Y. (2022). Federated transfer learning for secure enterprise applications. IEEE Transactions on Services Computing, 15(4), 2035–2047. https://doi.org/10.1109/TSC.2020.3007470
  16. Chen, Y., Sun, X., Zhang, H., & Guo, L. (2020). FLEX: An efficient federated learning execution system for data-intensive SQL queries. IEEE Transactions on Knowledge and Data Engineering, 33(7), 2397–2411. https://doi.org/10.1109/TKDE.2020.2988394
  17. Chen, Y., Zhang, X., Liu, H., & Wang, S. (2021). A survey on federated learning for cyber security: Concepts, applications, and challenges. IEEE Transactions on Industrial Informatics, 17(9), 6230–6245. https://doi.org/10.1109/TII.2021.3067490
  18. Cole, E., & Ring, S. (2006). Insider Threat: Protecting the Enterprise from Sabotage, Spying, and Theft. Syngress. https://scholar.google.com/scholar_lookup?title=Insider%20Threat%3A%20Protecting%20the%20Enterprise
  19. Eberle, W., & Holder, L. B. (2009). Insider threat detection using graph-based approaches. Journal of Applied Security Research, 4(1), 32–81. https://doi.org/10.1080/19361610802685719
  20. Eguagie, M. O., Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Okafor, F. C. & Onwusi, C. N. (2025). Geochemical and Mineralogical Characteristics of Deep Porphyry Systems: Implications for Exploration Using ASTER. International Journal of Scientific Research in Civil Engineering.  2025 | IJSRCE | Volume 9 | Issue 1 | ISSN : 2456-6667. doi : https://doi.org/10.32628/IJSRCE25911 
  21. Fallah, A., Mokhtari, A., & Ozdaglar, A. (2020). Personalized federated learning: A meta-learning approach. Advances in Neural Information Processing Systems (NeurIPS), 33, 12230–12242. https://arxiv.org/abs/2002.07948
  22. Garfinkel, S. L. (2014). De-identification of personal information. NIST IR 8053. https://doi.org/10.6028/NIST.IR.8053
  23. George, M. B., Ijiga, M. O.& Adeyemi, O. (2025). Enhancing Wildfire Prevention and Grassland Burning Management with Synthetic Data Generation Algorithms for Predictive Fire Danger Index Modeling,    International Journal of Innovative Science and Research Technology ISSN No:-2456-2165 Volume 10, Issue 3, https://doi.org/10.38124/ijisrt/25mar1859
  24. Geyer, R. C., Klein, T., & Nabi, M. (2017). Differentially private federated learning: A client level perspective. arXiv preprint arXiv:1712.07557. https://arxiv.org/abs/1712.07557
  25. Greitzer, F. L., Kangas, L. J., Noonan, C. F., Brown, C. E., & Ferryman, T. A. (2013). Psychosocial modeling of insider threat risk based on behavioral and word use analysis. Information Systems Frontiers, 15(1), 121–135. https://doi.org/10.1007/s10796-012-9333-2
  26. Hitaj, B., Ateniese, G., & Perez-Cruz, F. (2017). Deep models under the GAN: Information leakage from collaborative deep learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 603–618. https://doi.org/10.1145/3133956.3134012
  27. Idoko, I. P., Ijiga, O. M., Agbo, D. O., Abutu, E. P., Ezebuka, C. I., & Umama, E. E. (2024). Comparative analysis of Internet of Things (IOT) implementation: A case study of Ghana and the USA-vision, architectural elements, and future directions. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 180-199.
  28. Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power generation: The vital role of power electronics in California's renewable energy transformation. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 274-293.
  29. Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Ileanaju, S. (2024). Harmonizing the voices of AI: Exploring generative music models, voice cloning, and voice transfer for creative expression
  30. Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. *Global Journal of Engineering and Technology Advances*, 19(01), 006-036.
  31. Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the potential of Elon Musk's proposed quantum AI: A comprehensive analysis and implications. *Global Journal of Engineering and Technology Advances*, 18(3), 048-065.
  32. Idoko, I. P., Ijiga, O. M., Harry, K. D., Ezebuka, C. C., Ukatu, I. E., & Peace, A. E. (2024). Renewable energy policies: A comparative analysis of Nigeria and the USA.
  33. Ihimoyan, M. K., Ibokette, A. I., Olumide, F. O., Ijiga, O. M., & Ajayi, A. A. (2024). The Role of AI-Enabled Digital Twins in Managing Financial Data Risks for Small-Scale Business Projects in the United States. International Journal of Scientific Research and Modern Technology, 3(6), 12–40. https://doi.org/10.5281/zenodo.14598498
  34. Ijiga, M. O., Olarinoye, H. S., Yeboah, F. A. B. & Okolo, J. N. (2025). Integrating Behavioral Science and Cyber Threat Intelligence (CTI) to Counter Advanced Persistent Threats (APTs) and Reduce Human-Enabled Security Breaches. International Journal of Scientific Research and Modern Technology, 4(3), 1–15. https://doi.org/10.38124/ijsrmt.v4i3.376
  35. Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. Open Access Research Journals. Volume 13, Issue.  https://doi.org/10.53022/oarjst.2024.11.1.0060I
  36. Imoh, P. O. (2023). Impact of Gut Microbiota Modulation on Autism Related Behavioral Outcomes via Metabolomic and Microbiome-Targeted Therapies International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 2, Issue 8, 2023 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494
  37. Kairouz, P., McMahan, H. B., & Ramage, D. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2), 1–210. https://doi.org/10.1561/2200000083
  38. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2), 1–210. https://doi.org/10.1561/2200000083
  39. Kent, K. & Souppaya, M. (2006). Guide to computer security log management. NIST Special Publication 800-92. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-92.pdf
  40. Latifa Albshaier (2025). Federated Learning Workflow with Local Model Training and Centralized Global Model Aggregation. Retrieved from: https://www.mdpi.com/2079-9292/14/5/1019
  41. Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
  42. Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2, 429–450. https://proceedings.mlsys.org/paper/2020/file/38a0d7d107a79607e3005b43c301e149-Paper.pdf
  43. Lin, T., Long, G., Wang, T., Yao, L., & Zhang, C. (2020). Federated learning in distributed SQL systems: An architectural review. IEEE Internet of Things Journal, 7(9), 8450–8461. https://doi.org/10.1109/JIOT.2020.2998883
  44. Liu, Y., Kang, Y., Zhang, X., & Yang, Q. (2020). Federated forest: Enabling decision tree-based analytics in federated learning. IEEE Transactions on Big Data, 6(3), 45–56. https://doi.org/10.1109/TBDATA.2020.2980738
  45. Liu, Y., Zhang, Y., Zhang, Y., Fan, L., Tan, Y. A., & Ren, K. (2020). Secure federated transfer learning. IEEE Transactions on Big Data, 6(3), 344–356. https://doi.org/10.1109/TBDATA.2020.2966185
  46. Manuel, H. N. N., Adeoye, T. O., Idoko, I. P., Akpa, F. A., Ijiga, O. M., & Igbede, M. A. (2024). Optimizing passive solar design in Texas green buildings by integrating sustainable architectural features for maximum energy efficiency. *Magna Scientia Advanced Research and Reviews*, 11(01), 235-261. https://doi.org/10.30574/msarr.2024.11.1.0089
  47. McMahan, H. B., Moore, E., Ramage, D., & Hampson, S. (2017). Communication-efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 1273–1282. https://proceedings.mlr.press/v54/mcmahan17a.html
  48. MITRE Corporation. (2019). ATT&CK for Enterprise. MITRE ATT&CK Knowledge Base. https://attack.mitre.org
  49. Mohri, M., Sivek, G., & Suresh, A. T. (2019). Agnostic federated learning. In Proceedings of the 36th International Conference on Machine Learning (ICML), 97, 4615–4625. https://proceedings.mlr.press/v97/mohri19a/mohri19a.pdf
  50. Nurse, J. R. C., Agrafiotis, I., Goldsmith, M., & Creese, S. (2014). A threat taxonomy for insider attacks. Proceedings of the 11th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA), 214–235. https://doi.org/10.1007/978-3-319-08509-8_11
  51. Nwatuzie, G. A., Ijiga, O. M., Idoko, I. P., Enyejo, L. A. & Ali, E. O. (2025).  Design and Evaluation of a User-Centric Cryptographic Model Leveraging Hybrid Algorithms for Secure Cloud Storage and Data Integrity. American Journal of Innovation in Science and Engineering (AJISE).  Volume 4 Issue 1, SSN: 2158-7205  https://doi.org/10.54536/ajise.v4i2.4482
  52. Okeke, R. O., Ibokette, A. I., Ijiga, O. M., Enyejo, L. A., Ebiega, G. I., & Olumubo, O. M. (2024). The reliability assessment of power transformers. *Engineering Science & Technology Journal*, 5(4), 1149-1172.
  53. Ononiwu, M., Azonuche, T. I., Okoh, O. F.. &  Enyejo, J. O. (2023). Machine Learning Approaches for Fraud Detection and Risk Assessment in Mobile Banking Applications and Fintech Solutions International Journal of Scientific Research in Science, Engineering and Technology Volume 10, Issue 4 doi : https://doi.org/10.32628/IJSRSET
  54. Oyebanji,  O. S., Apampa, A. R., Idoko, P. I., Babalola, A.,  Ijiga, O. M.,  Afolabi, O. & Michael, C. I. (2024). Enhancing breast cancer detection accuracy through transfer learning: A case study using efficient net. World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 285–318. https://wjaets.com/content/enhancing-breast-cancer-detection-accuracy-through-transfer-learning-case-study-using
  55. Roba H. Alamir, Ayman Noor, Hanan Almukhalfi, Reham Almukhlifi and Talal H. Noor (2025). SecFedDNN: A Secure Federated Deep Learning Framework for Edge–Cloud Environments. Retrieved from: https://www.mdpi.com/2079-8954/13/6/463
  56. Salem, M. B., Hershkop, S., & Stolfo, S. J. (2008). A survey of insider attack detection research. Recent Advances in Intrusion Detection, 69–90. https://doi.org/10.1007/978-3-540-87403-4_5
  57. Shokri, R., & Shmatikov, V. (2015). Privacy-preserving deep learning. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 1310–1321. https://doi.org/10.1145/2810103.2813687
  58. So, J., Smith, V., & Talwalkar, A. (2021). Evaluating the communication efficiency of federated learning. IEEE Transactions on Network and Service Management, 18(1), 5–20. https://doi.org/10.1109/TNSM.2021.3051275
  59. Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. IEEE Symposium on Security and Privacy, 305–316. https://doi.org/10.1109/SP.2010.25
  60. Thakkar, H., Niu, M., & Pedersen, T. B. (2021). VIRTUO: A virtualization framework for federated OLAP over SQL-based data lakes. Proceedings of the VLDB Endowment, 14(10), 1909–1921. https://doi.org/10.14778/3476311.3476318
  61. Truex, S., Liu, L., Chow, K.-H., Gursoy, M. E., & Yu, L. (2019). A hybrid privacy-preserving framework for federated learning. Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, 1–11. https://doi.org/10.1145/3338501.3357370
  62. Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., & Robinson, S. (2017). Deep learning for unsupervised insider threat detection in structured cybersecurity data streams. Proceedings of the AAAI Workshops, WS-17-01. https://arxiv.org/abs/1710.00811
  63. Wang, X., Han, Y., Wang, C., & Xu, H. (2022). Tackling non-IID data in federated learning: A unified perspective. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2940–2953. https://doi.org/10.1109/TNNLS.2021.3062373
  64. Xu, J., Gursoy, M. E., & Velipasalar, S. (2020). Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15, 3454–3469. https://doi.org/10.1109/TIFS.2020.3028705
  65. Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 1–19. https://doi.org/10.1145/3298981
  66. Zhang, Y., & Wang, J. (2021). Addressing data skew and schema variation in federated SQL processing. VLDB Endowment, 14(12), 3141–3154. https://doi.org/10.14778/3476311.3476313

Insider threats remain one of the most challenging cybersecurity concerns for enterprise environments, particularly in distributed systems where sensitive data is stored and processed using SQL-based infrastructures. Conventional centralized detection methods often fail to scale securely across multi-tenant architectures, leading to privacy violations, delayed response times, and limited contextual awareness. This review explores the integration of federated learning (FL) frameworks for insider threat detection in SQL-based distributed enterprise settings. It evaluates the effectiveness of FL in maintaining data locality while training shared threat models collaboratively, thereby mitigating data exfiltration risks and privacy breaches. We analyze existing federated learning architectures—cross-device, cross-silo, and hierarchical FL—focusing on their suitability, scalability, security guarantees, and resource constraints in enterprise-grade SQL ecosystems. Furthermore, the paper identifies challenges related to data heterogeneity, model poisoning, latency, and differential privacy enforcement, and discusses emerging solutions such as blockchain integration and secure aggregation protocols. The study provides critical insights and design considerations for deploying privacy-preserving, decentralized threat detection systems in real-world enterprise contexts.

Keywords : Federated Learning, Insider Threat Detection, Distributed SQL Databases, Enterprise Security, Privacy-Preserving Machine Learning.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe