Authors :
Anil Kumar; Aman Sharma; Arzoo Imam; Abhilasha Devi
Volume/Issue :
Volume 10 - 2025, Issue 10 - October
Google Scholar :
https://tinyurl.com/36n32rxd
Scribd :
https://tinyurl.com/53dz8trk
DOI :
https://doi.org/10.38124/ijisrt/25oct418
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
The increasing occurrence of multidrug-resistant (MDR) bacteria, commonly known as superbugs. It is a leading
global health threat. The antibiotic discovery pipeline is effectively stagnant due to excessive costs, a long lead time for drug
development, and decreased profits for pharmaceutical companies. Artificial intelligence (AI) and machine learning (ML)
have proven to be thriving zeitgeists for advancing antimicrobial research through the rapid evaluations of large biological
and chemical datasets, predicting antimicrobial activity, identifying novel drug targets, and optimizing pharmacokinetics.
This review outlines the various applications of AI-based endeavours in solving the issue of MDR pathogens. These include
target identification, virtual screenings, de novo drug design, drug repurposing, optimizing pharmacokinetics, and
integrating with experimental systems biology. We will discuss significant discoveries such as halicin and abaucin, as well as
limitations including data availability and interpretability. We will explore regulatory aspects and ethical aspects of AI and
ML applications, and we will propose future directions for integrating AI and ML in clinical microbiology and personalized
medicine to subsume the global antimicrobial resistance (AMR) crisis.
References :
- Ahn, N. G., & Wang, A. H.-J. (2008). Proteomics and genomics: Perspectives on drug and target discovery. Current Opinion in Chemical Biology, 12(1), 1–3. https://doi.org/10.1016/j.cbpa.2008.02.016
- Arnold, A., McLellan, S., & Stokes, J. M. (2025). How AI can help us beat AMR. Npj Antimicrobials and Resistance, 3, 18. https://doi.org/10.1038/s44259-025-00085-4
- Awan, R. E., Zainab, S., Yousuf, F. J., & Mughal, S. (2024). AI-driven drug discovery: Exploring Abaucin as a promising treatment against multidrug-resistant Acinetobacter baumannii. Health Science Reports, 7(6), e2150. https://doi.org/10.1002/hsr2.2150
- Bi, X., Wang, Y., Wang, J., & Liu, C. (2025). Machine Learning for Multi-Target Drug Discovery: Challenges and Opportunities in Systems Pharmacology. Pharmaceutics, 17(9), 1186. https://doi.org/10.3390/pharmaceutics17091186
- Brown, E. D., & Wright, G. D. (2016). Antibacterial drug discovery in the resistance era. Nature, 529(7586), 336–343. https://doi.org/10.1038/nature17042
- Cesaro, A., Hoffman, S. C., Das, P., & de la Fuente-Nunez, C. (2025). Challenges and applications of artificial intelligence in infectious diseases and antimicrobial resistance. Npj Antimicrobials and Resistance, 3, 2. https://doi.org/10.1038/s44259-024-00068-x
- Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018a). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039
- Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018b). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039
- Chen, L., Li, S., & She, Z. (2025). A study on the impact of artificial intelligence applications on corporate green technological innovation: A mechanism analysis from multiple perspectives. International Review of Economics & Finance, 103, 104490. https://doi.org/10.1016/j.iref.2025.104490
- Cosconati, S., Forli, S., Perryman, A. L., Harris, R., Goodsell, D. S., & Olson, A. J. (2010). Virtual Screening with AutoDock: Theory and Practice. Expert Opinion on Drug Discovery, 5(6), 597–607. https://doi.org/10.1517/17460441.2010.484460
- Derraz, B., Breda, G., Kaempf, C., Baenke, F., Cotte, F., Reiche, K., Köhl, U., Kather, J. N., Eskenazy, D., & Gilbert, S. (2024). New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. NPJ Precision Oncology, 8, 23. https://doi.org/10.1038/s41698-024-00517-w
- DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics, 47, 20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012
- Dubey, A. K. (n.d.). Soil Fungi: Diversity and Pathogenicity.
- Eddershaw, P. J., Beresford, A. P., & Bayliss, M. K. (2000). ADME/PK as part of a rational approach to drug discovery. Drug Discovery Today, 5(9), 409–414. https://doi.org/10.1016/S1359-6446(00)01540-3
- Elalouf, A., Elalouf, H., Rosenfeld, A., & Maoz, H. (2025). Artificial intelligence in drug resistance management. 3 Biotech, 15(5), 126. https://doi.org/10.1007/s13205-025-04282-w
- Gangwal, A., Ansari, A., Ahmad, I., Azad, A. K., Kumarasamy, V., Subramaniyan, V., & Wong, L. S. (2024). Generative artificial intelligence in drug discovery: Basic framework, recent advances, challenges, and opportunities. Frontiers in Pharmacology, 15, 1331062. https://doi.org/10.3389/fphar.2024.1331062
- Gangwal, A., & Lavecchia, A. (2024a). Unleashing the power of generative AI in drug discovery. Drug Discovery Today, 29(6), 103992. https://doi.org/10.1016/j.drudis.2024.103992
- Gangwal, A., & Lavecchia, A. (2024b). Unleashing the power of generative AI in drug discovery. Drug Discovery Today, 29(6), 103992. https://doi.org/10.1016/j.drudis.2024.103992
- Ivanenkov, Y. A., Polykovskiy, D., Bezrukov, D., Zagribelnyy, B., Aladinskiy, V., Kamya, P., Aliper, A., Ren, F., & Zhavoronkov, A. (2023). Chemistry42: An AI-Driven Platform for Molecular Design and Optimization. Journal of Chemical Information and Modeling, 63(3), 695–701. https://doi.org/10.1021/acs.jcim.2c01191
- James, K., & Muñoz-Muñoz, J. (n.d.). Computational Network Inference for Bacterial Interactomics. mSystems, 7(2), e01456-21. https://doi.org/10.1128/msystems.01456-21
- Jarallah, S. J., Almughem, F. A., Alhumaid, N. K., Fayez, N. A., Alradwan, I., Alsulami, K. A., Tawfik, E. A., & Alshehri, A. A. (2025). Artificial intelligence revolution in drug discovery: A paradigm shift in pharmaceutical innovation. International Journal of Pharmaceutics, 680, 125789. https://doi.org/10.1016/j.ijpharm.2025.125789
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
- Kandoi, G., Acencio, M. L., & Lemke, N. (2015). Prediction of Druggable Proteins Using Machine Learning and Systems Biology: A Mini-Review. Frontiers in Physiology, 6, 366. https://doi.org/10.3389/fphys.2015.00366
- Kim, J., Cheong, Y. E., Jung, I., & Kim, K. H. (2019). Metabolomic and Transcriptomic Analyses of Escherichia coli for Efficient Fermentation of L-Fucose. Marine Drugs, 17(2), 82. https://doi.org/10.3390/md17020082
- Kulkarni, V. S., Alagarsamy, V., Solomon, V. R., Jose, P. A., & Murugesan, S. (2023). Drug Repurposing: An Effective Tool in Modern Drug Discovery. Russian Journal of Bioorganic Chemistry, 49(2), 157–166. https://doi.org/10.1134/S1068162023020139
- Kushwaha, A., Kumar, A., & Sharma, A. (2025). Bacterial Spectrum and Antibiotic Resistance Pattern in Urinary Tract Infection Cases at a Tertiary Care Hospital. International Journal of Science and Research (IJSR), 755–760. https://doi.org/10.21275/SR25916213348
- Li, Y., Meng, Q., Yang, M., Liu, D., Hou, X., Tang, L., Wang, X., Lyu, Y., Chen, X., Liu, K., Yu, A.-M., Zuo, Z., & Bi, H. (2019). Current trends in drug metabolism and pharmacokinetics. Acta Pharmaceutica Sinica. B, 9(6), 1113–1144. https://doi.org/10.1016/j.apsb.2019.10.001
- Liu, B., He, H., Luo, H., Zhang, T., & Jiang, J. (2019). Artificial intelligence and big data facilitated targeted drug discovery. Stroke and Vascular Neurology, 4(4), 206–213. https://doi.org/10.1136/svn-2019-000290
- Machtel, P., Bąkowska-Żywicka, K., & Żywicki, M. (2016). Emerging applications of riboswitches – from antibacterial targets to molecular tools. Journal of Applied Genetics, 57(4), 531–541. https://doi.org/10.1007/s13353-016-0341-x
- McArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J., Bhullar, K., Canova, M. J., De Pascale, G., Ejim, L., Kalan, L., King, A. M., Koteva, K., Morar, M., Mulvey, M. R., O’Brien, J. S., Pawlowski, A. C., Piddock, L. J. V., Spanogiannopoulos, P., … Wright, G. D. (2013). The Comprehensive Antibiotic Resistance Database. Antimicrobial Agents and Chemotherapy, 57(7), 3348–3357. https://doi.org/10.1128/AAC.00419-13
- McCoubrey, L. E., Elbadawi, M., Orlu, M., Gaisford, S., & Basit, A. W. (n.d.). Harnessing machine learning for development of microbiome therapeutics. Gut Microbes, 13(1), 1872323. https://doi.org/10.1080/19490976.2021.1872323
- Mostafa, F., & Chen, M. (2024). Computational models for predicting liver toxicity in the deep learning era. Frontiers in Toxicology, 5, 1340860. https://doi.org/10.3389/ftox.2023.1340860
- Navarro-López, D. E., Perfecto-Avalos, Y., Zavala, A., de Luna, M. A., Sanchez-Martinez, A., Ceballos-Sanchez, O., Tiwari, N., López-Mena, E. R., & Sanchez-Ante, G. (2024). Unraveling the Complex Interactions: Machine Learning Approaches to Predict Bacterial Survival against ZnO and Lanthanum-Doped ZnO Nanoparticles. Antibiotics, 13(3), 220. https://doi.org/10.3390/antibiotics13030220
- Opal, S. M. (2016). Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance. Critical Care, 20, 397. https://doi.org/10.1186/s13054-016-1549-1
- Pathan, I., Raza, A., Sahu, A., Joshi, M., Sahu, Y., Patil, Y., Raza, M. A., & Ajazuddin. (2025). Revolutionizing pharmacology: AI-powered approaches in molecular modeling and ADMET prediction. Medicine in Drug Discovery, 28, 100223. https://doi.org/10.1016/j.medidd.2025.100223
- Payne, D. J., Gwynn, M. N., Holmes, D. J., & Pompliano, D. L. (2007). Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nature Reviews. Drug Discovery, 6(1), 29–40. https://doi.org/10.1038/nrd2201
- Peleg, A. Y., Seifert, H., & Paterson, D. L. (2008). Acinetobacter baumannii: Emergence of a Successful Pathogen. Clinical Microbiology Reviews, 21(3), 538–582. https://doi.org/10.1128/CMR.00058-07
- Pennisi, F., Pinto, A., Ricciardi, G. E., Signorelli, C., & Gianfredi, V. (2025). The Role of Artificial Intelligence and Machine Learning Models in Antimicrobial Stewardship in Public Health: A Narrative Review. Antibiotics, 14(2), 134. https://doi.org/10.3390/antibiotics14020134
- Pinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, S., Schirra, H. J., & Wishart, D. (2019). Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community. Metabolites, 9(4), 76. https://doi.org/10.3390/metabo9040076
- Polishchuk, P. G., Madzhidov, T. I., & Varnek, A. (2013). Estimation of the size of drug-like chemical space based on GDB-17 data. Journal of Computer-Aided Molecular Design, 27(8), 675–679. https://doi.org/10.1007/s10822-013-9672-4
- Popa, S. L., Pop, C., Dita, M. O., Brata, V. D., Bolchis, R., Czako, Z., Saadani, M. M., Ismaiel, A., Dumitrascu, D. I., Grad, S., David, L., Cismaru, G., & Padureanu, A. M. (2022). Deep Learning and Antibiotic Resistance. Antibiotics, 11(11), 1674. https://doi.org/10.3390/antibiotics11111674
- Popova, M., Isayev, O., & Tropsha, A. (2018). Deep reinforcement learning for de novo drug design. Science Advances, 4(7), eaap7885. https://doi.org/10.1126/sciadv.aap7885
- Preuer, K., Lewis, R. P. I., Hochreiter, S., Bender, A., Bulusu, K. C., & Klambauer, G. (2018). DeepSynergy: Predicting anti-cancer drug synergy with Deep Learning. Bioinformatics (Oxford, England), 34(9), 1538–1546. https://doi.org/10.1093/bioinformatics/btx806
- Price, R. (2016). O’Neill report on antimicrobial resistance: Funding for antimicrobial specialists should be improved. European Journal of Hospital Pharmacy, 23(4), 245–247. https://doi.org/10.1136/ejhpharm-2016-001013
- Qiao, D., Li, H., Zhang, X., Chen, X., Zhang, J., Zou, J., Zhao, D., Zhu, W., Qian, X., & Li, H. (2025). The Convergence of Artificial Intelligence and Microfluidics in Drug Research and Development. Engineering. https://doi.org/10.1016/j.eng.2025.07.025
- Rifaioglu, A. S., Atas, H., Martin, M. J., Cetin-Atalay, R., Atalay, V., & Doğan, T. (2019). Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Briefings in Bioinformatics, 20(5), 1878–1912. https://doi.org/10.1093/bib/bby061
- Rossiter, S. E., Fletcher, M. H., & Wuest, W. M. (2017). Natural Products as Platforms To Overcome Antibiotic Resistance. Chemical Reviews, 117(19), 12415–12474. https://doi.org/10.1021/acs.chemrev.7b00283
- Sanchez-Lengeling, B., & Aspuru-Guzik, A. (2018). Inverse molecular design using machine learning: Generative models for matter engineering. Science (New York, N.Y.), 361(6400), 360–365. https://doi.org/10.1126/science.aat2663
- Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024a). Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics, 16(10), 1328. https://doi.org/10.3390/pharmaceutics16101328
- Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024b). Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics, 16(10), 1328. https://doi.org/10.3390/pharmaceutics16101328
- Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024c). Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics, 16(10), 1328. https://doi.org/10.3390/pharmaceutics16101328
- Singh, A. (2024). Artificial intelligence for drug repurposing against infectious diseases. Artificial Intelligence Chemistry, 2(2), 100071. https://doi.org/10.1016/j.aichem.2024.100071
- Singh, A., & Kumar, A. (2025). Bacteriological Profile and Antibiotic Resistance Pattern in Respiratory Tract Infection at a Tertiary Care Hospital. International Journal of Science and Research (IJSR), 1517–1526. https://doi.org/10.21275/SR25930082238
- Singh, S., Gupta, H., Sharma, P., & Sahi, S. (2024). Advances in Artificial Intelligence (AI)-assisted approaches in drug screening. Artificial Intelligence Chemistry, 2(1), 100039. https://doi.org/10.1016/j.aichem.2023.100039
- So, A. D., & Shah, T. A. (2014). New business models for antibiotic innovation. Upsala Journal of Medical Sciences, 119(2), 176–180. https://doi.org/10.3109/03009734.2014.898717
- Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair, C. R., French, S., Carfrae, L. A., Bloom-Ackermann, Z., Tran, V. M., Chiappino-Pepe, A., Badran, A. H., Andrews, I. W., Chory, E. J., Church, G. M., Brown, E. D., Jaakkola, T. S., Barzilay, R., & Collins, J. J. (2020). A Deep Learning Approach to Antibiotic Discovery. Cell, 180(4), 688-702.e13. https://doi.org/10.1016/j.cell.2020.01.021
- Tang, K. W. K., Millar, B. C., & Moore, J. E. (2023). Antimicrobial Resistance (AMR). British Journal of Biomedical Science, 80, 11387. https://doi.org/10.3389/bjbs.2023.11387
- Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews. Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5
- Wang, X., Hripcsak, G., Markatou, M., & Friedman, C. (2009). Active Computerized Pharmacovigilance Using Natural Language Processing, Statistics, and Electronic Health Records: A Feasibility Study. Journal of the American Medical Informatics Association : JAMIA, 16(3), 328–337. https://doi.org/10.1197/jamia.M3028
- Wei, C.-H., Peng, Y., Leaman, R., Davis, A. P., Mattingly, C. J., Li, J., Wiegers, T. C., & Lu, Z. (2016). Assessing the state of the art in biomedical relation extraction: Overview of the BioCreative V chemical-disease relation (CDR) task. Database: The Journal of Biological Databases and Curation, 2016, baw032. https://doi.org/10.1093/database/baw032
- Weiner, E. B., Dankwa-Mullan, I., Nelson, W. A., & Hassanpour, S. (2025). Ethical challenges and evolving strategies in the integration of artificial intelligence into clinical practice. PLOS Digital Health, 4(4), e0000810. https://doi.org/10.1371/journal.pdig.0000810
- Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 160018. https://doi.org/10.1038/sdata.2016.18
- Withers, C. A., Rufai, A. M., Venkatesan, A., Tirunagari, S., Lobentanzer, S., Harrison, M., & Zdrazil, B. (2025). Natural language processing in drug discovery: Bridging the gap between text and therapeutics with artificial intelligence. Expert Opinion on Drug Discovery, 20(6), 765–783. https://doi.org/10.1080/17460441.2025.2490835
- Yu, W., Shen, P., Luo, Q., Xiong, L., & Xiao, Y. (2022). Efficacy and safety of novel carbapenem–β-lactamase inhibitor combinations: Results from phase II and III trials. Frontiers in Cellular and Infection Microbiology, 12, 925662. https://doi.org/10.3389/fcimb.2022.925662
- Zhang, J., Li, H., Zhang, Y., Huang, J., Ren, L., Zhang, C., Zou, Q., & Zhang, Y. (2025). Computational toxicology in drug discovery: Applications of artificial intelligence in ADMET and toxicity prediction. Briefings in Bioinformatics, 26(5), bbaf533. https://doi.org/10.1093/bib/bbaf533
- Zhang, Y., Li, J., Lin, S., Zhao, J., Xiong, Y., & Wei, D.-Q. (2024). An end-to-end method for predicting compound-protein interactions based on simplified homogeneous graph convolutional network and pre-trained language model. Journal of Cheminformatics, 16, 67. https://doi.org/10.1186/s13321-024-00862-9
The increasing occurrence of multidrug-resistant (MDR) bacteria, commonly known as superbugs. It is a leading
global health threat. The antibiotic discovery pipeline is effectively stagnant due to excessive costs, a long lead time for drug
development, and decreased profits for pharmaceutical companies. Artificial intelligence (AI) and machine learning (ML)
have proven to be thriving zeitgeists for advancing antimicrobial research through the rapid evaluations of large biological
and chemical datasets, predicting antimicrobial activity, identifying novel drug targets, and optimizing pharmacokinetics.
This review outlines the various applications of AI-based endeavours in solving the issue of MDR pathogens. These include
target identification, virtual screenings, de novo drug design, drug repurposing, optimizing pharmacokinetics, and
integrating with experimental systems biology. We will discuss significant discoveries such as halicin and abaucin, as well as
limitations including data availability and interpretability. We will explore regulatory aspects and ethical aspects of AI and
ML applications, and we will propose future directions for integrating AI and ML in clinical microbiology and personalized
medicine to subsume the global antimicrobial resistance (AMR) crisis.