Authors :
Suman Rani; Dr. Rajiv Pal
Volume/Issue :
Volume 10 - 2025, Issue 9 - September
Google Scholar :
https://tinyurl.com/2mcarxf3
Scribd :
https://tinyurl.com/mr25w3p9
DOI :
https://doi.org/10.38124/ijisrt/25sep737
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
A transcendental number refers to a number that does not fall among the roots of any nonzero polynomial equation
with its coefficients as integers. This section encompasses an in-depth literature review to establish a basic understanding of
transcendental numbers. Reviewing the historical development of transcendental number theory, the contributors to it, and
trends in modern research applicability of transcendental number theory into various mathematics branches.
Keywords :
Transcendental Number Theory, Algebraic Numbers, Lindemann–Weierstrass Theorem, Diophantine Approximation, Rational and Irrational Numbers, Complex Analysis.
References :
- S. Lang, “Introduction to transcendental numbers,” (No Title), 1966.
- J. Ax, “On Schanuel’s conjectures,” Ann. Math., vol. 93, no. 2, pp. 252–268, 1971.
- K. Mahler, “Über transzendente $ P $-adische Zahlen,” Compos. Math., vol. 2, pp. 259–275, 1935.
- W. W. Adams, Transcendental numbers in the p-adic domain. Columbia University, 1964.
- Brumer, “On the units of algebraic number fields,” Mathematika, vol. 14, no. 2, pp. 121–124, 1967.
- H.-W. Leopoldt, “Zur Arithmetik in abelschen Zahlkörpern.,” 1962.
- B. Mazur and J.-P. Serre, Collected Works of John Tate. American Mathematical Soc., 2016.
- Gelfond, “Sur les propriétés arithmétiques des fonctions entières,” Tohoku Math. Journal, First Ser., vol. 30, pp. 280–285, 1929.
- H. Davenport and W. Schmidt, “Dirichlet’s theorem on diophantine approximation. II,” Acta Arith., vol. 4, no. 16, pp. 413–424, 1970\
- W. Schmidt, “A metrical theorem in diophantine approximation,” Can. J. Math., vol. 12, pp. 619–631, 1960.
- M. A. Aitkin, “Test Theory. D. Magnusson, Reading, Massachusetts: Addison-Wesley Publishing Company, 1966.” Taylor & Francis, 1968.
- H. Behnke, “Über die Verteilung von Irrationalitäten mod. 1,” in Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Springer, 1922, pp. 251–266.
- A. Ostrowski, “Bemerkungen zur Theorie der diophantischen Approximationen,” in Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Springer, 1922, pp. 77–98.
- W. M. Schmidt, “Metrical theorems on fractional parts of sequences,” Trans. Am. Math. Soc., vol. 110, no. 3, pp. 493–518, 1964.
- W. M. Schmidt, “Simultaneous approximation to a basis of a real numberfield,” Am. J. Math., vol. 88, no. 2, pp. 517–527, 1966.
- W. W. Adams, “Asymptotic diophantine approximations and Hurwitz numbers,” Am. J. Math., vol. 89, no. 4, pp. 1083–1108, 1967.
- O. Perron, Die lehre von den Kettenbrüchen, vol. 36. Teubner, 1913.
- W. Adams and S. Lang, “Some computations in diophantine approximations.,” 1965.
- K. F. Roth, “Rational approximations to algebraic numbers,” Mathematika, vol. 2, no.1, pp. 1–20, 1955.
- T. Schneider, “Über die Approximation algebraischer Zahlen.,” 1936.
- W. M. Schmidt, “Simultaneous approximation to algebraic numbers by rationals,” 1970.
- E. A. Wirsing, “On approximations of algebraic numbers by algebraic numbers of bounded degree,” in Proceedings of Symposia in Pure Mathematics, American Mathematical Society, 1971, pp. 213–247.
- J. F. Koksma, “Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen,” Monatshefte für Math. und Phys., vol. 48, pp. 176–189, 1939.
- A. Baker, “Contributions to the theory of Diophantine equations I. On the representation of integers by binary forms,” Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci., vol. 263, no. 1139, pp. 173–191, 1968.
- J. Coates, “An effective p-adic analogue of a theorem of Thue II. The greatest prime factor of a binary form,” Acta Arith., vol. 16, no. 4, pp. 399–412, 1970.
- I. Niven, “Irrational numbers. The Carus Mathematical Monographs, No. 11. The Mathematical Association of America. Distributed by John Wiley and Sons,” Inc., New York, NY, vol. 1, p. 956, 1956.
A transcendental number refers to a number that does not fall among the roots of any nonzero polynomial equation
with its coefficients as integers. This section encompasses an in-depth literature review to establish a basic understanding of
transcendental numbers. Reviewing the historical development of transcendental number theory, the contributors to it, and
trends in modern research applicability of transcendental number theory into various mathematics branches.
Keywords :
Transcendental Number Theory, Algebraic Numbers, Lindemann–Weierstrass Theorem, Diophantine Approximation, Rational and Irrational Numbers, Complex Analysis.