Advancements in CRISPR-Cas–Based Biosensors for Detecting Water Pollutants and Contaminants


Authors : Ishmeal Kwaku Duah

Volume/Issue : Volume 10 - 2025, Issue 9 - September


Google Scholar : https://tinyurl.com/2zn44v56

Scribd : https://tinyurl.com/4t85uxp4

DOI : https://doi.org/10.38124/ijisrt/25sep1355

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : These CRISPR-Cas biosensors offer high specificity due to guide RNA programming and exceptional sensitivity often boosted by isothermal amplification, with multiple readout options. This review highlights recent progress in using CRISPR-Cas biosensors to detect vital water pollutants, such as pathogenic microbes, toxins, heavy metals, and organic micropollutants. It examines how these biosensors have transitioned from lab prototypes to field-ready devices, evaluates their effectiveness across various water samples, and discusses the challenges and future opportunities for this innovative technology. The aim is to provide readers with a current overview of the latest advances in CRISPR-Cas biosensor systems, deepen their understanding, and inspire further development of portable CRISPR-Cas technologies.

Keywords : CRISPR-Cas Biosensors, Water Pollutants and Contaminants, Bacteria, Viruses, Heavy Metals, Biotoxins.

References :

  1. J. Hu, X. Qin, J. Zhang, Y. Zhu, W. Zeng, Y. Lin, X. Liu, Polystyrene microplastics disturb the maternal-fetal immune balance and cause reproductive toxicity in pregnant mice, Reprod. Toxicol. 106 (2021) 42–50
  2. C. Vitali, R. Peters, H.G. Janssen, M.W. Nielen, F.S. Ruggeri, Microplastics and nanoplastics in food, water, and beverages, part ii, Methods. TrAC Trends Anal. Chem. (2022), 116819.
  3. A. Sridhar, D. Kannan, A. Kapoor, S. Prabhakar, Extraction and detection methods of microplastics in food and marine systems: a critical review, Chemosphere 286 (2022), 131653.
  4. J.C. Prata, da J.P. Costa, A.C. Duarte, T. Rocha-Santos, Methods for sampling and detection of microplastics in water and sediment: a critical review, TrAC Trends Anal. Chem. 110 (2019) 150–159.
  5. H. Shivram, B.F. Cress, G.J. Knott, J.A. Doudna, Controlling and enhancing CRISPR systems, Nat. Chem. Biol. 17 (2021) 10–19.
  6. Y. Tang, L. Gao, W. Feng, C. Guo, Q. Yang, F. Li, X.C. Le, The CRISPR-Cas toolbox for analytical and diagnostic assay development, Chem. Soc. Rev. 50 (2021) 11844–11869. [15] J.Y. Wang, J.A. Doudna, CRISPR technology: a decade of genome editing is only the beginning, Science 379 (2023) eadd8643.
  7. N.S. McCarty, A.E. Graham, L. Studen´a, R. Ledesma-Amaro, Multiplexed CRISPR technologies for gene editing and transcriptional regulation, Nat. Commun. 11 (2020) 1281.
  8. J. Lu, J. Liu, Y. Guo, Y. Zhang, Y. Xu, X. Wang, CRISPR-Cas9: a method for establishing rat models of drug metabolism and pharmacokinetics, Acta Pharm. Sin. B 11 (2021) 2973–2982.
  9. M. Kampmann, CRISPR-based functional genomics for neurological disease, Nat. Rev. Neurol. 16 (2020) 465–480.
  10. P.A. Clow, M. Du, N. Jillette, A. Taghbalout, J.J. Zhu, A.W. Cheng, CRISPR- mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus, Nat. Commun. 13 (2022) 1871.
  11. S. Gong, S. Zhang, F. Lu, W. Pan, N. Li, B. Tang, CRISPR/Cas-Based in vitro diagnostic platforms for cancer biomarker detection, Anal. Chem. 93 (2021) 11899–11909.
  12. M. Wang, R. Zhang, J. Li, CRISPR/cas systems redefine nucleic acid detection: principles and methods, Biosens. Bioelectron. 165 (2020) 112430.
  13. W. Feng, A.M. Newbigging, J. Tao, Y. Cao, H. Peng, C. Le, J. Wu, B. Pang, J. Li, D. L. Tyrrell, H. Zhang, X.C. Le, CRISPR technology incorporating amplification strategies: molecular assays for nucleic acids, proteins, and small molecules, Chem. Sci. 12 (2021) 4683–4698.
  14. Z. Li, W. Zhao, S. Ma, Z. Li, Y. Yao, T. Fei, A chemical-enhanced system for CRISPR-Based nucleic acid detection, Biosens. Bioelectron. 192 (2021) 113493.
  15. Tao, X.; Yue, L.; Tian, T.; Zhang, Y.; Zhou, X.; Song, E. Sensitive and On-Site Detection of Staphylococcus Aureus Based on CRISPR/Cas 13a-Assisted Chemiluminescence Resonance Energy Transfer. Anal. Chem. 2024, 96, 22, 9270–9277
  16. Zhu, L.; Liang, Z.; Xu, Y.; Chen, Z.; Wang, J.; Zhou, L. Ultrasensitive and Rapid Visual Detection of Escherichia Coli O157:H7 Based on RAA-CRISPR/Cas12a System. Biosensors 2023, 13(6), 659
  17. Duah, IK, Tang, H, Zhang, P. Development of a Novel System Consisting of a Reductase Like Nanozyme and the Reaction of Resazurin and Ammonia Borane for Sensitive Fluorometric Sensing. Anal. Chem. 2024, 96, 36, 14424–14432
  18. Patnaik, A.; Rai, S. K.; Dhaked, R. K. CRISPR-Cas12a Assisted Recombinase Based Strand Invading Isothermal Amplification Platform Designed for Targeted Detection of Bacillus Anthracis Sterne. International Journal of Biological Macromolecules 263 (2024) 130216
  19. Liang, J.; Sui, X.; Xu, Y.; Zheng, X.; Tan, L. Establishment of a Sensitive and Visual Detection Platform for Viable Salmonella in Wastewater That Combines Propidium Monoazide with Recombinase Polymerase Amplification—CRISPR/Cas12a System. Microorganisms 2025, 13(5), 1166
  20. Cao, H.; Mao, K.; Fang, R.; Xu, P.; Zhao, Y.; Zhang, X.; Zhou, H.; Yang, Z.; Zhang, H.; Jiang, G. Paper Device Combining CRISPR/Cas12a and Reverse-Transcription Loop-Mediated Isothermal Amplification for SARS-CoV-2 Detection in Wastewater. Environ. Sci. Technol. 2022, 56, 18, 13245–13253
  21. Cheng, ZH., Luo, XY., Yu, SS. et al. Tunable control of Cas12 activity promotes universal and fast one-pot nucleic acid detection. Nat Commun 16, 1166 (2025)
  22. Sun, Y.; Zhang, W.; Zhang, H.; Zhao, F.; Su, L. CRISPR/Cas13a Combined with Reverse Transcription and RPA for NoV GII.4 Monitoring in Water Environments. Environment International 195 (2025) 109195
  23. Kang, Y.; Su, G.; Yu, Y.; Cao, J.; Wang, J.; Yan, B. CRISPR-Cas12a-Based Aptasensor for On-Site and Highly Sensitive Detection of Microcystin-LR in Freshwater. Environ. Sci. Technol. 2022, 56, 7, 4101–4110
  24. Wu, P., Zhang, M., Xue, X. et al. Dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase-tethered magnetic microspheres for colorimetric detection of microcystin-LR. Microchim Acta 190, 314 (2023)
  25. Sun, W., Ren, X., Xiao, Y. et al. Fluorescent/colorimetric dual-mode for detecting of MC-LR using bidirectional RCA coupled with CdTe QDs. Microchim Acta 192, 189 (2025).
  26. Kong, F.; Wang, C.; Peng, S.; Chen, Z.; Huang, Y.; Zhang, J.; Wang, J.; Wang, D. CRISPR-Hg: Rapid and Visual Detection of Hg2+ Based on PCR Coupled with CRISPR/Cas12a. Talanta 277 (2024) 126379
  27. Zhou, W.; Xiang, Y.; Yang, J.; Chen, T. Metal Ion-Complexed DNA Probe Coupled with CRISPR/Cas12a Amplification and AuNPs for Sensitive Colorimetric Assay of Metallothionein in Fish. Spectrochim. Acta A 321 (2024) 124682

These CRISPR-Cas biosensors offer high specificity due to guide RNA programming and exceptional sensitivity often boosted by isothermal amplification, with multiple readout options. This review highlights recent progress in using CRISPR-Cas biosensors to detect vital water pollutants, such as pathogenic microbes, toxins, heavy metals, and organic micropollutants. It examines how these biosensors have transitioned from lab prototypes to field-ready devices, evaluates their effectiveness across various water samples, and discusses the challenges and future opportunities for this innovative technology. The aim is to provide readers with a current overview of the latest advances in CRISPR-Cas biosensor systems, deepen their understanding, and inspire further development of portable CRISPR-Cas technologies.

Keywords : CRISPR-Cas Biosensors, Water Pollutants and Contaminants, Bacteria, Viruses, Heavy Metals, Biotoxins.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe