Authors :
Echezona Uzoma; Joy Onma Enyejo; Toyosi Motilola Olola
Volume/Issue :
Volume 10 - 2025, Issue 3 - March
Google Scholar :
https://tinyurl.com/ucmapd7w
Scribd :
https://tinyurl.com/ypkzsrj5
DOI :
https://doi.org/10.38124/ijisrt/25mar1970
Google Scholar
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 15 to 20 days to display the article.
Abstract :
The integration of distributed ledger technologies (DLTs) into multi-cloud environments presents a transformative
approach to addressing data integrity and transactional security challenges in modern digital infrastructures. This review
comprehensively examines the intersection of multi-cloud computing and distributed ledger systems, highlighting their
potential to provide decentralized, tamper-proof, and transparent data management solutions across diverse cloud
platforms. The paper explores key architectural frameworks, consensus mechanisms, interoperability protocols, and
cryptographic models that enable seamless integration while ensuring scalability, reliability, and enhanced security.
Furthermore, it analyzes current use cases, such as supply chain management, financial services, and healthcare, where
multi-cloud DLT integration mitigates risks of single points of failure, data breaches, and unauthorized access. By identifying
emerging trends, technological limitations, and research gaps, this review offers valuable insights into optimizing multi-
cloud DLT deployments for robust data integrity and secure transactional processes. The study underscores the growing
importance of cross-cloud blockchain interoperability and regulatory compliance in advancing secure and resilient multi-
cloud ecosystems.
Keywords :
Multi-Cloud Architecture; Distributed Ledger Technology (DLT); Data Integrity; Transactional Security; Interoperability.
References :
- Agbo, C. C., Mahmoud, Q. H., & Eklund, J. M. (2019). Blockchain Technology in Healthcare: A Systematic Review. Healthcare, 7(2), 56. https://doi.org/10.3390/healthcare7020056
- Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Enhancing Digital Identity and Financial Security in Decentralized Finance (Defi) through Zero-Knowledge Proofs (ZKPs) and Blockchain Solutions for Regulatory Compliance and Privacy. OCT 2024 |IRE Journals | Volume 8 Issue 4 | ISSN: 2456-8880
- Akindote, O., Enyejo, J. O., Awotiwon, B. O. & Ajayi, A. A. (2024). Integrating Blockchain and Homomorphic Encryption to Enhance Security and Privacy in Project Management and Combat Counterfeit Goods in Global Supply Chain Operations. International Journal of Innovative Science and Research Technology Volume 9, Issue 11, NOV. 2024, ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24NOV149.
- Akindote, O., Igba E., Awotiwon, B. O., & Otakwu, A (2024). Blockchain Integration in Critical Systems Enhancing Transparency, Efficiency, and Real-Time Data Security in Agile Project Management, Decentralized Finance (DeFi), and Cold Chain Management. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 3, Issue 11, 2024. DOI: 10.38124/ijsrmt.v3i11.107.
- Alavizadeh, A. S., Erfani, S. H., Mirabi, M., & Sahafi, A. (2023). An Efficient Distributed and Secure Algorithm for Transaction Confirmation in IOTA Using Cloud Computing. The Journal of Supercomputing, 80(3), 1491–1521. https://doi.org/10.1007/s11227-023-05525-4
- Augusto, A., Belchior, R., Correia, M., Vasconcelos, A., Zhang, L., & Hardjono, T. (2024, May). Sok: Security and privacy of blockchain interoperability. In 2024 IEEE Symposium on Security and Privacy (SP) (pp. 3840-3865). IEEE.
- Awotiwon, B. O., Enyejo, J. O., Owolabi, F. R. A., Babalola, I. N. O., & Olola, T. M. (2024). Addressing Supply Chain Inefficiencies to Enhance Competitive Advantage in Low-Cost Carriers (LCCs) through Risk Identification and Benchmarking Applied to Air Australasia’s Operational Model. World Journal of Advanced Research and Reviews, 2024, 23(03), 355–370. https://wjarr.com/content/addressing-supply-chain-inefficiencies-enhance-competitive-advantage-low-cost-carriers-lccs
- Ayoola, V. B., Ugoaghalam, U. J., Idoko P. I, Ijiga, O. M & Olola, T. M. (2024). Effectiveness of social engineering awareness training in mitigating spear phishing risks in financial institutions from a cybersecurity perspective. Global Journal of Engineering and Technology Advances, 2024, 20(03), 094–117. https://gjeta.com/content/effectiveness-social-engineering-awareness-training-mitigating-spear-phishing-risks
- Baninemeh, E., Slikker, M., Labunets, K., & Jansen, S. (2024). A Security Risk Assessment Method for Distributed Ledger Technology (DLT) based Applications: Three Industry Case Studies. arXiv preprint arXiv:2401.12358. https://arxiv.org/abs/2401.12358
- Belchior, R., Riley, L., Hardjono, T., Vasconcelos, A., & Correia, M. (2023). Do you need a distributed ledger technology interoperability solution? Distributed Ledger Technologies: Research and Practice, 2(1), 1-37.
- Belchior, R., Süßenguth, J., Feng, Q., Hardjono, T., Vasconcelos, A., & Correia, M. (2024). A brief history of blockchain interoperability. Communications of the ACM, 67(10), 62-69.
- Belchior, R., Vasconcelos, A., Correia, M., & Almeida, H. (2022). Do You Need a Distributed Ledger Technology Interoperability Solution? ACM Computing Surveys, 55(8), 1–37. https://doi.org/10.1145/3564532
- Belchior, R., Vasconcelos, A., Guerreiro, S., & Correia, M. (2021). A Survey on Blockchain Interoperability: Past, Present, and Future Trends. ACM Computing Surveys, 54(8), 1–41. https://doi.org/10.1145/3452266
- Benčić, F. M., & Podnar Žarko, I. (2018). Distributed Ledger Technology: Blockchain Compared to Directed Acyclic Graph. arXiv preprint arXiv:1804.10013. https://arxiv.org/abs/1804.10013
- Chang, Z., Liu, S., Xiong, X., Cai, Z., & Tu, G. (2021). A survey of recent advances in edge-computing-powered artificial intelligence of things. IEEE Internet of Things Journal, 8(18), 13849-13875.
- Dhokrat, J., Pulgam, N., Maktum, T., & Mane, V. (2024). A Framework for Privacy-Preserving Multiparty Computation with Homomorphic Encryption and Zero-Knowledge Proofs. Informatica, 48, 1–14. https://doi.org/10.31449/inf.v48i21.6562
- Dib, O., Brousmiche, K. L., Durand, A., Thea, E., & Hamida, E. B. (2018). Consortium Blockchains: Overview, Applications and Challenges. International Journal on Advances in Telecommunications, 11(1 & 2), 51–64. https://personales.upv.es/thinkmind/dl/journals/tele/tele_v11_n12_2018/tele_v11_n12_2018_5.pdf
- Ebenibo, L., Enyejo, J. O., Addo, G., & Olola, T. M. (2024). Evaluating the Sufficiency of the data protection act 2023 in the age of Artificial Intelligence (AI): A comparative case study of Nigeria and the USA. International Journal of Scholarly Research and Reviews, 2024, 05(01), 088–107. https://srrjournals.com/ijsrr/content/evaluating-sufficiency-data-protection-act-2023-age-artificial-intelligence-ai-comparative
- Enyejo, J. O., Adeyemi, A. F., Olola, T. M., Igba, E & Obani, O. Q. (2024). Resilience in supply chains: How technology is helping USA companies navigate disruptions. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 261–277. https://doi.org/10.30574/msarr.2024.11.2.0129
- Enyejo, J. O., Babalola, I. N. O., Owolabi, F. R. A. Adeyemi, A. F., Osam-Nunoo, G., & Ogwuche, A. O. (2024). Data-driven digital marketing and battery supply chain optimization in the battery powered aircraft industry through case studies of Rolls-Royce’s ACCEL and Airbus's E-Fan X Projects. International Journal of Scholarly Research and Reviews, 2024, 05(02), 001–020. https://doi.org/10.56781/ijsrr.2024.5.2.0045
- Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J., Awotiwon, B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains for Risk Mitigation, Optimization, and Carbon Footprint Reduction through Green Initiatives. International Journal of Innovative Science and Research Technology, Volume 9, Issue 11, November– 2024. ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24NOV1344
- Esposito, C., De Santis, A., Tortora, G., Chang, H., & Choo, K. K. R. (2018). Blockchain: A Panacea for Healthcare Cloud-Based Data Security and Privacy? IEEE Cloud Computing, 5(1), 31–37. https://doi.org/10.1109/MCC.2018.011791712
- Eze, E. (2024). Nigeria Now Faces 4,718 Cyber Attacks Weekly – Report. https://arbiterz.com/nigerians-now-face-4718-cyber-attacks-weekly-report/
- Ezeh, N. V., Batur, S. D., Oluhaiyero, Shade. Y., Abiodun, K., Nwobi, C. C., Ali, O. E., & Igba, E. (2024). Blockchain Driven Cold Chain Logistics and Decentralized Inventory Systems for Managing Post-Harvest Losses and Improving Financial Sustainability in Regional Food Hubs. International Journal of Scientific Research and Modern Technology (IJSRMT). Volume 3, Issue 9, 2024. DOI: https://doi.org/10.5281/zenodo.14874303
- Fouda, M. M., Fadlullah, Z. M., Ibrahem, M. I., & Kato, N. (2024). Privacy-Preserving Data-Driven Learning Models for Emerging Communication Networks: A Comprehensive Survey. IEEE Communications Surveys & Tutorials.
- Ghallab, A., Saif, M. H., & Mohsen, A. (2021). Data Integrity and Security in Distributed Cloud Computing—A Review. International Journal of Computer Applications, 174(30), 1–9. https://doi.org/10.5120/ijca2021921512
- Hardjono, T., & Pentland, A. (2019). Towards a Design Philosophy for Interoperable Blockchain Systems. Communications of the ACM, 62(12), 36–39. https://doi.org/10.1145/3363577
- Ibokette., A. I. Ogundare, T. O., Danquah, E. O., Anyebe, A. P., Agaba, J. A., & Olola, T. M. (2024). The impacts of emotional intelligence and IOT on operational efficiency in manufacturing: A cross-cultural analysis of Nigeria and the US. Computer Science & IT Research Journal P-ISSN: 2709-0043, E-ISSN: 2709-0051. DOI: 10.51594/csitrj.v5i8.1464
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. *Global Journal of Engineering and Technology Advances*, 19(01), 006-036.
- Igba E., Ihimoyan, M. K., Awotinwo, B., & Apampa, A. K. (2024). Integrating BERT, GPT, Prophet Algorithm, and Finance Investment Strategies for Enhanced Predictive Modeling and Trend Analysis in Blockchain Technology. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 1620-1645.https://doi.org/10.32628/CSEIT241061214
- Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I. & Enyejo, L. A. (2024). Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(01), 336–354. https://wjbphs.com/sites/default/files/WJBPHS-2024-0214.pdf
- Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf.
- Ijiga, M. O., Olarinoye, H. S., Yeboah, F. A. B. & Okolo, J. N. (2025). Integrating Behavioral Science and Cyber Threat Intelligence (CTI) to Counter Advanced Persistent Threats (APTs) and Reduce Human-Enabled Security Breaches. International Journal of Scientific Research and Modern Technology, 4(3), 1–15. https://doi.org/10.38124/ijsrmt.v4i3.376
- Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. Open Access Research Journals. Volume 13, Issue. https://doi.org/10.53022/oarjst.2024.11.1.0060
- Imran, H. A., Latif, U., Ikram, A., & Wazir, S. (2020). Multi-Cloud: A Comprehensive Review. International Journal of Advanced Computer Science and Applications, 11(10), 370–379. https://doi.org/10.14569/IJACSA.2020.0111048
- Jamshidi, P., Pahl, C., & Mendonça, N. C. (2017). Pattern‐based multi‐cloud architecture migration. Software: Practice and Experience, 47(9), 1159-1184.
- Kamble, S. S., Gunasekaran, A., & Arha, H. (2019). Understanding the influence of blockchain technology on supply chain management: A review of current literature and future research agenda. Supply Chain Management: An International Journal, 24(4), 62–84. https://doi.org/10.1108/SCM-03-2018-0148
- Kathiravelu, P., Chiesa, M., Marcos, P., Canini, M., & Veiga, L. (2018, May). Moving bits with a fleet of shared virtual routers. In 2018 IFIP Networking Conference (IFIP Networking) and Workshops (pp. 1-9). IEEE.
- Kempf, J., Nayak, S., Robert, R., Feng, J., Deshmukh, K. R., Shukla, A., Obeso Duque, A., Narendra, N., & Sjöberg, J. (2019). The Nubo Virtual Services Marketplace. arXiv preprint arXiv:1909.04934. https://arxiv.org/abs/1909.04934
- Kouicem, D. E., Bouabdallah, A., & Lakhlef, H. (2018). Internet of Things Security: A Topology-Aware Federated Learning Model for Detecting Anomalies. Future Generation Computer Systems, 87, 501–516. https://doi.org/10.1016/j.future.2018.05.020
- Li, Q., Yang, Z., Qin, X., Tao, D., Pan, H., & Huang, Y. (2022). CBFF: A cloud–blockchain fusion framework ensuring data accountability for multi-cloud environments. Journal of Systems Architecture, 124, 102436.
- Marimuthu, G. (2025). The Role of Cloud Computing and Distributed Ledger Technology in Energy Derivatives Trading. International Journal of Research in Computer Applications and Information Technology, 8(1), 2804–2819. https://doi.org/10.34218/IJRCAIT_08_01_202
- Mohankumar, R. (2025). Enhancing Blockchain, Internet of Things, and Cloud Security Through Advanced Cryptographic Techniques and Threat Mitigation Strategies. International Journal of Advanced Research in Cyber Security, 6(2), 7–14.
- Nair, R. R., Sreevidya, D., Mohan, C. R., Banerjee, J., & Chouhan, K. (2024, September). Comprehensive Approaches to Securing Multi-Cloud Architectures: Best Practices and Emerging Solutions. In 2024 7th International Conference on Contemporary Computing and Informatics (IC3I) (Vol. 7, pp. 1631-1636). IEEE.
- Nerella, H. (2023). Navigating the Multi-Cloud Maze: Benefits, Challenges, and Future Trends. ResearchGate. https://www.researchgate.net/publication/381304851_Navigating_the_Multi-Cloud_Maze_Benefits_Challenges_and_Future_Trends
- Nguyen, G. T., & Kim, K. (2018). A Survey about Consensus Algorithms Used in Blockchain. Journal of Information Processing Systems, 14(1), 101–128. https://doi.org/10.3745/JIPS.03.0099
- Novo, O. (2018). Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. IEEE Internet of Things Journal, 5(2), 1184–1195. https://doi.org/10.1109/JIOT.2018.2812239
- Nwatuzie, G. A., Ijiga, O. M., Idoko, I. P., Enyejo, L. A. & Ali, E. O. (2025). Design and Evaluation of a User-Centric Cryptographic Model Leveraging Hybrid Algorithms for Secure Cloud Storage and Data Integrity. American Journal of Innovation in Science and Engineering (AJISE). Volume 4 Issue 1, ISSN: 2158-7205 https://journals.e-palli.com/home/index.php/ajise DOI: https://doi.org/10.54536/ajise.v4i1.4482
- Oloruntoba, O. (2025). Architecting Resilient Multi-Cloud Database Systems: Distributed Ledger Technology, Fault Tolerance, and Cross-Platform Synchronization. International Journal of Research Publication and Reviews, 6(2), 2358–2376. https://doi.org/10.55248/gengpi.6.0225.0918
- Priem, R. (2020). Distributed Ledger Technology for Securities Clearing and Settlement: Benefits, Risks, and Regulatory Implications. Financial Innovation, 6(1), 11. https://doi.org/10.1186/s40854-019-0169-6SpringerOpen
- Reece, M., Lander Jr., T. E., Stoffolano, M., Sampson, A., Dykstra, J., Mittal, S., & Rastogi, N. (2023). Systemic Risk and Vulnerability Analysis of Multi-cloud Environments. arXiv preprint arXiv:2306.01862. https://arxiv.org/abs/2306.01862
- Saxena, D., Gupta, R., & Singh, A. K. (2021). A Survey and Comparative Study on Multi-Cloud Architectures: Emerging Issues and Challenges for Cloud Federation. arXiv preprint arXiv:2108.12831. https://arxiv.org/abs/2108.12831
- Tiamiyu, D., Aremu, S. O., Igba, E., Ihejirika, C. J., Adewoye, M. B. & Ajayi, A. A. (2024). Interpretable Data Analytics in Blockchain Networks Using Variational Autoencoders and Model-Agnostic Explanation Techniques for Enhanced Anomaly Detection. International Journal of Scientific Research in Science and Technology. Volume 11, Issue 6 November-December-2024. 152-183. https://doi.org/10.32628/IJSRST24116170
- Tijan, E., Aksentijević, S., Ivanić, K., & Jardas, M. (2021). Blockchain Technology Implementation in Logistics. Sustainability, 13(4), 2241. https://doi.org/10.3390/su13042241
- Uddin, M., Muzammal, M., Hameed, M. K., Javed, I. T., Alamri, B., & Crespi, N. (2021). CBCIoT: A Consensus Algorithm for Blockchain-Based IoT Applications. Applied Sciences, 11(22), 11011. https://doi.org/10.3390/app112211011
- Wang, W., Hoang, D. T., Xie, L., Hu, P., & Niyato, D. (2019). Performance Evaluation of Blockchain Systems: A Systematic Survey. IEEE Access, 7, 150327–150339. https://doi.org/10.1109/ACCESS.2019.2949514
- Xie, J., Tang, H., Huang, Y., Yu, F. R., Xie, R., Liu, J., & Liu, Y. (2019). A Survey of Blockchain Technology Applied to Smart Cities: Research Issues and Challenges. IEEE Communications Surveys & Tutorials, 21(3), 2794–2830. https://doi.org/10.1109/COMST.2019.2899617
- Xu, X., Weber, I., & Staples, M. (2019). Architecture for Blockchain Applications. In Architecture for Blockchain Applications (pp. 55–72). Springer. https://doi.org/10.1007/978-3-030-03035-3_4
- Zhang, S., & Lee, J. H. (2020). Analysis of the main consensus protocols of blockchain. ICT Express, 6(2), 93–97. https://doi.org/10.1016/j.icte.2019.08.001
- Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2018). An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. IEEE International Congress on Big Data, 557–564. https://doi.org/10.1109/BigDataCongress.2017.85
- Zhuo, X., Irresberger, F., & Bostandzic, D. (2023). Blockchain for Cross-border Payments and Financial Inclusion: The Case of Stellar Network. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4550837ResearchGate+1SSRN+1.
The integration of distributed ledger technologies (DLTs) into multi-cloud environments presents a transformative
approach to addressing data integrity and transactional security challenges in modern digital infrastructures. This review
comprehensively examines the intersection of multi-cloud computing and distributed ledger systems, highlighting their
potential to provide decentralized, tamper-proof, and transparent data management solutions across diverse cloud
platforms. The paper explores key architectural frameworks, consensus mechanisms, interoperability protocols, and
cryptographic models that enable seamless integration while ensuring scalability, reliability, and enhanced security.
Furthermore, it analyzes current use cases, such as supply chain management, financial services, and healthcare, where
multi-cloud DLT integration mitigates risks of single points of failure, data breaches, and unauthorized access. By identifying
emerging trends, technological limitations, and research gaps, this review offers valuable insights into optimizing multi-
cloud DLT deployments for robust data integrity and secure transactional processes. The study underscores the growing
importance of cross-cloud blockchain interoperability and regulatory compliance in advancing secure and resilient multi-
cloud ecosystems.
Keywords :
Multi-Cloud Architecture; Distributed Ledger Technology (DLT); Data Integrity; Transactional Security; Interoperability.