Authors :
Osisami Olubukunola F.; Egwim C. Evans; Adeboye E. Seyi; Madaki F. M.; Busari M. B.; Salith H. Suleiman; Hassan S. Abu; Ononokpono G. E.
Volume/Issue :
Volume 11 - 2026, Issue 1 - January
Google Scholar :
https://tinyurl.com/f75jvbf7
Scribd :
https://tinyurl.com/52w2tpz6
DOI :
https://doi.org/10.38124/ijisrt/26jan294
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Large volumes of byproducts are generated during the processing of citrus, plantain, and banana, much of which
is discarded, contributing to environmental pollution and inefficient resource use. These agro-wastes, however, are rich
sources of bioactive compounds with significant nutritional and therapeutic potential. In the context of increasing global
interest in sustainable resource utilization and circular economy strategies, the valorization of fruit peels represents a
promising pathway for developing high-value functional ingredients for food and pharmaceutical applications. This review
synthesizes current knowledge on the major phytochemicals present in these wastes with particular emphasis on total
phenolics, flavonoids, including quercetin and its derivatives, carotenoids, and sulfur-containing compounds. The reported
biological activities of these compounds, such as antidiabetic, anti-obesity, anticancer, and antimicrobial effects, are
discussed in relation to their relevance for pharmacological and biomedical applications. The review further examines recent
advances in green extraction technologies, focusing on enzyme-assisted and microwave-assisted extraction methods, which
offer improved efficiency and sustainability compared with conventional solvent-intensive and high-temperature techniques.
Additionally, emerging applications of machine learning approaches for identifying, predicting, and prioritizing bioactive
compounds from complex plant matrices are briefly considered.
Keywords :
Bioactive Compounds, Phytochemicals, Total Phenolics, Agro-Wastes, Machine Learning.
References :
- Abemsana Devi, O., & Saikia Barooah, M. (2025). Antioxidant properties of natural bioactive compounds. IntechOpen. https://doi.org/10.5772/intechopen.1007127
- Abirami, A., Nagarani, G., & Siddhuraju, P. (2014). In vitro antioxidant, antihyperglycemic, and antihyperlipidemic activities of Citrus hystrix peel extracts. Food Chemistry, 165, 418–427.
- Acevedo, S. A., Carrillo, Á. J. D., Flórez-López, E., & Grande-Tovar, C. D. (2021). Recovery of banana waste-loss from production and processing: A contribution to a circular economy. Molecules, 26(17), 5282. https://doi.org/10.3390/molecules26175282
- ACS Omega. (2024). Advanced extraction techniques for retrieving bioactive components from natural sources. ACS Omega, 9(29), 31274–31297. https://doi.org/10.1021/acsomega.4c02718
- Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 27(9), 2901. https://doi.org/10.3390/molecules27092901
- Alvarez, A., & Galan, J. E. L. (2025). A critical review of plantain agricultural waste valorization for energy and sustainability applications. Discover Sustainability, 6, 1190. https://doi.org/10.1007/s43621-025-01823-4
- Al-Wabel, M. I., Ahmad, M., Rasheed, H., Rafique, M. I., Ahmad, J., & Usman, A. R. A. (2022). Environmental issues due to open dumping and landfilling. In P. Pathak & S. G. Palani (Eds.), Circular economy in municipal solid waste landfilling: Biomining & leachate treatment (pp. 73–98). Springer. https://doi.org/10.1007/978-3-031-07785-2_4
- Anwar, M. M. J. (2025). Advances in green technologies for bioactive extraction and valorization of agro-waste in food and nutraceutical industries. Scholars Journal of Life Sciences, 10(5), 1–10. https://doi.org/10.36348/sjls.2025.v10i05.005
- Bala, S., Garg, D., Sridhar, K., Inbaraj, B. S., Singh, R., Kamma, S., Tripathi, M., & Sharma, M. (2023). Transformation of agro-waste into value-added bioproducts and bioactive compounds: Micro/nano formulations and application in the agri-food-pharma sector. Bioengineering, 10(2), 152. https://doi.org/10.3390/bioengineering10020152
- Balogun, O., & Kang, H. W. (2024). Bioactivities and applications of fruit byproducts and their phytochemicals: A mini review. Food Reviews International, 40(10), 3964–4004. https://doi.org/10.1080/87559129.2024.2383429
- Bastos, K. V. L. d. S., de Souza, A. B., Tomé, A. C., & Souza, F. d. M. (2025). New strategies for the extraction of antioxidants from fruits and their by-products: A systematic review. Plants, 14(5), 755. https://doi.org/10.3390/plants14050755
- Belkozhayev, A. M., Abaildayev, A., Kossalbayev, B. D., Tastambek, K. T., Kadirshe, D. K., & Toleutay, G. (2025). Microbial valorization of agricultural and agro-industrial waste into bacterial cellulose: Innovations for circular bioeconomy integration. Microorganisms, 13(12), 2686. https://doi.org/10.3390/microorganisms13122686
- Bhavani, M., et al. (2023). Global importance of banana production. Journal reference, details as provided.
- Bhadange, Y. A., Carpenter, J., & Saharan, V. K. (2024). A comprehensive review on advanced extraction techniques for retrieving bioactive components from natural sources. ACS Publications. https://pubs.acs.org/doi/10.1021/acsomega.4c02718
- Bhatt, S., et al. (2024). Advanced green extraction technologies for functional compounds. Innovative Food Science & Emerging Technologies. https://doi.org/10.1016/j.ifset.2024.103828
- Chakanaka, P., Mungwari, C., King'ondu, C. K., Sigauke, P., & Obadele, B. A. (2024). Conventional and modern techniques for bioactive compounds recovery from plants: A review. ACS Omega, 9(29), 31274–31297. https://doi.org/10.1021/acsomega.4c02718
- Chakraborty, S., Goel, K., Rasal, V., Paul, K., & Mandal, D. (2024). [Title unavailable]. Amity Institute of Food Technology.
- Das, S., Nadar, S. S., & Rathod, V. K. (2021). Integrated strategies for enzyme-assisted extraction of bioactive molecules: A review. International Journal of Biological Macromolecules, 191, 899–917. https://doi.org/10.1016/j.ijbiomac.2021.09.060
- Díaz-de-Cerio, E., & Trigueros, E. (2025). Evaluating the sustainability of emerging extraction technologies for valorization of food waste: Microwave, ultrasound, enzyme-assisted, and supercritical fluid extraction. Agriculture, 15(19), 2100. https://doi.org/10.3390/agriculture15192100
- El Gharras, H. (2009). Polyphenols: Food sources, properties and applications—A review. International Journal of Food Science and Technology, 44(12), 2512–2518. https://doi.org/10.1111/j.1365-2621.2009.02077.x
- Esonu, C. E., Iheme, C. I., Njoku, O. C., Agwu, L. O., Airaodion, A. I., et al. (2024). Investigation of proximate composition and bioactive components in banana (Musa acuminata) peels using advanced analytical techniques. Journal of Nutrition and Food Processing, 7(10). https://doi.org/10.31579/2637-8914/256
- FoCha. (2025). Article reference from Food Chemistry Advances. https://doi.org/10.1016/j.focha.2025.101136
- Focha. (2025). Environmental and food applications of fruit by-product valorization. Food Chemistry Advances, 101136. https://doi.org/10.1016/j.focha.2025.101136
- Food & Humanity. (2024). Bioactive compounds of foods: Phytochemicals and peptides. https://doi.org/10.1016/j.foohum.2024.100354
- Food Processing. (2025). Innovations in natural product extraction. https://doi.org/10.1016/j.foodp.2025.100047
- Food Processing. (2025). Sustainable food extraction and valorization technologies. Food Processing and Preservation, 100047. https://doi.org/10.1016/j.foodp.2025.100047
- Food Research Journal. (2020). Antioxidant compounds in banana peel. https://doi.org/10.1016/j.foodres.2020.109061
- Ghag, S. B., & Ganapathi, T. R. (2019). Banana and plantains: Improvement, nutrition, and health. In J.-M. Mérillon & K. G. Ramawat (Eds.), Bioactive molecules in food (pp. 1–35). Springer. https://doi.org/10.1007/978-3-319-78030-6_73
- Gupta, P., et al. (2023). Environmental implications of fruit waste mismanagement. Waste Management. https://doi.org/10.1016/j.wasman.2023.02.035
- Health & Food Sciences. (2024). Bioactive compounds and extraction challenges. https://doi.org/10.1016/j.sciaf.2024.e02509
- Intharuksa, A., Kuljarusnont, S., Sasaki, Y., & Tungmunnithum, D. (2024). Flavonoids and other polyphenols: Bioactive molecules from traditional medicine recipes/medicinal plants and their potential for phytopharmaceutical and medical application. Molecules, 29(23), 5760. https://doi.org/10.3390/molecules29235760
- Islam, M., Malakar, S., Rao, M. V., et al. (2023). Recent advancement in ultrasound-assisted novel technologies for the extraction of bioactive compounds from herbal plants: A review. Food Science and Biotechnology, 32, 1763–1782. https://doi.org/10.1007/s10068-023-01346-6
- JAFR. (2025). Journal of African Food Research article. https://doi.org/10.1016/j.jafr.2025.101983
- Jamal Anwar, M. M. (2025). Advances in green technologies for bioactive extraction and valorization of agro-waste in food and nutraceutical industries. Scientific Journal of Life Sciences, 10(5), 1–20. https://doi.org/10.36348/sjls.2025.v10i05.005
- Johri, S., & Sharma, P. (2025). Nutritional and phytochemical characterization of plantain peel. The Pharma Innovation Journal, 14(1), 36–41.
- Kamiloglu, S., Capanoglu, E., & Jafari, S. M. (2022). An overview of food bioactive compounds and their health‐promoting features. In S. M. Jafari & E. Capanoglu (Eds.), Retention of bioactives in food processing (pp. 1–39). Springer. https://doi.org/10.1007/978-3-030-96885-4_1
- Kaur, S., Kaur, G., Kumari, A., Ghosh, A., Singh, G., Bhardwaj, R., Kumar, A., & Riar, A. (2020). Resurrecting forgotten crops: Food-based products from potential underutilized crops—a path to nutritional security and diversity. Food Energy Security. https://doi.org/10.1002/fes3.220
- Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285
- Kumar, H., Bhardwaj, K., Sharma, R., et al. (2020). Fruit and vegetable peels: Utilization of high-value horticultural waste in novel industrial applications. Molecules, 25(20). PMCID: PMC7356603
- Ligarda-Samanez, C. A., Huamán-Carrión, M. L., Calsina-Ponce, W. C., et al. (2025). Technological innovations and circular economy in the valorization of agri-food by-products: Advances, challenges and perspectives. Foods, 14(11), 1950. https://doi.org/10.3390/foods14111950
- Łubek-Nguyen, A., Ziemichód, W., & Olech, M. (2022). Application of enzyme-assisted extraction for recovery of natural bioactive compounds. Applied Sciences, 12(7), 3232. https://doi.org/10.3390/app12073232
- Maled, S. B., et al. (2024). Enzyme-assisted extraction. In Bioactive Extraction and Application in Food and Nutraceutical Industries. Humana. https://doi.org/10.1007/978-1-0716-3601-5_8
- Mandal, D., et al. (2023). Nutritional content and bioactive compounds of banana peel and its potential utilization: A review. Journal of Food and Nutrition Science, Special Issue. https://doi.org/10.17756/jfcn.2023-s1-073
- Manso, T., Lores, M., & de Miguel, T. (2021). Antimicrobial activity of polyphenols and natural polyphenolic extracts on clinical isolates. Antibiotics, 11(1), 46. https://doi.org/10.3390/antibiotics11010046
- Maqbool, Z., et al. (2025). Citrus waste as source of bioactive compounds: Extraction and utilization. Discover Food, 5, 8. https://doi.org/10.1007/s44187-025-00276-y
- Masud Parvez, G. M., Tonu, J. F., Ara, R., Joarder, M. M. M., Sarker, R. K., Naznin, M. A., Hossain, M. S., Sultana, R., Parvin, S., & Abdul Kader, M. (2023). Nutritional content and bioactive compounds of banana peel and its potential utilization: A review. Journal of Pharmacognosy and Phytochemistry, 12(1), 14574. https://doi.org/10.22271/phyto.2023.v12.i1c.14574
- Mehdizadeh, M., Omidi, A., Matindike, R., et al. (2025). Agri-waste valorization: Pathways to sustainable bioenergy and biochemical innovation. Circular Economy and Sustainability. https://doi.org/10.1007/s43615-025-00688-z
- Mehta, N., S., J., Kumar, P., Verma, A. K., Umaraw, P., Khatkar, S. K., Khatkar, A. B., Pathak, D., Kaka, U., & Sazili, A. Q. (2022). Ultrasound-assisted extraction and the encapsulation of bioactive components for food applications. Foods, 11(19), 2973. https://doi.org/10.3390/foods11192973
- Mudasir, Y., Aggarwal, P., Aslam, R., & Rehal, J. (2020). Extraction of bioactives from citrus. In Inamuddin, A. M. Asiri, & A. M. Isloor (Eds.), Green sustainable processes for chemical and environmental engineering and science (pp. 357–377). Elsevier. https://doi.org/10.1016/B978-0-12-817388-6.00015-5
- Muley, A. B., Thorat, A. S., Singhal, R. S., & Babu, K. H. (2022). A tri-enzyme co-immobilized magnetic complex: Process details, kinetics, thermodynamics, and applications. International Journal of Biological Macromolecules, 118, 1781–1795. https://doi.org/10.1016/j.jff.2022.105163
- Munir, H., Yaqoob, S., Awan, K. A., Imtiaz, A., Naveed, H., Ahmad, N., Naeem, M., Sultan, W., & Ma, Y. (2024). Unveiling the chemistry of citrus peel: Insights into nutraceutical potential and therapeutic applications. Foods, 13(11), 1681. https://doi.org/10.3390/foods13111681
- Nargotra, P., Ortizo, R. G. G., Wang, J. X., et al. (2024). Enzymes in the bioconversion of food waste into valuable bioproducts: A circular economy perspective. Systems Microbiology and Biomanufacturing, 4, 850–868. https://doi.org/10.1007/s43393-024-00283-7
- Nirmal, N. P., Khanashyam, A. C., Mundanat, A. S., Shah, K., Babu, K. S., Thorakkattu, P., Al-Asmari, F., & Pandiselvam, R. (2023). Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods, 12(3), 556. https://doi.org/10.3390/foods12030556
- Nutritional Phytochemical Composition and In Vitro Functional Properties of Ripe and Unripe Plantain Peels. (2024). ResearchGate preprint.
- Nweke, C. N., Onu, C. E., Nwabanne, J. T., Ohale, P. E., Madiebo, E. M., & Chukwu, M. M. (2023). Optimal pretreatment of plantain peel waste for biogas production using neural-network modeling. Heliyon, 9(11), e21995. https://doi.org/10.1016/j.heliyon.2023.e21995
- Odunayo, O. O. (2025). Citrus peels: An effective source of bioactive compounds. IntechOpen. https://doi.org/10.5772/intechopen.1004330
- Oliveira, M. R. d., Cantorani, J. R. H., & Pilatti, L. A. (2025). Sustainable extraction of bioactive compounds from food processing by-products: Strategies and circular economy insights. Processes, 13(11), 3611. https://doi.org/10.3390/pr13113611
- Omidi, A., et al. (2024). Sustainable valorization strategies for agro-industrial residues. Process Safety and Environmental Protection, 180, 1–15. https://doi.org/10.1016/j.psep.2024.01.055
- Omotayo, A. O., & Aremu, A. O. (2020). Underutilized African indigenous fruit trees and food–nutrition security: Opportunities, challenges, and prospects. Food Security Journal. https://doi.org/10.1002/fes3.220
- Okorie, D., & Eleazu, C. (2015). Nutrient and heavy metal composition of plantain (Musa paradisiaca) and banana (Musa paradisiaca) peels. Food and Nutrition Sciences. https://doi.org/10.4172/2155-9600.1000370
- Okwu, D. E. (2008). Citrus fruits: A rich source of phytochemicals. Journal of Chemistry, details as provided.
- Osorio-Tobón, J. F. (2020). Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology, 57(12), 4299–4315. https://doi.org/10.1007/s13197-020-04433-2
- Perea-Moreno, A. J., & Muñoz-Rodríguez, D. (2024). Agro-industrial wastes valorisation to energy and value-added products for environmental sustainability. In R. T. Kapoor et al. (Eds.), Biomass Valorization (pp. 1–26). Springer. https://doi.org/10.1007/978-981-97-8557-5_1
- Pramanik, P., Chatterjee, S., Sinha, O., & Garai, U. (2023). Bioactive components of banana peel: A comprehensive review. Pure and Applied Biology, 12(1), 470–490. http://dx.doi.org/10.19045/bspab.2023.120049
- Putra, N. R., Aziz, A. H. A., Faizal, A. N. M., & Che Yunus, M. A. (2022). Methods and Potential in Valorization of Banana Peels Waste by Various Extraction Processes: In Review. Sustainability, 14(17), 10571. https://doi.org/10.3390/su141710571
- Rather, J. A., Akhter, N., Ayaz, Q., et al. (2023). Fruit peel valorization, phytochemical profile, biological activity, and applications in food and packaging industries: Comprehensive review. Current Food Science and Technology Reports, 1, 63–79. https://doi.org/10.1007/s43555-023-00007-3
- Rawat, N., Das, S., Wani, A. W., Javeed, K., Qureshi, S. N., & Zarina. (2024). [Article title unavailable]. International Journal of Chemical Studies, 7(7), Article 968. https://doi.org/10.33545/2618060X.2024.v7.i7Sa.968
- ResearchGate. (2023). Antioxidant potential and bioactive compounds in banana peel: A review. Retrieved from https://www.researchgate.net/publication/383213377_Antioxidant_potential_and_bioactive_compounds_in_banana_peel_A_review
- ResearchGate. (2025). Green solvent extraction and eco-friendly novel techniques of bioactive compounds from plant waste. Retrieved from https://www.researchgate.net/publication/396689524
- Ristivojević, P., Krstić Ristivojević, M., Stanković, D., & Cvijetić, I. (2024). Advances in extracting bioactive compounds from food and agricultural waste and by-products using natural deep eutectic solvents: A circular economy perspective. Molecules, 29(19), 4717. https://doi.org/10.3390/molecules29194717
- Saad, A. M., Mohammed, D. M., Alkafaas, S. S., Ghosh, S., Negm, S. H., Salem, H. M., Fahmy, M. A., Semary, H. E., Ibrahim, E. H., AbuQamar, S. F., El-Tarabily, K. A., & El-Saadony, M. T. (2025). Dietary polyphenols and human health: Sources, biological activities, nutritional and immunological aspects, and bioavailability—A comprehensive review. Frontiers in Immunology, 16, 1653378. https://doi.org/10.3389/fimmu.2025.1653378
- Saikia, D., Panme, F. A., Das, D., Nayak, P. K., & Kesavan, R. (2024). Exploring the potential of underutilized fruits and vegetables: Nutrition, sustainability, and future prospects. In S. Roy, P. Nisha, & R. Chakraborty (Eds.), Traditional Foods: The Reinvented Superfoods (pp. 1–20). Springer, Cham. https://doi.org/10.1007/978-3-031-72757-3_6
- Saini, R. K., Ranjit, A., Sharma, K., Prasad, P., Shang, X., Gowda, K. G. M., & Keum, Y.-S. (2022). Bioactive compounds of citrus fruits: Composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants, 11(2), 239. https://doi.org/10.3390/antiox11020239
- Saleem, M., et al. (2023). [Study referenced from Heliyon, 9(4), e15433.] https://doi.org/10.1016/j.crbiot.2023.100152
- Samanta, S., Banerjee, J., Ahmed, R., & Dash, S. K. (2023). Potential benefits of bioactive functional components of citrus fruits for health promotion and disease prevention. In S. Singh Purewal, S. Punia Bangar, & P. Kaur (Eds.), Recent advances in citrus fruits (pp. xx–xx). Springer. https://doi.org/10.1007/978-3-031-37534-7_15
- Santiago, B., Sillero, L., Moreira, M. T., Feijoo, G., & González-García, S. (2023). Agri-food waste valorisation. In P. Chowdhary & A. Raj (Eds.), Agri-Food Waste Valorisation (Vol. 78, pp. 1–44). Royal Society of Chemistry.
- Scientific Bulletin Series F. Biotechnologies (2024). Valorization of vegetal by-products and plant waste for sustainable applications. Scientific Bulletin. Series F. Biotechnologies, Vol. XXVIII, No. 2, 2024. DOI: 10.1016/j.cscee.2024.101066
- Shicai Sun, Yu, Y., Jo, Y., Han, J. H., Xue, Y., Cho, M., Bae, S. J., Ryu, D., Park, W., Ha, K. T., & Zhuang, S. (2024). Impact of extraction techniques on phytochemical composition and bioactivity of natural product mixtures. Innovative Food Science & Emerging Technologies, 103828. https://doi.org/10.1016/j.ifset.2024.103828
- Sidhu, J. S., & Zafar, T. A. (2018). Bioactive compounds in banana fruits and their health benefits. Food Quality and Safety, 2(4), 183–188. https://doi.org/10.1093/fqsafe/fyy019
- Silva, S. O., Mafra, A. K. C., Pelissari, F. M., Rodrigues de Lemos, L., & Molina, G. (2025). Biotechnology in agro-industry: Valorization of agricultural wastes, by-products and sustainable practices. Microorganisms, 13(8), 1789. https://doi.org/10.3390/microorganisms13081789
- Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2020). Phenolic composition, antioxidant potential, and health benefits of citrus peel. Food Research International, 132, 109114. https://doi.org/10.1016/j.foodres.2020.109114
- Sun, S., Yu, Y., Jo, Y., Han, J. H., Xue, Y., Cho, M., Bae, S. J., Ryu, D., Park, W., Ha, K. T., & Zhuang, S. (2024). Impact of extraction techniques on phytochemical composition and bioactivity of natural product mixtures. Innovative Food Science & Emerging Technologies, 103828. https://doi.org/10.1016/j.ifset.2024.103828
- Suri, S., Singh, A., & Nema, P. K. (2022). Current applications of citrus fruit processing waste: A scientific outlook. Applied Food Research, 2(1), 100050. https://doi.org/10.1016/j.afres.2022.100050
- Suriyaprom, S., Mosoni, P., Leroy, S., Kaewkod, T., Desvaux, M., & Tragoolpua, T. (2022). Antioxidants of fruit extracts as antimicrobial agents against pathogenic bacteria. Antioxidants, 11(3), 602. https://doi.org/10.3390/antiox11030602
- Sustainable Food Health. (2024). Functional properties of natural product extracts. https://doi.org/10.1002/fsh3.70012
- Suthar, M. B., Babu, K., Devi, H. L., Lal, J., & Thakur, A. (2024). Enzyme-assisted extraction of bioactive compounds from underutilized plants. Journal reference, details as provided.
- Suthar, M. B., Nadar, S. S., & Rathod, V. K. (2021). Enzyme-assisted extraction of bioactive compounds from underutilized plants for functional food use. Journal of Food Science and Technology, 58(4), 1254–1272.
- Thilakarathna, R. C. N., Siow, L. F., Tang, T. K., et al. (2023). A review on application of ultrasound and ultrasound-assisted technology for seed oil extraction. Journal of Food Science and Technology, 60, 1222–1236. https://doi.org/10.1007/s13197-022-05359-7
- Torres-Valenzuela, L. S., Franco-Urbano, C., Navia-Porras, D. P., Sarmiento, N., & Rojas, C. (2025). Characterization and chemoinformatic prediction of retention indices of metabolites in coffee and plantain by-product flours using GC-TOF MS. Journal of Agricultural and Food Chemistry, 73(47), 30473–30487. https://doi.org/10.1021/acs.jafc.5c11135
- Tsui, T. H., van Loosdrecht, M. C. M., Dai, Y., & Tong, Y. W. (2023). Machine learning and circular bioeconomy: Building new resource efficiency from diverse waste streams. Bioresource Technology, 369, 128445. https://doi.org/10.1016/j.biortech.2022.128445
- Usman, M., Nakagawa, M., & Cheng, S. (2023). Emerging trends in green extraction techniques for bioactive natural products. Processes, 11(12), 3444. https://doi.org/10.3390/pr11123444
- Uzairu, S. M., & Kano, M. K. (2021). Assessment of phytochemical and mineral composition of unripe and ripe plantain (Musa paradisiaca) peels. African Journal of Food Science, 15(3), 107–112.
- V, B., S, L. K., & S, R. K. (2023). Antioxidant and anti-inflammatory properties of the two varieties of Musa acuminata: An in vitro study. Cureus, 15(12), e51260. https://doi.org/10.7759/cureus.51260
- Vieira, R. M., de Freitas, C., Beluomini, M. A., et al. (2025). Exploring fruit waste macromolecules and their derivatives to produce building blocks and materials. Reviews in Environmental Science and Biotechnology, 24, 167–189. https://doi.org/10.1007/s11157-024-09713-3
- Wani, K. M., & Dhanya, M. (2025). Unlocking the potential of banana peel bioactives: Extraction methods, benefits, and industrial applications. Discover Food, 5(8). https://doi.org/10.1007/s44187-025-00276-y
- Wen, L., Zhang, Z., Sun, D. W., Sivagnanam, S. P., & Tiwari, B. K. (2020). Combination of emerging technologies for the extraction of bioactive compounds. Critical Reviews in Food Science and Nutrition, 60(11), 1826–1841. https://doi.org/10.1080/10408398.2019.1602823
- Yalcin, H., & Çapar, T. D. (2017). Bioactive compounds of fruits and vegetables. In F. Yildiz & R. Wiley (Eds.), Minimally processed refrigerated fruits and vegetables (pp. 1–27). Springer. https://doi.org/10.1007/978-1-4939-7018-6_21
- Yaqoob, M., Aggarwal, P., Aslam, R., & Rehal, J. (2020). Extraction of bioactives from citrus. In Green Sustainable Process for Chemical and Environmental Engineering and Science (pp. 357–377). Elsevier. https://doi.org/10.1016/B978-0-12-817388-6.00015-5
- Zaky, A. A., Akram, M. U., Rybak, K., Witrowa-Rajchert, D., & Nowacka, M. (2024). Bioactive compounds from plants and by-products: Novel extraction methods, applications, and limitations. Foods, 13, 1221. https://doi.org/10.3390/foods13061221
- Zaky, M., et al. (2024). Citrus peels: An effective source of bioactive compounds. ResearchGateZou, Z., et al. (2016). The citrus genome and global production studies. Journal reference, details as provided.
Large volumes of byproducts are generated during the processing of citrus, plantain, and banana, much of which
is discarded, contributing to environmental pollution and inefficient resource use. These agro-wastes, however, are rich
sources of bioactive compounds with significant nutritional and therapeutic potential. In the context of increasing global
interest in sustainable resource utilization and circular economy strategies, the valorization of fruit peels represents a
promising pathway for developing high-value functional ingredients for food and pharmaceutical applications. This review
synthesizes current knowledge on the major phytochemicals present in these wastes with particular emphasis on total
phenolics, flavonoids, including quercetin and its derivatives, carotenoids, and sulfur-containing compounds. The reported
biological activities of these compounds, such as antidiabetic, anti-obesity, anticancer, and antimicrobial effects, are
discussed in relation to their relevance for pharmacological and biomedical applications. The review further examines recent
advances in green extraction technologies, focusing on enzyme-assisted and microwave-assisted extraction methods, which
offer improved efficiency and sustainability compared with conventional solvent-intensive and high-temperature techniques.
Additionally, emerging applications of machine learning approaches for identifying, predicting, and prioritizing bioactive
compounds from complex plant matrices are briefly considered.
Keywords :
Bioactive Compounds, Phytochemicals, Total Phenolics, Agro-Wastes, Machine Learning.