Authors :
Shalini Srivastava; Shambhavi Mudra Shukla; Nishant Singh; Parimal Tiwari; Ramesh Mishra; Vaibhava Srivastava; Mukesh Mishra; Sachin Singh; Vipin Sharma
Volume/Issue :
Volume 10 - 2025, Issue 10 - October
Google Scholar :
https://tinyurl.com/5n6chddd
Scribd :
https://tinyurl.com/mrd89apm
DOI :
https://doi.org/10.38124/ijisrt/25oct1379
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Researchers can employ various optical biosensor technologies in many biomedical diagnostic and analysis
procedures because they can assess the conformational changes of biomolecules and their molecular interactions. Surface
plasmon resonance biosensors are one of the most popular methods among many optical biosensors because they are utilized
for label-free and real-time monitoring with outstanding precision and accuracy. The current study proposes AI and
machine learning (ML) programming-based rapid and highly sensitive SPR refractive sensor. The proposed SPR biosensor
device consists of a glass prism N-FK51A, silver metal, graphene, nickel, and potassium niobate layers. Attenuated total
reflection (ATR) is the basis for the device operation, and the Kretschmann configuration serves as the foundation for the
device structure. The performance parameters, such as angular sensitivity, quality factor, detection accuracy, limit of
detection and electric filed have been numerically analysed for blood sample. It is possible to identify and examine
biomolecules with the proposed surface plasmon resonance biosensor.
Keywords :
Artificial Intelligence, Machine Learning, Programmable, Algorithms, Optical Sensor.
References :
- Buk Cardoso, L., Cunha Parro, V., Verzinhasse Peres, S., Curado, M. P., Fernandes, G. A., Wünsch Filho, V., & Natasha Toporcov, T. (2023). Machine learning for predicting survival of colorectal cancer patients. Scientific reports, 13(1), 8874.
- Schinkel, M., Bennis, F. C., Boerman, A. W., Wiersinga, W. J., & Nanayakkara, P. W. (2023). Embracing cohort heterogeneity in clinical machine learning development: a step toward generalizable models. Scientific reports, 13(1), 8363.
- Koh, D. M., Papanikolaou, N., Bick, U., Illing, R., Kahn Jr, C. E., Kalpathi-Cramer, J., ... & Prior, F. (2022). Artificial intelligence and machine learning in cancer imaging. Communications Medicine, 2(1), 133.
- Lambert, S. I., Madi, M., Sopka, S., Lenes, A., Stange, H., Buszello, C. P., & Stephan, A. (2023). An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. NPJ Digital Medicine, 6(1), 111.
- Zador, A., Escola, S., Richards, B., Ölveczky, B., Bengio, Y., Boahen, K., ... & Tsao, D. (2023). Catalyzing next-generation artificial intelligence through neuroai. Nature communications, 14(1), 1597.
- Chen, Y. C. (2022). The Need for a System View to Regulate Artificial Intelligence/Machine Learning-Based Software as Medical Device. Angle Health Law Review, (64), 111-125.
- Sun, Y. K., Zhou, B. Y., Miao, Y., Shi, Y. L., Xu, S. H., Wu, D. M., ... & Xu, H. X. (2023). Three-dimensional convolutional neural network model to identify clinically significant prostate cancer in transrectal ultrasound videos: a prospective, multi-institutional, diagnostic study. EClinicalMedicine, 60.
- Homma, Y., Ito, S., Zhuang, X., Baba, T., Fujibayashi, K., Kaneko, K., & Ishijima, M. (2022). Artificial intelligence for distinguishment of hammering sound in total hip arthroplasty. Scientific Reports, 12(1), 9826.
- Stafford, I. S., Kellermann, M., Mossotto, E., Beattie, R. M., MacArthur, B. D., & Ennis, S. (2020). A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ digital medicine, 3(1), 30.
- Fu, T., Zang, Y., Huang, Y., Du, Z., Huang, H., Hu, C., ... & Chen, H. (2023). Photonic machine learning with on-chip diffractive optics. Nature Communications, 14(1), 70.
- Khodaie, A. and Heidarzadeh, H., 2025. Ultra-sensitive surface plasmon resonance sensor integrating MXene (Ti3C2TX) and graphene for advanced carcinoembryonic antigen detection. Scientific Reports, 15(1), p.13571.
- Khodaie, A., Javidan, J. and Heidarzadeh, H., 2025. Development of a Surface Plasmon Resonance Sensor using 2D Materials, Including Graphene and Black Phosphorus, for Measuring Water Pressure. Plasmonics, pp.1-12.
- Peurifoy, J., Shen, Y., Jing, L., Yang, Y., Cano-Renteria, F., DeLacy, B. G., & Soljačić, M. (2018). Nanophotonic particle simulation and inverse design using artificial neural networks. Science advances, 4(6), eaar4206.
- Rivenson, Y., Göröcs, Z., Günaydin, H., Zhang, Y., Wang, H., & Ozcan, A. (2017). Deep learning microscopy. Optica, 4(11), 1437-1443.
- Carleo, G., & Troyer, M. (2017). Solving the quantum many-body problem with artificial neural networks. Science, 355(6325), 602-606.
- Lin, X., Rivenson, Y., Yardimci, N. T., Veli, M., Luo, Y., Jarrahi, M., & Ozcan, A. (2018). All-optical machine learning using diffractive deep neural networks. Science, 361(6406), 1004-1008.
- Khodaie, A. and Heidarzadeh, H., 2025. Enhanced Surface Plasmon Resonance Biosensor for Carcinoembryonic Antigen Detection Using 2D Materials (Graphene and MoS2) in a Kretschmann Configuration. Plasmonics, pp.1-12.
- Khodaie, A., Bahador, H. and Heidarzadeh, H., 2025. Development of a Surface Plasmon Resonance Sensor Based MXene (Ti 3 C 2 T x) for the Detection of Carcinoembryonic Antigen (CEA). Plasmonics.
- Singh S, Singh PK, Umar A, Lohia P, Albargi H, Castañeda L, Dwivedi DK. 2D Nanomaterial-Based Surface Plasmon Resonance Sensors for Biosensing Applications. Micromachines. 2020; 11(8):779.
- Singh, S., Sharma, A.K., Lohia, P. and Dwivedi, D.K., 2021. Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS2 heterostructure. Optik, 244, p.167618.
- Ren, H. (2019, June). Three-dimensional Vectorial Holography. In The European Conference on Lasers and Electro-Optics (p. ck_7_5). Optica Publishing Group.
- Sun, W., Kalmady, S. V., Sepehrvand, N., Salimi, A., Nademi, Y., Bainey, K., ... & Kaul, P. (2023). Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms. NPJ Digital Medicine, 6(1), 21.
- Meskó, B., & Görög, M. (2020). A short guide for medical professionals in the era of artificial intelligence. NPJ digital medicine, 3(1), 126.
- Loftus, T. J., Shickel, B., Ozrazgat-Baslanti, T., Ren, Y., Glicksberg, B. S., Cao, J., ... & Bihorac, A. (2022). Artificial intelligence-enabled decision support in nephrology. Nature Reviews Nephrology, 18(7), 452-465.
- Zhang, X., Song, X., Li, W., Chen, C., Wusiman, M., Zhang, L., & Lv, X. (2023). Rapid diagnosis of membranous nephropathy based on serum and urine Raman spectroscopy combined with deep learning methods. Scientific Reports, 13(1), 3418.
- Siontis, K. C., Noseworthy, P. A., Attia, Z. I., & Friedman, P. A. (2021). Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nature Reviews Cardiology, 18(7), 465-478.
- Saboe, D., Ghasemi, H., Gao, M.M., Samardzic, M., Hristovski, K.D., Boscovic, D., Burge, S.R., Burge, R.G. and Hoffman, D.A., 2021. Real-time monitoring and prediction of water quality parameters and algae concentrations using microbial potentiometric sensor signals and machine learning tools. Science of the Total Environment, 764, p.142876.
- Gamal, H., Elkatatny, S. and Al Gharbi, S., 2023, October. Rig Sensor Data for AI-ML Technology-Based Solutions: Research, Development, and Innovations. In Abu Dhabi International Petroleum Exhibition and Conference (p. D021S074R006). SPE.
- Yarkan, S., 2025. A Novel Acoustic Source Localization Technique for Edge AI Applications: A Lightweight Framework and Implementation for IoT and Smart Sensing Devices. ELECTRICA, 25(1), pp.1-9.
- Nomura, A. (2023). Digital health, digital medicine, and digital therapeutics in cardiology: current evidence and future perspective in Japan. Hypertension Research, 46(9), 2126-2134.
- Scheetz, J., Rothschild, P., McGuinness, X., Soyer, H. P., Janda, M., ... & van Wijngaarden, P. (2021). A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology. Scientific reports, 11(1), 5193.
- Long, E., Chen, J., Wu, X., Liu, Z., Wang, L., Jiang, J., ... & Liu, Y. (2020). Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing. NPJ digital medicine, 3(1), 112.
- Ciecierski-Holmes, T., Singh, R., Axt, M., Brenner, S., & Barteit, S. (2022). Artificial intelligence for strengthening healthcare systems in low-and middle-income countries: a systematic scoping review. NPJ digital medicine, 5(1), 162.
- Tagliaferri, S. D., Angelova, M., Zhao, X., Owen, P. J., Miller, C. T., Wilkin, T., & Belavy, D. L. (2020). Artificial intelligence to improve back pain outcomes and lessons learnt from clinical classification approaches: three systematic reviews. NPJ digital medicine, 3(1), 93.
- Sermesant, M., Delingette, H., Cochet, H., & Ayache, N. (2021). Applications of artificial intelligence in cardiovascular imaging. Nature Reviews Cardiology, 18(8), 600-609.
- Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature biomedical engineering, 2(10), 719-731.
- Song, X., Yu, A. S., Kellum, J. A., Waitman, L. R., Matheny, M. E., Simpson, S. Q., ... & Liu, M. (2020). Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction. Nature communications, 11(1), 5668.
- Gao, X., Zhang, Z. Y., & Duan, L. M. (2018). A quantum machine learning algorithm based on generative models. Science advances, 4(12), eaat9004.
- Orzechowski, P., & Moore, J. H. (2022). Generative and reproducible benchmarks for comprehensive evaluation of machine learning classifiers. Science Advances, 8(47), eabl4747.
- Fanconi, C., De Hond, A., Peterson, D., Capodici, A., & Hernandez-Boussard, T. (2023). A Bayesian approach to predictive uncertainty in chemotherapy patients at risk of acute care utilization. EBioMedicine, 92.
- Hamadani, A., Ganai, N. A., Mudasir, S., Shanaz, S., Alam, S., & Hussain, I. (2022). Comparison of artificial intelligence algorithms and their ranking for the prediction of genetic merit in sheep. Scientific Reports, 12(1), 18726.
- Jia, Z., Chen, J., Xu, X., Kheir, J., Hu, J., Xiao, H., ... & Shi, Y. (2023). The importance of resource awareness in artificial intelligence for healthcare. Nature Machine Intelligence, 5(7), 687-698.
- Mondal, H. S., Ahmed, K. A., Birbilis, N., & Hossain, M. Z. (2023). Machine learning for detecting DNA attachment on SPR biosensor. Scientific Reports, 13(1), 3742.
- Rostov, M., Hossain, M. Z., & Rahman, J. S. (2021, August). Robotic emotion monitoring for mental health applications: Preliminary outcomes of a survey. In IFIP Conference on Human-Computer Interaction (pp. 481-485). Cham: Springer International Publishing.
- Qin, A., Hasan, M. R., Ahmed, K. A., & Hossain, M. Z. (2022, June). Machine learning for predicting cancer severity. In 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI) (pp. 527-529). IEEE.
- Daskalaki, E., Parkinson, A., Brew-Sam, N., Hossain, M. Z., O'Neal, D., Nolan, C. J., & Suominen, H. (2022). The potential of current noninvasive wearable technology for the monitoring of physiological signals in the management of type 1 diabetes: literature survey. Journal of medical Internet research, 24(4), e28901.
- Deng, J., Hasan, M. R., Mahmud, M., Hasan, M. M., Ahmed, K. A., & Hossain, M. Z. (2022, October). Diagnosing autism spectrum disorder using ensemble 3D-CNN: A preliminary study. In 2022 IEEE international conference on image processing (ICIP) (pp. 3480-3484). IEEE.
- Bezzan, V. P., & Rocco, C.D (2021). Predicting special care during the COVID-19 pandemic: A machine learning approach. Health Information Science & Systems, 9(1), 34.
- Hossain, M. Z., Daskalaki, E., Brüstle, A., Desborough, J., Lueck, C. J., & Suominen, H. (2022). The role of machine learning in developing non-magnetic resonance imaging based biomarkers for multiple sclerosis: a systematic review. BMC Medical Informatics and Decision Making, 22(1), 242.
- Sharma, V., Dwivedi, L. K., Singh, S., Uniyal, A., Srivastava, V., & Singh, S. P. (2025). Analytical Study on Effect of Perovskite Halides based Surface Plasmon Resonance Sensor for Detection of Sugar Content in Soft Drinks. Sensing and Imaging, 26(1), 65.
- Srivastava, S., Yadav, S., Mishra, A. C., Singh, S., Lohia, P., Dwivedi, D. K., ... & Hossain, M. K. (2024). Ultra-sensitive surface plasmon resonance biosensor for liver metastases and hepatocellular carcinoma detection using silicon nitride and black phosphorus nanomaterial. Plasmonics, 19(2), 1031-1041.
- Basak, C., Islam, M.S., Hosain, M.K. and Kouzani, A.Z., 2024. An ultra-sensitive surface plasmon resonance biosensor with PtSe2 and BlueP/WS2 heterostructure. Heliyon, 10(19).
- Basak, C., Hosain, M.K., Islam, M.S. and Kouzani, A.Z., 2023. Design and modeling of an angular interrogation based surface plasmon resonance biosensor for dengue virus detection. Optical and Quantum Electronics, 55(5), p.438.
- Kotha, V.V., Vankayalapati, S., Vasimalla, Y., Vaadaala, J., Jain, S., Ramachandran, B., Santhosh, C., Maloji, S. and Kumar, S., 2025. Ultra-sensitive prism-based surface plasmon resonance biosensor utilizing lead molybdate and BlueP/TDMC nanocomposites for early malaria detection. Plasmonics, 20(7), pp.5287-5302.
- Karki, B., Vasudevan, B., Uniyal, A., Pal, A. and Srivastava, V., 2022. Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik, 270, p.169947.
Researchers can employ various optical biosensor technologies in many biomedical diagnostic and analysis
procedures because they can assess the conformational changes of biomolecules and their molecular interactions. Surface
plasmon resonance biosensors are one of the most popular methods among many optical biosensors because they are utilized
for label-free and real-time monitoring with outstanding precision and accuracy. The current study proposes AI and
machine learning (ML) programming-based rapid and highly sensitive SPR refractive sensor. The proposed SPR biosensor
device consists of a glass prism N-FK51A, silver metal, graphene, nickel, and potassium niobate layers. Attenuated total
reflection (ATR) is the basis for the device operation, and the Kretschmann configuration serves as the foundation for the
device structure. The performance parameters, such as angular sensitivity, quality factor, detection accuracy, limit of
detection and electric filed have been numerically analysed for blood sample. It is possible to identify and examine
biomolecules with the proposed surface plasmon resonance biosensor.
Keywords :
Artificial Intelligence, Machine Learning, Programmable, Algorithms, Optical Sensor.