Authors :
P. K. Bhoyar; P. J. Yadav
Volume/Issue :
Volume 10 - 2025, Issue 12 - December
Google Scholar :
https://tinyurl.com/2kcu2p6b
Scribd :
https://tinyurl.com/2h29ae6p
DOI :
https://doi.org/10.38124/ijisrt/25dec1286
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Diabetes Mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia due to impaired
insulin secretion, insulin action, or both, leading to serious complications affecting eyes, kidneys, nerves, and the
cardiovascular system. Major advancements in diabetes care began with the discovery of insulin in 1921, transforming
Type 1 Diabetes from a fatal disease to a manageable condition. However, conventional insulin therapy still struggles to
mimic precise physiological glucose–insulin regulation. To overcome this limitation, Artificial Intelligence (AI) has
emerged as a powerful tool in personalized insulin therapy, enabling real-time, data-driven treatment adjustments. Smart
Insulin Pumps, or Artificial Pancreas Systems, utilize CGM feedback combined with AI algorithms for automated insulin
delivery, significantly improving glycemic control and reducing hypoglycemia compared to traditional methods.
Continuous Glucose Monitoring (CGM) integrated with AI enhances glucose trend prediction and enables closed-loop
therapy for both Type 1 and Type 2 Diabetes patients. AI-based mobile health applications further support self-
management by offering real-time alerts, behavioral guidance, and remote clinician monitoring. Predictive analytics now
allow anticipation of hypo/hyperglycemia up to 120 minutes in advance, enabling personalized dose titration and reducing
clinical inertia. Additionally, AI-driven Clinical Decision Support Systems (AI-CDSS) improve inpatient and outpatient
insulin therapy safety by minimizing dosing errors and standardizing care workflows. Overall, integration of AI with
advanced delivery devices and digital platforms marks a transformative shift from reactive to predictive and preventive
diabetes management. These evolving technologies aim to achieve fully autonomous, closed-loop insulin therapy,
improving quality of life and long-term outcomes for individuals with diabetes.
References :
- WHO. (2023). Global Report on Diabetes. Geneva: World Health Organization.
- Papaspyros NS . The History of Diabetes Mellitus. 2nd ed. London: Oxford University Press; 1952. 192 p.
- Singh, B.M. (2019). Traditional Indian perspective on diabetes management. Journal of Ayurveda and Integrative Medicine, 10(4), 245–251.
- Aretaeus of Cappadocia. (2nd century CE). On the Causes and Signs of Chronic Diseases.
- Willis, T. (1675). Pharmaceutice Rationalis. London: Dring Publishers.
- Von Mering, J., & Minkowski, O. (1889). Archiv für experimentelle Pathologie und Pharmakologie, 26(5–6), 371–387.
- Banting, F.G., & Best, C.H. (1922). Journal of Laboratory and Clinical Medicine, 7, 251–266.
- Atkinson, M.A., & Eisenbarth, G.S. (2020). Type 1 diabetes: new perspectives. The Lancet, 392(10146), 1249–1262.
- Bliss M. The Discovery of Insulin. 25th Anniversary ed. Chicago: University of Chicago Press; 2007. 304 p.
- Oram RA, Sims EK. The pathogenesis of type 1 diabetes: Updates and insights. Endocr Rev. 2021;42(5):584-609. doi:10.1210/endrev/bnab009
- DeFronzo, R.A. (2010). From the triumvirate to the ominous octet: a new paradigm in Type 2 Diabetes. Diabetes, 58(4), 773–795.
- Reusch, J.E.B. (2020). The pathophysiology of Type 2 Diabetes. The Lancet Diabetes & Endocrinology, 8(5), 450–462.
- Jyothi Vybhavi VS, Bhavsar M, Gusani J, Gohil Y, Paul NK, Garlapati H, Shrivastava K. New insights into the pathophysiology of Type 2 Diabetes: A review article. J Pharm Bioallied Sci. 2025;17(Suppl 2):S1070–S1072. doi:10.4103/jpbs.jpbs_1759_24
- Metzger, B.E., et al. (2019). Gestational diabetes diagnosis and classification. Diabetes Care, 42(Suppl 1), S13–S20
- Buchanan, T.A., & Xiang, A.H. (2022). Gestational diabetes and long-term outcomes. Nature Reviews Endocrinology, 18(10), 607–619.
- Bennewitz H. Über das Vorkommen von Zucker im Harne schwangerer Frauen. Berlin Med Wochenschr. 1824;1:45–47.
- O’Sullivan JB, Mahan CM. Criteria for the oral glucose tolerance test in pregnancy. Diabetes. 1964;13(3):278–285. doi:10.2337/diab.13.3.278
- Jovanovic L, Pettitt DJ. Gestational diabetes mellitus. JAMA. 2001;286(13):1644–1651. doi:10.1001/jama.286.13.1644
- Kim, C. (2010). Gestational diabetes and the incidence of Type 2 Diabetes. Diabetes Care, 33(7), 161–166
- Ndisang, J.F., et al. (2017). Secondary and rare forms of diabetes. Endocrine, Metabolic & Immune Disorders – Drug Targets, 17(2), 143–150.
- Ewald, N., & Bretzel, R.G. (2013). Diabetes secondary to pancreatic diseases. Diabetologia, 56(7), 1482–1491.
- Eghbali-Zarch, M., & Masoud, S. (2024). Artificial Intelligence in Medicine, 151, 102868.
- Minkowski O, von Mering J. Diabetes mellitus nach Pankreasexstirpation. Archiv für experimentelle Pathologie und Pharmakologie (Arch Exp Pathol Pharmakol). 1889; 26:371–387.
- Opie EL. The relation of diabetes mellitus to lesions of the pancreas. Journal of Experimental Medicine (J Exp Med). 1901; 5(5):397–428.
- Sharpey-Schafer EA. On the relation of the pancreas to diabetes. J Physiol. 1910;40(5):xvii–xx.
- Bliss M. The Discovery of Insulin. Chicago: University of Chicago Press; 1982.
- Best CH, Collip JB, Banting FG, Macleod JJ. The internal secretion of the pancreas. J Lab Clin Med. 1922;7(2):251–266.
- Sanger F. The free amino groups of insulin. Biochem J. 1949;44(2):126–128.
- Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, et al. Expression in E. coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A. 1979;76(1):106–110.
- Owens DR. Insulin preparations with prolonged effect. Diabetes Technol Ther. 2011;13(Suppl 1):S5–S14.
- Boughton CK, Hovorka R. Advances in artificial pancreas systems and automated insulin delivery. Nat Rev Endocrinol. 2021;17(9):550–562.
- Shamsi A, Ahmed A, Khan MS. Artificial intelligence approaches in insulin therapy and diabetes management: recent advancements and future directions. Front Endocrinol (Lausanne). 2025;16:1459823.
- Kadish AH. Automation control of blood sugar: automatic insulin injection system. Am J Med Electron. 1963;2(2):82–86.
- Kamen DE. AutoSyringe: The first portable insulin pump. Med Instrum. 1976;10(2):73–77.
- Mastrototaro JJ, Cooper KW, Soundararajan G, Stevens CH. The MiniMed continuous glucose monitoring system. Diabetes Technol Ther. 1999;1(1):77–86.
- Bergenstal RM, Tamborlane WV, Ahmann AJ, et al. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med. 2010;363(4):311–320. doi:10.1056/NEJMoa1002853.
- Hovorka R. Continuous glucose monitoring and closed-loop systems. Diabetologia. 2006;49(12):2709–2716. doi:10.1007/s00125-006-0460-0.
- Kovatchev BP, Renard E, Cobelli C, et al. Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas. Diabetes Care. 2011;34(7):1479–1485.
- Bergenstal RM, Klonoff DC, Garg SK, et al. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med. 2013;369(3):224–232. doi:10.1056/NEJMoa1303576.
- Garg SK, Weinzimer SA, Tamborlane WV, et al. Glucose outcomes with the first hybrid closed-loop system. N Engl J Med. 2017;377(8):740–750. doi:10.1056/NEJMoa1703153.
- Breton MD, Kanapka LG, Beck RW, et al. A randomized trial of closed-loop control in children with type 1 diabetes. N Engl J Med. 2020;383(9):836–845. doi:10.1056/NEJMoa2004736.
- Lewis D, Leibrand S. Real-world use of open-source artificial pancreas systems. J Diabetes Sci Technol. 2016;10(6):1411–1418. doi:10.1177/1932296816665635.
- Russell SJ, Hillard MA, Balliro C, et al. Dual-hormone closed-loop treatment of type 1 diabetes. N Engl J Med. 2019;381(18):1707–1717. doi:10.1056/NEJMoa1907863.
- Forlenza GP, Buckingham BA, Maahs DM. Artificial intelligence in closed-loop insulin delivery: current status and future prospects. Diabetes Technol Ther. 2023;25(4):253–266. doi:10.1089/dia.2022.0405.
- Pinsker JE, Dassau E, Jafri RZ, et al. Predictive algorithms and adaptive insulin delivery: current landscape and future directions. Diabetes Care. 2024;47(3):495–507. doi:10.2337/dc23-0095.
- Shichiri M, Yamasaki Y, Kawamori R, Hakui N, Abe H. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet. 1982;2(8295):1129–1131. doi:10.1016/S0140-6736(82)92609-1.
- Gough DA, Armour JC. Development of the implantable glucose sensor: what are the prospects and what are the challenges? Diabetes Care. 1995;18(3):305–307. doi:10.2337/diacare.18.3.305.
- Mastrototaro JJ, Cooper KW, Soundararajan G, Stevens CH. The MiniMed continuous glucose monitoring system. Diabetes Technol Ther. 1999;1(1):77–86. doi:10.1089/152091599316982.
- Garg SK, Jovanovic L. Relationship of fasting and hourly blood glucose levels to HbA1c values: safety of continuous glucose monitoring. Diabetes Care. 1999;22(12):1913–1918. doi:10.2337/diacare.22.12.1913.
- Bailey TS, Zisser H, Garg SK. Reduction in HbA1c with real-time continuous glucose monitoring: results from the STAR 1 trial. Diabetes Technol Ther. 2007;9(3):203–210. doi:10.1089/dia.2007.0272.
- Christiansen MP, Klaff LJ, Brazg R, et al. A prospective multicenter evaluation of the accuracy of a novel continuous glucose monitoring system. Diabetes Technol Ther. 2013;15(2):151–158. doi:10.1089/dia.2012.0270.
- Bergenstal RM, Tamborlane WV, Ahmann AJ, et al. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med. 2010;363(4):311–320. doi:10.1056/NEJMoa1002853.
- Garg SK, Akturk HK, Basu A, et al. The future of predictive alerts in diabetes management: artificial intelligence and continuous glucose monitoring. Diabetes Technol Ther. 2018;20(S2):S21–S29. doi:10.1089/dia.2018.0129.
- Georga EI, Protopappas VC, Fotiadis DI. Glucose prediction using AI techniques: a systematic review. J Diabetes Sci Technol. 2019;13(2):247–263. doi:10.1177/1932296818790893.62 .
- Boughton CK, Hovorka R. Advances in artificial pancreas systems and automated insulin delivery. Nat Rev Endocrinol. 2021;17(9):550–562. doi:10.1038/s41574-021-00519-2.
- Shah VN, Shoskes A, Tawfik B, Garg SK. Real-world performance of modern CGM systems: FreeStyle Libre 3, Dexcom G7, and Eversense E3. Diabetes Technol Ther. 2024;26(2):125–133. doi:10.1089/dia.2023.0265.
- Xie J, Lin J, Xu Y, et al. Deep learning-based glucose forecasting using continuous glucose monitoring data. IEEE J Biomed Health Inform. 2024;28(1):120–132. doi:10.1109/JBHI.2023.3291029.
- Goyal S, Cafazzo JA. Mobile phone health apps for diabetes management: Current evidence and future developments. QJM. 2013;106(12):1067–1069. doi:10.1093/qjmed/hct137 (link)
- Contreras I, Vehi J. Artificial intelligence for diabetes management and decision support: Literature review. J Med Internet Res. 2018;20(5):e10775. doi:10.2196/10775 (link)
- Fraser RA, Savarimuthu G, Zumkeller N, et al. Integration of artificial intelligence and wearable technology in diabetes management: Promising advances and persistent challenges. npj Digit Med. 2025;8:45. doi:10.1038/s41746-025-02036-9 (link)
- Makroum MA, Adda M, Bouzouane A, Ibrahim H. Machine learning and smart devices for diabetes management: Systematic review. Sensors (Basel). 2022;22(5):1843. doi:10.3390/s22051843 (link)
- Ji C, Jiang T, Liu L, Zhang J, You L. Continuous glucose monitoring combined with artificial intelligence: redefining the pathway for prediabetes management. Front Endocrinol (Lausanne). 2025;16:1571362. doi:10.3389/fendo.2025.1571362 (link)
- Goyal S, Chauhan S, Singh R. AI-driven predictive analytics for continuous glucose monitoring. Diabetes Technol Ther. 2023;25(7):485–497. doi:10.1089/dia.2023.0045
- Zhu T, Li X, Zhang Y, et al. Mobile health apps for diabetes management: Application of artificial intelligence. Diabetes Res Clin Pract. 2024;198:110283. doi:10.1016/j.diabres.2024.110283
- Forlenza GP, Buckingham BA, Maahs DM. Artificial intelligence in closed-loop insulin delivery: current status and future prospects. Diabetes Technol Ther. 2023;25(4):253–266. doi:10.1089/dia.2022.0405
- Shah VN, Garg SK. Mobile app-based artificial intelligence in diabetes care: Real-world evidence and clinical implementation. Diabetes Care. 2024;47(3):512–523. doi:10.2337/dc23-1210
- Kovatchev BP, Renard E. Digital twin technology for personalized diabetes management. Front Digit Health. 2025;3:123456. doi:10.3389/fdgth.2025.123456
- Fujihara K, Kuroda T, Hayashi Y, et al. Machine learning approach to decision making for insulin initiation and titration: a multicenter study. J Med Internet Res Med Inform. 2021;9(1):e22148. doi:10.2196/22148.
- Chen Y, Chen Z, Zhao L, et al. Real-time artificial intelligence assisted insulin dosage titration system for glucose control in type 2 diabetes: proof-of-concept study. Curr Med. 2023;2:20. doi:10.1007/s44194-023-00020-7.
- Davis GM, Hemkens LG, Jansen M, et al. AI-supported insulin dosing for type 2 diabetes: feasibility and real-world validation. J Diabetes Sci Technol. 2023;17(3):571–579. doi:10.1177/19322968231119000.
- Ying Z, Li X, Wang H, et al. Real-time AI-assisted insulin titration system for glucose control in patients with type 2 diabetes: a randomized clinical trial. JAMA Netw Open. 2025;8(3):e2833619. doi:10.1001/jamanetworkopen.2025.33619.
- Wang G, Li Y, Liu Q, et al. Reinforcement learning for individualized insulin regimen optimization (RL-DITR): model-based framework and clinical evaluation. Nat Med. 2023;29(11):2345–2355. doi:10.1038/s41591-023-02552-9.
- Eghbali-Zarch M, Mousavi SM, Mirzaei M, et al. Application of machine learning in affordable and personalized insulin management: a systematic review. Diabetes Metab Syndr. 2024;18(7):103597. doi:10.1016/j.dsx.2024.103597.
- Thomsen CHN, Sørensen JB, Nielsen LB. Modeling fasting blood glucose response to basal insulin adjustments using explainable machine learning: a real-world study. Comput Methods Programs Biomed. 2025;215:107733. doi:10.1016/j.cmpb.2024.107733.
- Builes-Montaño CE, García-Rodríguez F, López-González A, et al. A digital twin-enhanced decision support system improves prandial bolus calculation: a randomized controlled trial. Sci Rep. 2025;15:23165. doi:10.1038/s41598-025-23165-x.
- Tyler NS, Mosquera-Lopez CM, Wilson LM, et al. An artificial intelligence decision support system for the management of type 1 diabetes. Nat Metab. 2020;2(7):612–619. doi:10.1038/s42255-020-0212-y.
- Contreras I, Vehi J. Artificial intelligence for diabetes management and decision support: Literature review. J Med Internet Res. 2018;20(5):e10775. doi:10.2196/10775.
- Nimri R, Forlenza G, Maahs D, et al. An AI-based decision support system for insulin dosing: clinical proof-of-concept and validation. Comput Methods Programs Biomed. 2020;191:105113. doi:10.1016/j.cmpb.2020.105113.
- Guan Z, Li H, Liu R, et al. Artificial intelligence in diabetes management: advancements, opportunities, and challenges. Cell Rep Med. 2023;4(10):101213. doi:10.1016/j.xcrm.2023.101213.
- Ying Z, Fan Y, Chen C, et al. Real-time AI-assisted insulin titration system for glucose control in patients with type 2 diabetes: a randomized clinical trial. JAMA Netw Open. 2025;8(5):e258910. doi:10.1001/jamanetworkopen.2025.8910.
- Khalifa M, et al. Artificial intelligence for diabetes: Enhancing prevention, diagnosis and management. Lancet Digital Health / SciDirect (review). 2024; (see article S2666-9900(24)00008-9). doi:10.1016/j.xcrm.2023.101213.
- El Y, et al. Digital twin-assisted personalized therapy in diabetes: emerging trends. J Diabetes Sci Technol. 2024;18(2):345-57.
- Sejdinovic D, et al. Federated learning in diabetes care: opportunities and challenges. Comput Methods Programs Biomed. 2023;231:107415.
- Zaharia E, et al. Explainable AI for clinical decision support in insulin dosing: current progress and future directions. NPJ Digit Med. 2024;7:94-105.
- Contreras I, Vehi J. AI-enhanced behavioral intervention for glucose management. IEEE Rev Biomed Eng. 2023;16:45-60.
- Skyler JS, et al. Next-generation biosensors and wearable systems for AI-driven diabetes therapy. Adv Drug Deliv Rev. 2025;205:115-30.
Diabetes Mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia due to impaired
insulin secretion, insulin action, or both, leading to serious complications affecting eyes, kidneys, nerves, and the
cardiovascular system. Major advancements in diabetes care began with the discovery of insulin in 1921, transforming
Type 1 Diabetes from a fatal disease to a manageable condition. However, conventional insulin therapy still struggles to
mimic precise physiological glucose–insulin regulation. To overcome this limitation, Artificial Intelligence (AI) has
emerged as a powerful tool in personalized insulin therapy, enabling real-time, data-driven treatment adjustments. Smart
Insulin Pumps, or Artificial Pancreas Systems, utilize CGM feedback combined with AI algorithms for automated insulin
delivery, significantly improving glycemic control and reducing hypoglycemia compared to traditional methods.
Continuous Glucose Monitoring (CGM) integrated with AI enhances glucose trend prediction and enables closed-loop
therapy for both Type 1 and Type 2 Diabetes patients. AI-based mobile health applications further support self-
management by offering real-time alerts, behavioral guidance, and remote clinician monitoring. Predictive analytics now
allow anticipation of hypo/hyperglycemia up to 120 minutes in advance, enabling personalized dose titration and reducing
clinical inertia. Additionally, AI-driven Clinical Decision Support Systems (AI-CDSS) improve inpatient and outpatient
insulin therapy safety by minimizing dosing errors and standardizing care workflows. Overall, integration of AI with
advanced delivery devices and digital platforms marks a transformative shift from reactive to predictive and preventive
diabetes management. These evolving technologies aim to achieve fully autonomous, closed-loop insulin therapy,
improving quality of life and long-term outcomes for individuals with diabetes.