A Decade of Genome Editing: Comparative Review of Zfn, Talen, and Crispr/Cas9


Authors : Rajesh Kumar; Taniya Bargoti; Shalini Sengar; Deepali Singh; Vikrant Nain

Volume/Issue : Volume 10 - 2025, Issue 4 - April


Google Scholar : https://tinyurl.com/yx4wv49p

Scribd : https://tinyurl.com/8c293v2w

DOI : https://doi.org/10.38124/ijisrt/25apr2221

Google Scholar

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 15 to 20 days to display the article.


Abstract : Recent advances in genome editing technologies, including ZFNs, TALENs, and CRISPR/Cas9 systems, have redefined our ability to probe and precisely modify the genome and epigenome in vivo and in vitro. ZFNs and TALENs pioneered targeted editing through engineered nucleases, offering high specificity and accuracy, while the RNA-guided CRISPR/Cas9 system has revolutionized the field with its simplicity, efficiency, and adaptability across diverse biological systems. Emerging innovations enhance precision. Broader applicability and enable gene editing even in traditionally intractable models. This collection highlights the progress, comparative strengths, and expanding applications of these genome editing tools in research, therapeutic, and agricultural fields

Keywords : Genome Editing, Zfns, Talens, CRISPR/Cas9, Nucleases.

References :

  1. D. Carroll, “Genome engineering with zinc-finger nucleases,” Genetics, vol. 188, no. 4, pp. 773–782, Aug. 2011, doi: 10.1534/genetics.111.131433.
  2. M. S. Kim and A. G. Kini, “Engineering and application of zinc finger proteins and TALEs for biomedical research,” Jan. 01, 2017, Korean Society for Molecular and Cellular Biology. doi: 10.14348/molcells.2017.0139.
  3. F. D. Urnov, E. J. Rebar, M. C. Holmes, H. S. Zhang, and P. D. Gregory, “Genome editing with engineered zinc finger nucleases,” Sep. 2010. doi: 10.1038/nrg2842.
  4. B. Schierling, N. Dannemann, L. Gabsalilow, W. Wende, T. Cathomen, and A. Pingoud, “A novel zinc-finger nuclease platform with a sequence-specific cleavage module,” Nucleic Acids Res, vol. 40, no. 6, pp. 2623–2638, Mar. 2012, doi: 10.1093/nar/gkr1112.
  5. T. Gaj, C. A. Gersbach, and C. F. Barbas, “ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering,” Jul. 2013. doi: 10.1016/j.tib tech.2013.04.004.
  6. M. L. Maeder and C. A. Gersbach, “Genome-editing technologies for gene and cell therapy,” Mar. 01, 2016, Nature Publishing Group. doi: 10.1038/mt.2016.10.
  7. H. Li, Y. Yang, W. Hong, M. Huang, M. Wu, and X. Zhao, “Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects,” Dec. 01, 2020, Springer Nature. doi: 10.1038/s41392-019-0089-y.
  8. P. Tebas et al., “ Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV ,” New England Journal of Medicine, vol. 370, no. 10, pp. 901–910, Mar. 2014, doi: 10.1056/nejmoa1300662.
  9. M. D. Hoban et al., “Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells Key Points,” 2015, doi: 10.1182/blood-2014.
  10. M. L. Maeder et al., “Rapid ‘Open-Source’ Engineering of Customized Zinc-Finger Nucleases for Highly Efficient Gene Modification,” Mol Cell, vol. 31, no. 2, pp. 294–301, Jul. 2008, doi: 10.1016/j.molcel.2008.06.016.
  11. J. D. Sander et al., “Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA),” Nat Methods, vol. 8, no. 1, pp. 67–69, Jan. 2011, doi: 10.1038/nmeth.1542.
  12. M. L. Maeder, S. Thibodeau-Beganny, J. D. Sander, D. F. Voytas, and J. K. Joung, “Oligomerized pool engineering (OPEN): An ‘open-source’ protocol for making customized zinc-finger arrays,” Nat Protoc, vol. 4, no. 10, pp. 1471–1501, 2009, doi: 10.1038/nprot.2009.98.
  13. J. D. Sander, P. Zaback, J. K. Joung, D. F. Voytas, and D. Dobbs, “Zinc Finger Targeter (ZiFiT): An engineered zinc finger/target site design tool,” Nucleic Acids Res, vol. 35, no. SUPPL.2, Jul. 2007, doi: 10.1093/nar/gkm349.
  14. M. S. Bhakta and D. J. Segal, “The generation of zinc finger proteins by modular assembly,” Methods in Molecular Biology, vol. 649, pp. 3–30, 2010, doi: 10.1007/978-1-60761-753-2_1.
  15. F. Zhang et al., “High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases,” Proc Natl Acad Sci U S A, vol. 107, no. 26, pp. 12028–12033, Jun. 2010, doi: 10.1073/pnas.0914991107.
  16. K. D’Halluin and R. Ruiter, “Directed genome engineering for genome optimization,” International Journal of Developmental Biology, vol. 57, no. 6–8, pp. 621–627, 2013, doi: 10.1387/ijdb.130217kd.
  17. Y. Zhang, K. Massel, I. D. Godwin, and C. Gao, “Applications and potential of genome editing in crop improvement 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0607 Plant Biology 07 Agricultural and Veterinary Sciences 0703 Crop and Pasture Production,” Nov. 30, 2018, BioMed Central Ltd. doi: 10.1186/s13059-018-1586-y.
  18. D. Marone, A. M. Mastrangelo, and G. M. Borrelli, “From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues,” Apr. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/ijms24087122.
  19. T. Smith et al., “Improved specificity and safety of anti-hepatitis b virus talens using obligate heterodimeric foki nuclease domains,” Viruses, vol. 13, no. 7, Jul. 2021, doi: 10.3390/v13071344.
  20. Y. Doyon et al., “Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures,” Nat Methods, vol. 8, no. 1, pp. 74–79, Jan. 2011, doi: 10.1038/nmeth.1539.
  21. S. Becker and J. Boch, “TALE and TALEN genome editing technologies,” Gene and Genome Editing, vol. 2, p. 100007, Dec. 2021, doi: 10.1016/j.ggedit.2021.100007.
  22. M. Szczepek, V. Brondani, J. Büchel, L. Serrano, D. J. Segal, and T. Cathomen, “Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases,” Nat Biotechnol, vol. 25, no. 7, pp. 786–793, Jul. 2007, doi: 10.1038/nbt1317.
  23. D. Cano-Rodriguez and M. G. Rots, “Epigenetic Editing: On the Verge of Reprogramming Gene Expression at Will,” Curr Genet Med Rep, vol. 4, no. 4, pp. 170–179, Dec. 2016, doi: 10.1007/s40142-016-0104-3.
  24. K. M. Carroll et al., “Motivational interviewing to improve treatment engagement and outcome in individuals seeking treatment for substance abuse: A multisite effectiveness study,” 2006.
  25. D. Y. Kwon, Y. T. Zhao, J. M. Lamonica, and Z. Zhou, “Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC,” Nat Commun, vol. 8, May 2017, doi: 10.1038/ncomms15315.
  26. A. Cavazza et al., “Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group,” Mar. 11, 2025, Cell Press. doi: 10.1016/j.omtn.2025.102457.
  27. V. Vavassori et al., “Lipid nanoparticles allow efficient and harmless ex vivo gene editing of human hematopoietic cells.” [Online]. Available: http://ashpublications.org/blood/article-pdf/142/9/812/2075237/blood_bld-2022-019333-main.pdf
  28. A. Conway et al., “Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient In Vivo Genome Editing of Multiple Therapeutic Gene Targets,” Molecular Therapy, vol. 27, no. 4, pp. 866–877, Apr. 2019, doi: 10.1016/j.ymthe.2019.03.003.
  29. R. M. Gupta and K. Musunuru, “Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9,” Oct. 01, 2014, American Society for Clinical Investigation. doi: 10.1172/JCI72992.
  30. K. Hua, P. Han, and J. K. Zhu, “Improvement of base editors and prime editors advances precision genome engineering in plants,” Plant Physiol, vol. 188, no. 4, pp. 1795–1810, Apr. 2022, doi: 10.1093/plphys/kiab591.
  31. L. Yang et al., “Engineering and optimising deaminase fusions for genome editing,” Nat Commun, vol. 7, Nov. 2016, doi: 10.1038/ncomms13330.
  32. N. G. Castro, J. Bjelic, G. Malhotra, C. Huang, and S. H. Alsaffar, “Comparison of the feasibility, efficiency, and safety of genome editing technologies,” Oct. 01, 2021, MDPI. doi: 10.3390/ijms221910355.
  33. “Zinc Finger Design AI Tool Opens Door to Large-Scale Gene Therapies.” [Online]. Available: https://editions.mydigitalpublication.com/publication/?i=784786&article_id=4526714&view=articleBrowser
  34. D. M. Ichikawa et al., “A universal deep-learning model for zinc finger design enables transcription factor reprogramming,” Nat Biotechnol, vol. 41, no. 8, pp. 1117–1129, Aug. 2023, doi: 10.1038/s41587-022-01624-4.
  35. Y. Pan et al., “Biological and biomedical applications of engineered nucleases,” Sep. 2013. doi: 10.1007/s12033-012-9613-9.
  36. D. Reyon, C. Khayter, M. R. Regan, J. Keith Joung, and J. D. Sander, “Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly,” Curr Protoc Mol Biol, no. SUPPL.100, 2012, doi: 10.1002/0471142727.mb1215s100.
  37. J. K. Joung and J. D. Sander, “TALENs: A widely applicable technology for targeted genome editing,” Jan. 2013. doi: 10.1038/nrm3486.
  38. D. Deng et al., “Structural basis for sequence-specific recognition of DNA by TAL effectors,” Science (1979), vol. 335, no. 6069, pp. 720–723, Feb. 2012, doi: 10.1126/science.1215670.
  39. D.-Y. Li, L.-Q. Li, and J.-J. G. Liu, “Nucleases in gene-editing technologies: past and prologue,” National Science Open, vol. 2, no. 5, p. 20220067, Sep. 2023, doi: 10.1360/nso/20220067.
  40. S. Schulze and M. Lammers, “The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP,” ChemTexts, vol. 7, no. 1, Mar. 2021, doi: 10.1007/s40828-020-00126-7.
  41. A. Bhardwaj and V. Nain, “TALENs—an indispensable tool in the era of CRISPR: a mini review,” Dec. 01, 2021, Springer Science and Business Media Deutschland GmbH. doi: 10.1186/s43141-021-00225-z.
  42. Y. Zheng, Y. Li, K. Zhou, T. Li, N. J. VanDusen, and Y. Hua, “Precise genome-editing in human diseases: mechanisms, strategies and applications,” Dec. 01, 2024, Springer Nature. doi: 10.1038/s41392-024-01750-2.
  43. N. Bonturi et al., “Development of a dedicated Golden Gate Assembly Platform (RtGGA) for Rhodotorula toruloides,” Metab Eng Commun, vol. 15, Dec. 2022, doi: 10.1016/j.mec.2022.e00200.
  44. D. Reyon, S. Q. Tsai, C. Khgayter, J. A. Foden, J. D. Sander, and J. K. Joung, “FLASH assembly of TALENs for high-throughput genome editing,” Nat Biotechnol, vol. 30, no. 5, pp. 460–465, May 2012, doi: 10.1038/nbt.2170.
  45. A. Hruscha et al., “Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish,” Development (Cambridge), vol. 140, no. 24, pp. 4982–4987, Dec. 2013, doi: 10.1242/dev.099085.
  46. Z. He, C. Proudfoot, C. B. A. Whitelaw, and S. G. Lillico, “Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells,” Springerplus, vol. 5, no. 1, Dec. 2016, doi: 10.1186/s40064-016-2536-3.
  47. A. C. H. Ma, Y. Chen, P. R. Blackburn, and S. C. Ekker, “TALEN-Mediated mutagenesis and genome editing,” in Methods in Molecular Biology, vol. 1451, Humana Press Inc., 2016, pp. 17–30. doi: 10.1007/978-1-4939-3771-4_2.
  48. N. Bessoltane et al., “Genome-wide specificity of plant genome editing by both CRISPR–Cas9 and TALEN,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-13034-2.
  49. M. Romito et al., “Preclinical Evaluation of a Novel TALEN Targeting CCR5 Confirms Efficacy and Safety in Conferring Resistance to HIV-1 Infection,” Biotechnol J, vol. 16, no. 1, Jan. 2021, doi: 10.1002/biot.202000023.
  50. “US8962281.pdf 16”.
  51. H. B. Lee, Z. L. Sebo, Y. Peng, and Y. Guo, “ An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster ,” Cell Logist, vol. 5, no. 1, p. e1023423, Jan. 2015, doi: 10.1080/21592799.2015.1023423.
  52. T. Katsuyama, A. Akmammedov, M. Seimiya, S. C. Hess, C. Sievers, and R. Paro, “An efficient strategy for TALEN-mediated genome engineering in Drosophila,” Nucleic Acids Res, vol. 41, no. 17, Sep. 2013, doi: 10.1093/nar/gkt638.
  53. Z. Zhang, D. Xiang, F. Heriyanto, Y. Gao, Z. Qian, and W. S. Wu, “Dissecting the Roles of miR-302/367 Cluster in Cellular Reprogramming Using TALE-based Repressor and TALEN,” Stem Cell Reports, vol. 1, no. 3, pp. 218–225, Sep. 2013, doi: 10.1016/j.stemcr.2013.07.002.
  54. H. Wang et al., “One-step generation of mice carrying mutations in multiple genes by CRISPR/cas-mediated genome engineering,” Cell, vol. 153, no. 4, pp. 910–918, May 2013, doi: 10.1016/j.cell.2013.04.025.
  55. M. L. Maeder et al., “Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins,” Nat Biotechnol, vol. 31, no. 12, pp. 1137–1142, Dec. 2013, doi: 10.1038/nbt.2726.
  56. A. N. Siddique et al., “Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity,” J Mol Biol, vol. 425, no. 3, pp. 479–491, Feb. 2013, doi: 10.1016/j.jmb.2012.11.038.
  57. Y. Lei et al., “Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs),” Proc Natl Acad Sci U S A, vol. 109, no. 43, pp. 17484–17489, Oct. 2012, doi: 10.1073/pnas.1215421109.
  58. T. Mashimo et al., “Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotes,” Sci Rep, vol. 3, 2013, doi: 10.1038/srep01253.
  59. D. F. Carlson et al., “Efficient TALEN-mediated gene knockout in livestock,” Proc Natl Acad Sci U S A, vol. 109, no. 43, pp. 17382–17387, Oct. 2012, doi: 10.1073/pnas.1211446109.
  60. M. Holkers, I. Maggio, S. F. D. Henriques, J. M. Janssen, T. Cathomen, and M. A. F. V. Gonçalves, “Adenoviral vector DNA for accurate genome editing with engineered nucleases,” Nat Methods, vol. 11, no. 10, pp. 1051–1057, Jan. 2014, doi: 10.1038/nmeth.3075.
  61. E. S. Atsavapranee, M. M. Billingsley, and M. J. Mitchell, “Delivery technologies for T cell gene editing: Applications in cancer immunotherapy,” May 01, 2021, Elsevier B.V. doi: 10.1016/j.ebiom.2021.103354.
  62. N. Babaeianjelodar, J. Trivedi, and C. Uhde-Stone, “Eliminating tissue culture from plant gene editing in the near future: A wish or reality?,” Mar. 01, 2025, Elsevier B.V. doi: 10.1016/j.cpb.2025.100433.
  63. W. Li, F. Teng, T. Li, and Q. Zhou, “Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems,” Aug. 2013. doi: 10.1038/nbt.2652.
  64. T. H. Nguyen and I. Anegon, “ Successful correction of hemophilia by CRISPR /Cas9 genome editing in vivo : delivery vector and immune responses are the key to success ,” EMBO Mol Med, vol. 8, no. 5, pp. 439–441, May 2016, doi: 10.15252/emmm.201606325.
  65. Y. Fu et al., “High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells,” Nat Biotechnol, vol. 31, no. 9, pp. 822–826, Sep. 2013, doi: 10.1038/nbt.2623.
  66. F. Knipping et al., “Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification,” Mol Ther Methods Clin Dev, vol. 4, pp. 213–224, Mar. 2017, doi: 10.1016/j.omtm.2017.01.005.
  67. A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, and D. R. Liu, “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage,” Nature, vol. 533, pp. 420–424, Apr. 2016, doi: 10.1038/nature17946.
  68. A. V. Anzalone et al., “Search-and-replace genome editing without double-strand breaks or donor DNA,” Nature, vol. 576, no. 7785, pp. 149–157, Dec. 2019, doi: 10.1038/s41586-019-1711-4.
  69. A. M. Wenger et al., “Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome,” Nat Biotechnol, vol. 37, no. 10, pp. 1155–1162, Oct. 2019, doi: 10.1038/s41587-019-0217-9.
  70. A. Bhardwaj and V. Nain, “TALENs—an indispensable tool in the era of CRISPR: a mini review,” Dec. 01, 2021, Springer Science and Business Media Deutschland GmbH. doi: 10.1186/s43141-021-00225-z.
  71. Z. Li et al., “Precision genome editing using combinatorial viral vector delivery of CRISPR-Cas9 nucleases and donor DNA constructs,” Nucleic Acids Res, vol. 53, no. 2, Jan. 2025, doi: 10.1093/nar/gkae1213.
  72. M. A. Mengstie and B. Z. Wondimu, “Mechanism and applications of crispr/ cas-9-mediated genome editing,” 2021, Dove Medical Press Ltd. doi: 10.2147/BTT.S326422.
  73. A. A. A. Aljabali, M. El-Tanani, and M. M. Tambuwala, “Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery,” Feb. 01, 2024, Editions de Sante. doi: 10.1016/j.jddst.2024.105338.
  74. X. H. Zhang, L. Y. Tee, X. G. Wang, Q. S. Huang, and S. H. Yang, “Off-target effects in CRISPR/Cas9-mediated genome engineering,” Nov. 01, 2015, Nature Publishing Group. doi: 10.1038/mtna.2015.37.
  75. H. O’Geen et al., “DCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression,” Nucleic Acids Res, vol. 45, no. 17, pp. 9901–9916, Sep. 2017, doi: 10.1093/nar/gkx578.
  76. Z. Zhao, P. Shang, P. Mohanraju, and N. Geijsen, “Prime editing: advances and therapeutic applications,” Aug. 01, 2023, Elsevier Ltd. doi: 10.1016/j.tibtech.2023.03.004.
  77. H. Liao, J. Wu, N. J. VanDusen, Y. Li, and Y. Zheng, “CRISPR-Cas9-mediated homology-directed repair for precise gene editing,” Dec. 10, 2024, Cell Press. doi: 10.1016/j.omtn.2024.102344.
  78. C. E. Denes, A. J. Cole, Y. A. Aksoy, G. Li, G. G. Neely, and D. Hesselson, “Approaches to enhance precise crispr/cas9‐mediated genome editing,” Aug. 02, 2021, MDPI AG. doi: 10.3390/ijms22168571.
  79. Y. Xu and Z. Li, “CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy,” Jan. 01, 2020, Elsevier B.V. doi: 10.1016/j.csbj.2020.08.031.
  80. M. Choi, J. Y. Yun, J. H. Kim, J. S. Kim, and S. T. Kim, “The efficacy of CRISPR-mediated cytosine base editing with the RPS5a promoter in Arabidopsis thaliana,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-87669-y.
  81. T. Gaj, S. J. Sirk, S. L. Shui, and J. Liu, “Genome-editing technologies: Principles and applications,” Cold Spring Harb Perspect Biol, vol. 8, no. 12, 2016, doi: 10.1101/cshperspect.a023754.
  82. R. Eggenschwiler et al., “A selectable all-in-one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-01689-2.
  83. S. Li and C. Brakebusch, “Reporter Mice for Gene Editing: A Key Tool for Advancing Gene Therapy of Rare Diseases,” Sep. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/cells13171508.
  84. D. Gleditzsch et al., “PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures,” Apr. 03, 2019, Taylor and Francis Inc. doi: 10.1080/15476286.2018.1504546.
  85. Y. Asano, K. Yamashita, A. Hasegawa, T. Ogasawara, H. Iriki, and T. Muramoto, “Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-89546-0.
  86. A. Shakirova, T. Karpov, Y. Komarova, and K. Lepik, “In search of an ideal template for therapeutic genome editing: A review of current developments for structure optimization,” 2023, Frontiers Media S.A. doi: 10.3389/fgeed.2023.1068637.
  87. F. V. Jacinto, W. Link, and B. I. Ferreira, “CRISPR/Cas9-mediated genome editing: From basic research to translational medicine,” Apr. 01, 2020, Blackwell Publishing Inc. doi: 10.1111/jcmm.14916.
  88. Z. Ming et al., “Lineage labeling with zebrafish hand2 Cre and CreERT2 recombinase CRISPR knock-ins,” Dec. 05, 2024. doi: 10.1101/2024.12.04.626907.
  89. K. Mizutani et al., “A Sodium-dependent Trehalose Transporter Contributes to Anhydrobiosis in Insect Cell Line, Pv11,” Sep. 29, 2023. doi: 10.1101/2023.09.29.560116.
  90. A. Macarrón Palacios, P. Korus, B. G. C. Wilkens, N. Heshmatpour, and S. R. Patnaik, “Revolutionizing in vivo therapy with CRISPR/Cas genome editing: breakthroughs, opportunities and challenges,” 2024, Frontiers Media SA. doi: 10.3389/fgeed.2024.1342193.
  91. Y. Wang, Y. Zhai, M. Zhang, C. Song, Y. Zhang, and G. Zhang, “Escaping from CRISPR-Cas-mediated knockout: the facts, mechanisms, and applications,” Apr. 08, 2024. doi: 10.1186/s11658-024-00565-x.
  92. M. Carlessi, L. Mariotti, F. Giaume, F. Fornara, P. Perata, and S. Gonzali, “Targeted knockout of the gene OsHOL1 removes methyl iodide emissions from rice plants,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-95198-x.
  93. Y. C. J. Chey, J. Arudkumar, A. Aartsma-Rus, F. Adikusuma, and P. Q. Thomas, “CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies,” WIREs Mechanisms of Disease, vol. 15, no. 1, Jan. 2023, doi: 10.1002/wsbm.1580.
  94. R. da Silva Santos et al., “CRISPR/Cas9 small promoter deletion in H19 lncRNA is associated with altered cell morphology and proliferation,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-97058-0.
  95. S. M. Fadul, A. Arshad, and R. Mehmood, “CRISPR-based epigenome editing: mechanisms and applications,” Nov. 01, 2023. doi: 10.2217/epi-2023-0281.
  96. D. E. Handy, R. Castro, and J. Loscalzo, “Epigenetic modifications: Basic mechanisms and role in cardiovascular disease,” Circulation, vol. 123, no. 19, pp. 2145–2156, May 2011, doi: 10.1161/CIRCULATIONAHA.110.956839.
  97. L. Nourani, A. A. Mehrizi, S. Pirahmadi, Z. Pourhashem, E. Asadollahi, and B. Jahangiri, “CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector,” Apr. 01, 2023, Elsevier B.V. doi: 10.1016/j.meegid.2023.105419.
  98. A. Koodamvetty and S. Thangavel, “Advancing Precision Medicine: Recent Innovations in Gene Editing Technologies,” Apr. 10, 2025, John Wiley and Sons Inc. doi: 10.1002/advs.202410237.
  99. A. N. M. Ansori et al., “Application of CRISPR-Cas9 genome editing technology in various fields: A review,” Aug. 01, 2023, Narra Sains Indonesia. doi: 10.52225/narra.v3i2.184.
  100. W. Liu, L. Li, J. Jiang, M. Wu, and P. Lin, “Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics,” Sep. 01, 2021, Oxford University Press. doi: 10.1093/pcmedi/pbab014.
  101. C. Guo, X. Ma, F. Gao, and Y. Guo, “Off-target effects in CRISPR/Cas9 gene editing,” 2023, Frontiers Media S.A. doi: 10.3389/fbioe.2023.1143157.
  102. A. Datta et al., “Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders,” Apr. 01, 2023, Springer. doi: 10.1007/s10571-022-01242-3.

Recent advances in genome editing technologies, including ZFNs, TALENs, and CRISPR/Cas9 systems, have redefined our ability to probe and precisely modify the genome and epigenome in vivo and in vitro. ZFNs and TALENs pioneered targeted editing through engineered nucleases, offering high specificity and accuracy, while the RNA-guided CRISPR/Cas9 system has revolutionized the field with its simplicity, efficiency, and adaptability across diverse biological systems. Emerging innovations enhance precision. Broader applicability and enable gene editing even in traditionally intractable models. This collection highlights the progress, comparative strengths, and expanding applications of these genome editing tools in research, therapeutic, and agricultural fields

Keywords : Genome Editing, Zfns, Talens, CRISPR/Cas9, Nucleases.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe