Authors :
Ishmeal Kwaku Duah
Volume/Issue :
Volume 10 - 2025, Issue 9 - September
Google Scholar :
https://tinyurl.com/2zn44v56
Scribd :
https://tinyurl.com/4t85uxp4
DOI :
https://doi.org/10.38124/ijisrt/25sep1355
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
These CRISPR-Cas biosensors offer high specificity due to guide RNA programming and exceptional sensitivity
often boosted by isothermal amplification, with multiple readout options. This review highlights recent progress in using
CRISPR-Cas biosensors to detect vital water pollutants, such as pathogenic microbes, toxins, heavy metals, and organic
micropollutants. It examines how these biosensors have transitioned from lab prototypes to field-ready devices, evaluates
their effectiveness across various water samples, and discusses the challenges and future opportunities for this innovative
technology. The aim is to provide readers with a current overview of the latest advances in CRISPR-Cas biosensor systems,
deepen their understanding, and inspire further development of portable CRISPR-Cas technologies.
Keywords :
CRISPR-Cas Biosensors, Water Pollutants and Contaminants, Bacteria, Viruses, Heavy Metals, Biotoxins.
References :
- J. Hu, X. Qin, J. Zhang, Y. Zhu, W. Zeng, Y. Lin, X. Liu, Polystyrene microplastics disturb the maternal-fetal immune balance and cause reproductive toxicity in pregnant mice, Reprod. Toxicol. 106 (2021) 42–50
- C. Vitali, R. Peters, H.G. Janssen, M.W. Nielen, F.S. Ruggeri, Microplastics and nanoplastics in food, water, and beverages, part ii, Methods. TrAC Trends Anal. Chem. (2022), 116819.
- A. Sridhar, D. Kannan, A. Kapoor, S. Prabhakar, Extraction and detection methods of microplastics in food and marine systems: a critical review, Chemosphere 286 (2022), 131653.
- J.C. Prata, da J.P. Costa, A.C. Duarte, T. Rocha-Santos, Methods for sampling and detection of microplastics in water and sediment: a critical review, TrAC Trends Anal. Chem. 110 (2019) 150–159.
- H. Shivram, B.F. Cress, G.J. Knott, J.A. Doudna, Controlling and enhancing CRISPR systems, Nat. Chem. Biol. 17 (2021) 10–19.
- Y. Tang, L. Gao, W. Feng, C. Guo, Q. Yang, F. Li, X.C. Le, The CRISPR-Cas toolbox for analytical and diagnostic assay development, Chem. Soc. Rev. 50 (2021) 11844–11869. [15] J.Y. Wang, J.A. Doudna, CRISPR technology: a decade of genome editing is only the beginning, Science 379 (2023) eadd8643.
- N.S. McCarty, A.E. Graham, L. Studen´a, R. Ledesma-Amaro, Multiplexed CRISPR technologies for gene editing and transcriptional regulation, Nat. Commun. 11 (2020) 1281.
- J. Lu, J. Liu, Y. Guo, Y. Zhang, Y. Xu, X. Wang, CRISPR-Cas9: a method for establishing rat models of drug metabolism and pharmacokinetics, Acta Pharm. Sin. B 11 (2021) 2973–2982.
- M. Kampmann, CRISPR-based functional genomics for neurological disease, Nat. Rev. Neurol. 16 (2020) 465–480.
- P.A. Clow, M. Du, N. Jillette, A. Taghbalout, J.J. Zhu, A.W. Cheng, CRISPR- mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus, Nat. Commun. 13 (2022) 1871.
- S. Gong, S. Zhang, F. Lu, W. Pan, N. Li, B. Tang, CRISPR/Cas-Based in vitro diagnostic platforms for cancer biomarker detection, Anal. Chem. 93 (2021) 11899–11909.
- M. Wang, R. Zhang, J. Li, CRISPR/cas systems redefine nucleic acid detection: principles and methods, Biosens. Bioelectron. 165 (2020) 112430.
- W. Feng, A.M. Newbigging, J. Tao, Y. Cao, H. Peng, C. Le, J. Wu, B. Pang, J. Li, D. L. Tyrrell, H. Zhang, X.C. Le, CRISPR technology incorporating amplification strategies: molecular assays for nucleic acids, proteins, and small molecules, Chem. Sci. 12 (2021) 4683–4698.
- Z. Li, W. Zhao, S. Ma, Z. Li, Y. Yao, T. Fei, A chemical-enhanced system for CRISPR-Based nucleic acid detection, Biosens. Bioelectron. 192 (2021) 113493.
- Tao, X.; Yue, L.; Tian, T.; Zhang, Y.; Zhou, X.; Song, E. Sensitive and On-Site Detection of Staphylococcus Aureus Based on CRISPR/Cas 13a-Assisted Chemiluminescence Resonance Energy Transfer. Anal. Chem. 2024, 96, 22, 9270–9277
- Zhu, L.; Liang, Z.; Xu, Y.; Chen, Z.; Wang, J.; Zhou, L. Ultrasensitive and Rapid Visual Detection of Escherichia Coli O157:H7 Based on RAA-CRISPR/Cas12a System. Biosensors 2023, 13(6), 659
- Duah, IK, Tang, H, Zhang, P. Development of a Novel System Consisting of a Reductase Like Nanozyme and the Reaction of Resazurin and Ammonia Borane for Sensitive Fluorometric Sensing. Anal. Chem. 2024, 96, 36, 14424–14432
- Patnaik, A.; Rai, S. K.; Dhaked, R. K. CRISPR-Cas12a Assisted Recombinase Based Strand Invading Isothermal Amplification Platform Designed for Targeted Detection of Bacillus Anthracis Sterne. International Journal of Biological Macromolecules 263 (2024) 130216
- Liang, J.; Sui, X.; Xu, Y.; Zheng, X.; Tan, L. Establishment of a Sensitive and Visual Detection Platform for Viable Salmonella in Wastewater That Combines Propidium Monoazide with Recombinase Polymerase Amplification—CRISPR/Cas12a System. Microorganisms 2025, 13(5), 1166
- Cao, H.; Mao, K.; Fang, R.; Xu, P.; Zhao, Y.; Zhang, X.; Zhou, H.; Yang, Z.; Zhang, H.; Jiang, G. Paper Device Combining CRISPR/Cas12a and Reverse-Transcription Loop-Mediated Isothermal Amplification for SARS-CoV-2 Detection in Wastewater. Environ. Sci. Technol. 2022, 56, 18, 13245–13253
- Cheng, ZH., Luo, XY., Yu, SS. et al. Tunable control of Cas12 activity promotes universal and fast one-pot nucleic acid detection. Nat Commun 16, 1166 (2025)
- Sun, Y.; Zhang, W.; Zhang, H.; Zhao, F.; Su, L. CRISPR/Cas13a Combined with Reverse Transcription and RPA for NoV GII.4 Monitoring in Water Environments. Environment International 195 (2025) 109195
- Kang, Y.; Su, G.; Yu, Y.; Cao, J.; Wang, J.; Yan, B. CRISPR-Cas12a-Based Aptasensor for On-Site and Highly Sensitive Detection of Microcystin-LR in Freshwater. Environ. Sci. Technol. 2022, 56, 7, 4101–4110
- Wu, P., Zhang, M., Xue, X. et al. Dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase-tethered magnetic microspheres for colorimetric detection of microcystin-LR. Microchim Acta 190, 314 (2023)
- Sun, W., Ren, X., Xiao, Y. et al. Fluorescent/colorimetric dual-mode for detecting of MC-LR using bidirectional RCA coupled with CdTe QDs. Microchim Acta 192, 189 (2025).
- Kong, F.; Wang, C.; Peng, S.; Chen, Z.; Huang, Y.; Zhang, J.; Wang, J.; Wang, D. CRISPR-Hg: Rapid and Visual Detection of Hg2+ Based on PCR Coupled with CRISPR/Cas12a. Talanta 277 (2024) 126379
- Zhou, W.; Xiang, Y.; Yang, J.; Chen, T. Metal Ion-Complexed DNA Probe Coupled with CRISPR/Cas12a Amplification and AuNPs for Sensitive Colorimetric Assay of Metallothionein in Fish. Spectrochim. Acta A 321 (2024) 124682
These CRISPR-Cas biosensors offer high specificity due to guide RNA programming and exceptional sensitivity
often boosted by isothermal amplification, with multiple readout options. This review highlights recent progress in using
CRISPR-Cas biosensors to detect vital water pollutants, such as pathogenic microbes, toxins, heavy metals, and organic
micropollutants. It examines how these biosensors have transitioned from lab prototypes to field-ready devices, evaluates
their effectiveness across various water samples, and discusses the challenges and future opportunities for this innovative
technology. The aim is to provide readers with a current overview of the latest advances in CRISPR-Cas biosensor systems,
deepen their understanding, and inspire further development of portable CRISPR-Cas technologies.
Keywords :
CRISPR-Cas Biosensors, Water Pollutants and Contaminants, Bacteria, Viruses, Heavy Metals, Biotoxins.