Authors :
Midhul A. K.; Greeshma Chandran; Dr. S. Sreeremya
Volume/Issue :
Volume 10 - 2025, Issue 10 - October
Google Scholar :
https://tinyurl.com/2u4rxbjn
Scribd :
https://tinyurl.com/3ku7zbnp
DOI :
https://doi.org/10.38124/ijisrt/25oct015
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Unsustainable agricultural practices and declining soil fertility have led to a notable reduction in global crop
productivity. The excessive and indiscriminate use of chemical fertilizers not only deteriorates soil health but also possess a
significant risk to human well-being. Consequently, farmers across the globe have increasingly adopted biofertilizers and
biopesticides to preserve the natural equilibrium of the soil ecosystem. Biofertilizers represent an environmentally benign
and economically viable alternative to chemical fertilizers. Their plant growth-promoting attributes are manifested through
direct mechanisms such as biological nitrogen fixation, nutrient solubilization and mobilization (notably of N, P, K, S, Zn
and Fe) and the synthesis of phytohormones including auxins, cytokinins, gibberellins and ethylene. Indirectly, plant growth-
promoting rhizobacteria (PGPR) contribute to the suppression of phytopathogens via antibiotic production, siderophore
secretion, hydrolytic enzyme activity, and the induction of systemic resistance. In contrast to conventional chemical
fertilizers, biofertilizers offer a cost-effective, sustainable, and renewable solution that ensures the long-term preservation
of soil fertility and agricultural productivity.
Keywords :
Biofertilizers, PGPR, Sustainability, Nutrient Solubilization, Soil Fertility, Biological Nitrogen Fixation.
References :
- Abd El-Lattief, E. A. (2016). Use of Azospirillum and Azobacter bacteria as biofertilizers in cereal crops: A review. Int J Res Eng Appl Sci, 6(7), 36-44.
- Afzal A, Bano A (2008) Rhizobium and phosphate solubilising bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). International Journal of Agricultural Biology 10:85– 88.
- Aggani, S. L. (2013). Development of bio-fertilizers and its future perspective. Scholars Academic Journal of Pharmacy, 2(4), 327–332. https://www.cabdirect.org/cabdirect/abstract/20133337412.
- Ahemad, M., & Kha, M. S. (2011). Assessment of plant growth promoting activities of rhizobacterium pseudomonas putida under Insecticide-Stress. Microbiology Journal, 1(2), 54–64. https://doi.org/10.3923/mj.2011.54.64.
- Allito, B., Nana, E., & Alemneh, A. (2015). Rhizobia Strain and legume genome Interaction Effects on nitrogen fixation and yield of grain legume: a review. Molecular Soil Biology. https://doi.org/10.5376/msb.2015.06.0004.
- Aloo, B. N., Tripathi, V., Makumba, B. A., & Mbega, E. R. (2022). Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1002448.
- Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00971.
- Arkhipova, T. N., Prinsen, E., Veselov, S. U., Martinenko, E. V., Melentiev, A. I., & Kudoyarova, G. R. (2007). Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil, 292(1–2), 305–315. https://doi.org/10.1007/s11104-007-9233-5.
- Arora, N. K., Tewari, S., & Singh, R. (2013). Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In Plant microbe symbiosis: Fundamentals and advances (pp. 411-449). New Delhi: Springer India.
- Askary, M., Mostajeran, A., Amooaghaei, R., & Mostajeran, M. (2009). Influence of the co-inoculation Azospirillum brasilense and Rhizobium meliloti plus 2,4-D on grain yield and N, P, K content of Triticum aestivum (cv. Baccros and Mahdavi). American-Asian-Journal of Agricultural & Environmental Sciences/American-Eurasian Journal of Agricultural & Environmental Sciences, 5(3), 296–307. https://www.cabdirect.org/abstracts/20093162655.hml.
- Babalola, O. O., & Glick, B. R. (2012). The use of microbial inoculants in African agriculture: current practice and future prospects. J. Food Agric. Environ, 10(3), 540-549.
- Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL. 2018. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9: 1-17. DOI: 10.3389/fpls.2018.01473.
- Bent E, Tuzun S, Chanway CP (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47(9):793–800.
- Bhattacharjee, R., and Dey, U. (2014). Biofertilizer, a way towards organic agriculture: A review. Afr. J. Microbiol. Res. 8, 2332–2343. doi: 10.5897/AJMR2013.6374.
- Bhattacharyya, P. N., & Jha, D. K. (2011). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327–1350. https://doi.org/10.1007/s11274-011-0979-9.
- Bhattarai, T., & Hess, D. (1993). Yield responses of Nepalese spring wheat (Triticum aestivum L.) cultivars to inoculation with Azospirillum spp. of Nepalese origin. Plant and Soil, 151(1), 67–76. https://doi.org/10.1007/bf00010787.
- Chakraborty, P., & Tribedi, P. (2019). Functional diversity performs a key role in the isolation of nitrogen-fixing and phosphate-solubilizing bacteria from soil. Folia Microbiologica, 64(3), 461–470. https://doi.org/10.1007/s12223-018-00672-1.
- Chen, Y., Rekha, P., Arun, A., Shen, F., Lai, W., & Young, C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1), 33–41. https://doi.org/10.1016/j.apsoil.2005.12.002.
- Colombo, C., Palumbo, G., He, J., Pinton, R., & Cesco, S. (2013). Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments, 14(3), 538–548. https://doi.org/10.1007/s11368-013-0814-z.
- De Felipe MR (2006) Fijación biológica de dinitrógeno atmosférico en vida libre. In: Bedmar E, Gonzálo J, Lluch C et al (eds) Fijación de Nitrógeno: Fundamentos y Aplicaciones. Granada: Sociedad Española de Microbiología. Sociedad Española de Fijación de Nitrógeno, Granada, pp 9–16.
- Dodd, I., Zinovkina, N., Safronova, V., & Belimov, A. (2010). Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 157(3), 361–379. https://doi.org/10.1111/j.1744-7348.2010.00439.x.
- Dr. S. Sreeremya, Green Chemistry- An Overview, Journal of Biochemistry and Molecular Science, 2020.Vol 2(1):1-7.
- Dr. S.Sreeremya, Microbial Siderophores, Journal of Pharmacy and Medicinal Research, 2019.Vol 1(1):1-12.
- Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2):184–189.
- Farajzadeh, D., Yakhchali, B., Aliasgharzad, N., Sokhandan-Bashir, N., & Farajzadeh, M. (2012). Plant Growth Promoting Characterization of Indigenous Azotobacteria Isolated from Soils in Iran. Current Microbiology, 64(4), 397–403. https://doi.org/10.1007/s00284-012-0083-x.
- Flores-Felix JD, Silva LR, Rivera LP, Marcos-Garcia M, Garcia-Fraile P, Martinez-Molina E, Mateos PF, Velazquez E, Andrade P, Rivas R (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS One 10(4): e0122281.
- Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1–15. https://doi.org/10.6064/2012/963401.
- Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119(3), 329–339. https://doi.org/10.1007/s10658-007-9162-4.
- González-López, J., Rodelas, B., Pozo, C., Salmerón-López, V., Martínez-Toledo, M. V., & Salmerón, V. (2005). Liberation of amino acids by heterotrophic nitrogen fixing bacteria. Amino Acids, 28(4), 363–367. https://doi.org/10.1007/s00726-005-0178-9.
- Harman,G., Khadka, R., Doni, F., and Uphoff, N. (2020). Benefits to plant health and productivity from enhancing plant microbial symbionts. Front. Plant Sci. 11, 610065. doi: 10.3389/fpls.2020.610065.
- Hayes, J. E., Richardson, A. E., & Simpson, R. J. (2000). Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biology and Fertility of Soils, 32(4), 279–286. https://doi.org/10.1007/s003740000249.
- Hell, R., & Mendel, R. R. (Eds.). (2010). Cell biology of metals and nutrients. Berlin, Heidelberg: Springer.
- Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural product reports, 27(5), 637-657.
- Hossain, M. M. (2015). Effects of Azospirillum isolates isolated from paddy fields on the growth of rice plants. Research in Biotechnology, 6(2). http://updatepublishing.com/journal/index.php/rib/article/view/2467.
- Jagnow, G. (1990). Differences between cereal crop cultivars in root-associated nitrogen fixation, possible causes of variable yield response to seed inoculation. Plant and Soil, 123(2), 255–259. https://doi.org/10.1007/bf00011278.
- Kaushal, P., Ali, N., Saini, S., Pati, P. K., & Pati, A. M. (2023). Physiological and molecular insight of microbial biostimulants for sustainable agriculture. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1041413.
- Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2009). Plant growth promotion by phosphate solubilizing fungi – current perspective. Archives of Agronomy and Soil Science, 56(1), 73–98. https://doi.org/10.1080/03650340902806469.
- Khare, E., & Arora, N. K. (2010). Effect of Indole-3-Acetic Acid (IAA) Produced by Pseudomonas aeruginosa in Suppression of Charcoal Rot Disease of Chickpea. Current Microbiology, 61(1), 64–68. https://doi.org/10.1007/s00284-009-9577-6.
- Koulman, A., Lee, T. V., Fraser, K., Johnson, L., Arcus, V., Lott, J. S., Rasmussen, S., & Lane, G. (2011). Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichloë festucae in culture and endophyte-infected Lolium perenne. Phytochemistry, 75, 128–139. https://doi.org/10.1016/j.phytochem.2011.11.020.
- Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2019). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23, 101487. https://doi.org/10.1016/j.bcab.2019.101487.
- Kumar, S., Kumar, S., and Mohapatra, T. (2021c). Interaction between macro- and micro-nutrients in plants. Front. Plant Sci. 12, 665583. doi: 10.3389/fpls.2021.665583.
- Kumar, V., & Gera, R. (2013). Isolation of a multi-trait plant growth promoting Brevundimonas sp. and its effect on the growth of Bt-cotton. 3 Biotech, 4(1), 97–101. https://doi.org/10.1007/s13205-013-0126-4.
- Lalitha, S. (2017). Plant Growth–Promoting Microbes: A Boon for Sustainable agriculture. In Springer eBooks (pp. 125–158). https://doi.org/10.1007/978-981-10-6647-4_8.
- Leaungvutiviroj, C., Ruangphisarn, P., Hansanimitkul, P., Shinkawa, H., & Sasaki, K. (2010). Development of a New Biofertilizer with a High Capacity for N2Fixation, Phosphate and Potassium Solubilization and Auxin Production. Bioscience Biotechnology and Biochemistry, 74(5), 1098–1101. https://doi.org/10.1271/bbb.90898.
- Lehmann, A., Leifheit, E., & Rillig, M. (2016). Mycorrhizas and soil aggregation. In Elsevier eBooks (pp. 241–262). https://doi.org/10.1016/b978-0-12-804312-7.00014-0.
- Liu, D., Lian, B., & Dong, H. (2012). Isolation of Paenibacillussp. and Assessment of its Potential for Enhancing Mineral Weathering. Geomicrobiology Journal, 29(5), 413–421. https://doi.org/10.1080/01490451.2011.576602.
- Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2016). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24(4), 3315–3335. https://doi.org/10.1007/s11356-016-8104-0.
- Mahdi, S. S., Hassan, G. I., Samoon, S. A., Rather, H. A., Dar, S. A., & Zehra, B. (2010). Bio-fertilizers in organic agriculture. The Journal of Phytology, 2(10), 42–54. http://scienceflora.org/journals/index.php/jp/article/download/2180/2158.
- Malusá, E., & Vassilev, N. (2014). A contribution to set a legal framework for biofertilisers. Applied Microbiology and Biotechnology, 98(15), 6599–6607. https://doi.org/10.1007/s00253-014-5828-y.
- Martin, X. M., Sumathi, C. S., & Kannan, V. R. (2011). Influence of agrochemicals and Azotobacter sp. application on soil fertility in relation to maize growth under nursery conditions. Eurasian Journal of Biosciences, 5.
- Mathivanan, R., Umavathi, S., Ramasamy, P. K., & Thangam, Y. (2015). Influence of vermicompost on the activity of the plant growth regulators in the leaves of the Indian butter bean plant, Dolichos lab lab L. Int. J. Adv. Res. Biol. Sci, 2(7), 84-89.
- McComb, R. B., Bowers, G. N., Jr, & Posen, S. (2013). Alkaline phosphatase. Springer Science & Business Media.
- Midhul, A. K., & Sreeremya, S. General Perspectives of Biopolymers-Review. Journal homepage: www. ijrpr. com ISSN, 2582, 7421.
- Mitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking crop Nutrition in Times of Modern Microbiology: Innovative biofertilizer technologies. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.606815.
- Mohammadi, K., & Sohrabi, Y. (2012). Bacterial biofertilizers for sustainable crop production: a review. Journal of Agricultural and Biological Science, 7(5), 307–316. https://www.cabdirect.org/cabdirect/abstract/20123213194.
- Parray, J. A., Jan, S., Kamili, A. N., Qadri, R. A., Egamberdieva, D., & Ahmad, P. (2016). Current Perspectives on Plant Growth-Promoting Rhizobacteria. Journal of Plant Growth Regulation, 35(3), 877–902. https://doi.org/10.1007/s00344-016-9583-4.
- Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3), 290–295. https://doi.org/10.1016/j.pbi.2011.02.001.
- Perrig, D., Boiero, M. L., Masciarelli, O. A., Penna, C., Ruiz, O. A., Cassán, F. D., & Luna, M. V. (2007). Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Applied Microbiology and Biotechnology, 75(5), 1143–1150. https://doi.org/10.1007/s00253-007-0909-9.
- Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52(1), 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340.
- Radzki W, Manero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to ironstarved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104(3):321–330.
- Rahman, K., & Zhang, D. (2018). Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability, 10(3), 759. https://doi.org/10.3390/su10030759.
- Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28(3), 142–149. https://doi.org/10.1016/j.tibtech.2009.12.002.
- Rao, V. R., Nayak, D. N., Charyulu, P. B. B. N., & Adhya, T. K. (1983). Yield response of rice to root inoculation withAzospirillum. The Journal of Agricultural Science, 100(3), 689–691. https://doi.org/10.1017/s0021859600035462.
- Ribaudo, C. M., Krumpholz, E. M., Cassán, F. D., Bottini, R., Cantore, M. L., & Curá, J. A. (2006). Azospirillum sp. Promotes Root Hair Development in Tomato Plants through a Mechanism that Involves Ethylene. Journal of Plant Growth Regulation, 25(2), 175–185. https://doi.org/10.1007/s00344-005-0128-5.
- S. Sreeremya, Fertigation-Review, International Journal of Advance Research and Development, Vol:1(2),2017.
- Sabry SR, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proceedings of the Royal Society of London B: Biological Sciences 264(1380):341– 346.
- Saikia, S. P., & Jain, V. (2007). Biological nitrogen fixation with non-legumes: An achievable target or a dogma? Current Science, 92(3), 317–322. http://neist.csircentral.net/262/1/2459_Current_Science92(3)p-317-322.pdf.
- Sakr, W. R. A., Elbagoury, H. M., Sidky, M. A., & Ali, S. A. (2014). Production of organic roselle by natural minerals and biofertilizers. In IDOSI Publications, American-Eurasian J. Agric. & Environ. Sci. (Vol. 14, Issue 10, pp. 985–995). IDOSI Publications. https://doi.org/10.5829/idosi.aejaes.2014.14.10.1241.
- Santos, E. a. D., Ferreira, L. R., Costa, M. D., Santos, J. B. D., De Cássia Soares Da Silva, M., & Aspiazú, I. (2012). The effects of soil fumigation on the growth and mineral nutrition of weeds and crops. Acta Scientiarum Agronomy, 34(2). https://doi.org/10.4025/actasciagron.v34i2.12971.
- Selvakumar, G., Kundu, S., Joshi, P., Nazim, S., Gupta, A. D., Mishra, P. K., & Gupta, H. S. (2007). Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World Journal of Microbiology and Biotechnology, 24(7), 955–960. https://doi.org/10.1007/s11274-007-9558-5.
- Sharan, A., Shikha, N., Darmwal, N. S., & Gaur, R. (2007). Xanthomonas campestris, a novel stress tolerant, phosphate-solubilizing bacterial strain from saline–alkali soils. World Journal of Microbiology and Biotechnology, 24(6), 753–759. https://doi.org/10.1007/s11274-007-9535-z.
- Shinde, D. B., Patil, P. L., & Patil, B. R. (1996). Potential use of sulphur oxidizing micro-organisms as soil inoculant.
- Simonet P, Normand P, Moiroud A (1990) Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucleotide probes. Arch Microbiol 153(3):235–240.
- Singh, G., Biswas, D. R., & Marwaha, T. S. (2010). Mobilization of potassium from waste mica by Plant Growth Promoting Rhizobacteria and its assimilation by Maize (zea mays) and wheat (Triticum aestivuml.): a hydroponics study under phytotron growth chamber. Journal of Plant Nutrition, 33(8), 1236–1251. https://doi.org/10.1080/01904161003765760.
- Steenhoudt, O., & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, 24(4), 487–506. https://doi.org/10.1111/j.1574-6976.2000.tb00552.x.
- Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M. S. I., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102–117. https://doi.org/10.1016/j.apsoil.2017.09.030.
- Van Vuuren, D., Bouwman, A., & Beusen, A. (2010). Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Global Environmental Change, 20(3), 428–439. https://doi.org/10.1016/j.gloenvcha.2010.04.004.
- Verma JP, Yadav J, Tiwari KN, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983.
- Verma, J. P., Yadav, J., Tiwari, K. N., Lavakush, & Singh, V. (2010). Impact of plant growth promoting rhizobacteria on crop production. International Journal of Agricultural Research, 5(11), 954–983. https://doi.org/10.3923/ijar.2010.954.983.
- Yang, Z., Stöven, K., Haneklaus, S., Singh, B., & Schnug, E. (2010). Elemental Sulfur Oxidation by Thiobacillus spp. and Aerobic Heterotrophic Sulfur-Oxidizing Bacteria. Pedosphere, 20(1), 71–79. https://doi.org/10.1016/s1002-0160(09)60284-8.
- Yaxley, J. R., Ross, J. J., Sherriff, L. J., & Reid, J. B. (2001). Gibberellin biosynthesis mutations and root development in PEA. PLANT PHYSIOLOGY, 125(2), 627–633. https://doi.org/10.1104/pp.125.2.627.
- Youssef, M. M. A., & Eissa, M. F. M. (2014). Biofertilizers and their role in management of plant parasitic nematodes. A review. Journal of Biotechnology and Pharmaceutical Research, 5(1), 1-6.
Unsustainable agricultural practices and declining soil fertility have led to a notable reduction in global crop
productivity. The excessive and indiscriminate use of chemical fertilizers not only deteriorates soil health but also possess a
significant risk to human well-being. Consequently, farmers across the globe have increasingly adopted biofertilizers and
biopesticides to preserve the natural equilibrium of the soil ecosystem. Biofertilizers represent an environmentally benign
and economically viable alternative to chemical fertilizers. Their plant growth-promoting attributes are manifested through
direct mechanisms such as biological nitrogen fixation, nutrient solubilization and mobilization (notably of N, P, K, S, Zn
and Fe) and the synthesis of phytohormones including auxins, cytokinins, gibberellins and ethylene. Indirectly, plant growth-
promoting rhizobacteria (PGPR) contribute to the suppression of phytopathogens via antibiotic production, siderophore
secretion, hydrolytic enzyme activity, and the induction of systemic resistance. In contrast to conventional chemical
fertilizers, biofertilizers offer a cost-effective, sustainable, and renewable solution that ensures the long-term preservation
of soil fertility and agricultural productivity.
Keywords :
Biofertilizers, PGPR, Sustainability, Nutrient Solubilization, Soil Fertility, Biological Nitrogen Fixation.