An Analytical Model of Anisotropic Charged Strange Star and Prediction of Mass Admitting MIT Bag Equation of State


Authors : S. Sarkar

Volume/Issue : Volume 10 - 2025, Issue 9 - September


Google Scholar : https://tinyurl.com/4m4m68et

Scribd : https://tinyurl.com/2nrs5kaw

DOI : https://doi.org/10.38124/ijisrt/25sep1255

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : In this study, we investigate the relativistic star model while accounting for pressure anisotropy. Anisotropic solution to Einstein equation has been pro- posed for strange quark stars using the inner space time geometry defined by the metric component gtt =H(1+ x) n , where n is a parameter. Taking into account the equation of state for strange matter, expressed Pr= 1 3 (ρ-4Bg), where Bg is referred to as the Bag constant with in the framework of the MIT Bag model, we have successfully derived a stellar model. We posit the surface value of energy density to be ρs=4Bg. By establishing the constraint value of Bg with in the interval of 57.55- 95.11MeV/fm3 , which is requisite for the stability of quark matter in comparison to neutron matter at zero external pressure, we have conducted an assessment of the maximum mass and radius of strange quark star along with other pertinent characteristics. The investigation reveals that when the bag constant equals Bg= 57.55 MeV/fm3 , the corresponding maximum stellar mass reaches Mmax=2.38M⊙ with a maximum radius of bmax=13.21 km. Conversely, when the bag constant increases to Bg=95.11 MeV/fm3 , the maximum achievable mass decreases to Mmax=1.85 M⊙ while the maximum radius reduces to bmax=10.27km for the isotropic stellar configuration. When pressure anisotropy is present, the maximum mass value demonstrates an increase. Based upon our theoretical frame work, we have predicted the radii of recently detected pulsars and secondary celestial bodies observed in gravitational wave events GW170817 and GW190814.The current theoretical model satisfies all requisite energy conditions.

Keywords : General Relativity. Theoretical Astrophysics. Einstein Equations. Compact Stars.

References :

  1. Lugones, G. and Arbail, J.D.V.:Phys. Rev. D 95, 064022 (2017)
  2. Brilenkov, M.,et al.:JCAP08,002(2013)
  3. Arbail,J.D.V.andMalheiro,M.: JCAP11,012(2016)
  4. Paulucci,L.andHorvath,J.E.:Phys.Lett.B733,164 (2014)
  5. Chowdhury, S.R., et al.: Int. J. Mod. Phys. D 29, 2050001 (2020)
  6. Kapusta, J.: Finite Temperature Field Theory, (Cambridge Univ. Press), p. 163-165 (1994)
  7. Madsen,J.:Lect.NotesPhys.,516,162,(1999)
  8. Farhi, E. and Jaffe, R. L.: Phys. Rev., D 30, 2379, (1984)
  9. Ruderman, R.:Astron. Astrophys., 10, 427 (1972)
  10. Canuto, V.:Ann. Rev. Astron. Astrophys., 12, 167 (1974)
  11. Bowers, R. and Liang, E.:Astrophys. J., 188, 657 (1974)
  12. Kippenhahn, R. A.: Weigert,StellerStructure and Evolution(Springer,Berlin,1990)
  13. Herrera,L.and Santos,N.O.:Phys.Report.,286,53 (1997)
  14. Sawyer, R. F.:Phys. Rev. Lett., 29, 382 (1972)
  15. Sokolov, A. I.:J. Exp. Theo. Phys., 79, 1137 (1980)
  16. Mak, M. K. and Harko, T.:Chin. J. Astron. Astrophys., 2, 248 (2002)
  17. Maharaj, S.D. and Marteens, R.:Gen. Rel. Grav., 21, 899(1989)
  18. Gokhroo, M. K. and Mehra, A.L.:Gen. Rel. Grav., 26, 75 (1994)
  19. Dev, K. and Gleiser, M.:Gen. Rel. Grav., 35, 1435.(2003)
  20. Dev,K. and Gleisser,M.:Int.J.Mod.Phys.,D13,1389,(2004)
  21. Bayin, S.S.: Physical Review, D 26, 1262-1274 (1982)
  22. Krori, K.D., Borgohaiann, P. and Devi, R.:Canadian Journal of Physics,62,239-246(1984)
  23. Herrera,L.and PoncedeLeon,:J.JournalofMath.Phys.,26,2302-2307(1985)
  24. Bondi, H.:Mon. Not. R. Astron. Soc., 259, 365-368 (1992)
  25. Bhar,P.and Ratanpal,B.S.:Astrophys.Space.Sci.,361,217(2016)
  26. Bonnor,W.B.:Mon.Not.R.Astron.Soc.29,443-446 (1965)
  27. Rosseland, S.:Mon. Not. R. Astron. Soc., 84, 720 (1924)
  28. Whitman, P.G. and Burch, R.C.:Phys. Rev., D 24, 2049-2055(1981)
  29. De Felice,F.,Yu,Y.and Fang,J.:Mon.Not.R.Astron. Soc., 277, L17-L19 (1995)
  30. Ivanov,B.V.:Phys.Rev.,D65,104001(2002)
  31. Rahaman,F.,et al.:Astrophys.SpaceSci.,331,191-197 (2011)
  32. Bijalwan, N.:Astrophys. Space. Sci., 336, 485489 (2011)
  33. Pant,N.and Rajasekhara,S.:Astrophys.SpaceSci.,333,161-168(2011)
  34. Pandya, D.M., Thomas, V.O. and Sharma, R.:Astrophys.Space Sci., 356, 285 (2015)
  35. Thirukkanesh,S.and Ragel,F.C.:Astrophys.SpaceSci.,354,415(2014)
  36. Buchdahl,H.A.:Phys.Rev.,116,1027,(1959)
  37. Tolman,R.C.:Phys.Rev.,55,364,(1939)
  38. Kuchowicz,B.:Astrophys.Space.Sci.,33,L13(1975)
  39. Adler, R.:J. Math. Phys.,15, 727 (1974)
  40. Adams,R.C.and Cohen,J.M.:Astrophys.J.,198,507 (1975)
  41. Durgapal,M.C.:J.Phys.,A15,2637(1982)
  42. Sunzu,J.M.and Danford,P.:PramanaJ.Phys.,89,44 (2017)
  43. Sunzu, J.M., Maharaj, S.D. and Ray, S.:Astrophys. Space Sci., 354, 517 (2014)
  44. Sarkar,S.et al.:Astrophys.SpaceSci.,369,19(2024)
  45. SarkarS,et al.:Int.J.Geom.Meth.Mod.Phys.,12,41 (2025)
  46. Sarkar.,S. A J. Planetary.Space. Sci. 4(3): 150 (2025)
  47. Reissner,H.:Ann.Phys.,50,106(1916)
  48. Nordstrm, G.:Verhandl. Koninkl. Ned. Akad.Wetenschap.,Afdel. Natuurk.,26, 1201 (1918)
  49. Brassel,B.P.,Maharaj,S.D., and Goswami,R.:Prog. Theor. Exp. Phys., 103-E01 (2021)
  50. Maeda, H. and Martinez, C.:Prog. Theor. Exp. Phys., 043- E02 (2020)
  51. Gu¨ver,T.,Wroblewski,P.,andCamarota,L.,etal.:Astro- phys. J, 719, 1807 (2010)
  52. Gangopadhyay, T., Ray, S., X.-D. Li, J. Dey, and Dey, M.,: Mon. Not. R. Astron. Soc., 431, 3216 (2013)
  53. Bauswein,A.,Bastian,N.F.,Blaschke,D.,Chatziion-nou, K.,Clark,J.A.,Fischer,T.,Janka,H., Just,O.,Oertel,M.,andSteriouslas, N.:AIP Conference Proceedings, 2127, 020013 (2019)
  54. Abbott,R.,etal.:ApJL896,L44(2020)
  55. Pretel,J.M.Z.:Eur.Phys.J.C80,726(2020)

In this study, we investigate the relativistic star model while accounting for pressure anisotropy. Anisotropic solution to Einstein equation has been pro- posed for strange quark stars using the inner space time geometry defined by the metric component gtt =H(1+ x) n , where n is a parameter. Taking into account the equation of state for strange matter, expressed Pr= 1 3 (ρ-4Bg), where Bg is referred to as the Bag constant with in the framework of the MIT Bag model, we have successfully derived a stellar model. We posit the surface value of energy density to be ρs=4Bg. By establishing the constraint value of Bg with in the interval of 57.55- 95.11MeV/fm3 , which is requisite for the stability of quark matter in comparison to neutron matter at zero external pressure, we have conducted an assessment of the maximum mass and radius of strange quark star along with other pertinent characteristics. The investigation reveals that when the bag constant equals Bg= 57.55 MeV/fm3 , the corresponding maximum stellar mass reaches Mmax=2.38M⊙ with a maximum radius of bmax=13.21 km. Conversely, when the bag constant increases to Bg=95.11 MeV/fm3 , the maximum achievable mass decreases to Mmax=1.85 M⊙ while the maximum radius reduces to bmax=10.27km for the isotropic stellar configuration. When pressure anisotropy is present, the maximum mass value demonstrates an increase. Based upon our theoretical frame work, we have predicted the radii of recently detected pulsars and secondary celestial bodies observed in gravitational wave events GW170817 and GW190814.The current theoretical model satisfies all requisite energy conditions.

Keywords : General Relativity. Theoretical Astrophysics. Einstein Equations. Compact Stars.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe