Artificial Intelligence in Predicting Orthodontic Miniscrew Implant Success: A Comprehensive Review


Authors : Dr. Shreya Harshadbhai Patel; Dr. Ajay Kantilal Kubavat; Dr. Khyati Viral Patel; Dr. Helly Girishbhai Patel; Dr. Upasana Paul

Volume/Issue : Volume 10 - 2025, Issue 9 - September


Google Scholar : https://tinyurl.com/54cn4m68

Scribd : https://tinyurl.com/2xvvh3j9

DOI : https://doi.org/10.38124/ijisrt/25sep485

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : Background In modern orthodontics, orthodontic miniscrew implants (MSIs) have become essential instruments for supplying transient skeletal anchoring. Success rates vary despite their extensive use and are impacted by a number of biological, biomechanical, and clinical factors. Because of the intricate interactions between these factors, predicting MSI success has historically been difficult.  Objective The purpose of this review is to present a thorough synthesis of the available data on the application of artificial intelligence (AI) to forecast the stability and success of orthodontic miniscrew implants.  Methods Using the PubMed, Scopus, Web of Science, and Google Scholar databases, a systematic literature review spanning research from 2005 to 2025 was carried out. Artificial intelligence, machine learning, deep learning, success rate, failure prediction, orthodontic miniscrew implant, and temporary anchorage device were among the search phrases used. With a focus on methodological approaches, predictive accuracy, and clinical translation, pertinent papers examining AI models for MSI outcome prediction were critically assessed.  Results When compared to traditional statistical methods, AI-based models such as artificial neural networks (ANNs), support vector machines (SVMs), random forest classifiers, and deep learning architectures showed superior predictive accuracy. The most significant predictors of success were cortical bone thickness, insertion torque, root proximity, and patient-related factors (age, sex, oral hygiene, and inflammation). The reported predictive accuracies of AI models ranged from 78% to 96%, outperforming clinician-based estimation and logistic regression.  Conclusion By offering precise, personalized forecasts of MSI success, artificial intelligence (AI) holds great promise for improving clinical decision-making in orthodontics. Even while recent research shows encouraging findings, widespread clinical integration won't happen until more validation in huge, multicenter, real-world clinical datasets.

Keywords : Artificial Intelligence, Orthodontics, Miniscrew Implant, Anchorage, Machine Learning, Deep Learning, Prediction.

References :

  1. Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: A meta-analysis. Am J Orthod Dentofacial Orthop. 2012;142(5):577-95. doi:10.1016/j.ajodo.2012.05.016
  2. Crismani AG, Bertl MH, Čelar AG, Bantleon HP, Burstone CJ. Miniscrews in orthodontic treatment: Review and analysis of published clinical trials. Am J Orthod Dentofacial Orthop. 2010;137(1):108-13. doi:10.1016/j.ajodo.2008.09.016
  3. Chen YJ, Chang HH, Huang CY, Hung HC, Lai EH, Yao CC. A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin Oral Implants Res. 2007;18(6):768-75. doi:10.1111/j.1600-0501.2007.01314.x
  4. Dalessandri D, Salgarello S, Dalessandri M, et al. Determinants for success rates of temporary anchorage devices in orthodontics: A meta-analysis (n > 50). Eur J Orthod. 2014;36(3):303-13. doi:10.1093/ejo/cjt031
  5. Antoszewska J, Papadopoulos MA, Park HS, Ludwig B, Zeislitz F. Five-year experience with orthodontic miniscrew implants: A retrospective investigation of factors influencing success rates. Am J Orthod Dentofacial Orthop. 2009;136(2):158.e1-10. doi:10.1016/j.ajodo.2007.08.026
  6. Motoyoshi M, Inaba M, Ono A, Ueno S, Shimizu N. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. Int J Oral Maxillofac Surg. 2009;38(1):13-8. doi:10.1016/j.ijom.2008.09.006
  7. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003;124(4):373-8. doi:10.1016/S0889-5406(03)00565-1
  8. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2006;130(1):18-25. doi:10.1016/j.ajodo.2004.11.032
  9. Moon CH, Lee DG, Lee HS, Im JS, Baek SH. Factors associated with the success rate of orthodontic miniscrews placed in the upper and lower posterior buccal region. Angle Orthod. 2008;78(1):101-6. doi:10.2319/120706-499.1
  10. Wiechmann D, Meyer U, Büchter A. Success rate of mini- and micro-implants used for orthodontic anchorage: A prospective clinical study. Clin Oral Implants Res. 2007;18(2):263-7. doi:10.1111/j.1600-0501.2006.01336.x
  11. Choi JH, Park CH, Yi SW, Lim HJ, Hwang HS. Bone density measurement in interdental areas with periapical radiographs. Korean J Orthod. 2012;42(5):235-40. doi:10.4041/kjod.2012.42.5.235
  12. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res. 2006;17(1):109-14. doi:10.1111/j.1600-0501.2005.01187.x
  13. Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod. 2008;78(2):234-40. doi:10.2319/021507-62.1
  14. Watanabe H, Deguchi T, Hasegawa M, Ito M, Kim S, Takano-Yamamoto T. Orthodontic mini-implant failure rate and root proximity, insertion angle, bone contact, and fracture. Angle Orthod. 2013;83(5):713-9. doi:10.2319/091312-724.1
  15. Becker K, Melsen B. Mini-implants for orthodontic anchorage: A clinical and radiographic study. Am J Orthod Dentofacial Orthop. 2009;135(5): 684-92. doi:10.1016/j.ajodo.2007.06.014
  16. Jing Z, Wu Y, Jiang W, Jiang F, Xu L, Bai Y. Factors affecting the clinical success rate of miniscrew implants for orthodontic treatment. Int J Oral Maxillofac Implants. 2016;31(4):835-41. doi:10.11607/jomi.4049
  17. Asscherickx K, Vande Vannet B, Wehrbein H, Sabzevar MM. Root repair after injury from mini-screw implant placement. Am J Orthod Dentofacial Orthop. 2005;128(3):283-8. doi:10.1016/j.ajodo.2004.04.031
  18. Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: Success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop. 2007;131(1):9-15. doi:10.1016/j.ajodo.2005.02.032
  19. Wilmes B, Drescher D. Impact of insertion depth and pre-drilling diameter on primary stability of orthodontic mini-implants. Angle Orthod. 2009;79(1):127-32. doi:10.2319/110707-528.1
  20. Chen Y, Kyung HM, Zhao WT, Yu WJ. Critical factors for the success of orthodontic mini-implants: A systematic review. Am J Orthod Dentofacial Orthop. 2009;135(3):284-91. doi:10.1016/j.ajodo.2007.08.017
  21. Jung S, Kim TW, Baek SH. Clinical factors affecting the failure rates of orthodontic miniscrews. Am J Orthod Dentofacial Orthop. 2006;130(1):18–25. doi:10.1016/j.ajodo.2004.11.030
  22. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003;124(4):373–378. doi:10.1016/S0889-5406(03)00565-1
  23. Chen Y, Kyung HM, Zhao WT, Yu WJ. Critical factors for the success of orthodontic miniscrews: A systematic review. Am J Orthod Dentofacial Orthop. 2009;135(3):284–291. doi:10.1016/j.ajodo.2007.08.017
  24. Motoyoshi M, Uemura M, Ono A, Okazaki K, Shimizu N. Factors affecting the long-term stability of orthodontic mini-implants. Am J Orthod Dentofacial Orthop. 2010;137(5):588.e1–588.e5. doi:10.1016/j.ajodo.2008.07.018
  25. Lim HJ, Eun CS, Cho JH, Lee KH, Hwang HS. Factors associated with initial stability of miniscrews for orthodontic treatment. Am J Orthod Dentofacial Orthop. 2009;136(2):236–242. doi:10.1016/j.ajodo.2007.08.021
  26. Wilmes B, Su YY, Drescher D. Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod. 2008;78(6):1065–1070. doi:10.2319/091007-436.1
  27. Park HS, Lee SK, Kwon OW. Group distal movement of teeth using miniscrew implant anchorage. Angle Orthod. 2005;75(4):602–609. doi:10.1043/0003-3219(2005)75[602:GDMOTU]2.0.CO;2
  28. Kravitz ND, Kusnoto B, Tsay TP, Hohlt WF. The use of temporary anchorage devices for molar intrusion. J Clin Orthod. 2007;41(11):683–693. PMID:18092646
  29. Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(5):e6–e15. doi:10.1016/j.tripleo.2006.11.022
  30. Ludwig B, Baumgaertel S, Bowman SJ. Innovative anchorage concepts for orthodontic treatment. J Clin Orthod. 2007;41(12):693–704. PMID:18265802
  31. Marquezan M, Mattos CT, Sant’Anna EF, de Souza MMG, Maia LC. Does cortical thickness influence the primary stability of miniscrews? A systematic review and meta-analysis. Angle Orthod. 2014;84(6):1093–1103. doi:10.2319/011714-43.1
  32. Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res. 1999;2(1):23–28. doi:10.1111/ocr.1999.2.1.23
  33. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci. 1998;106(1):527–551. doi:10.1111/j.1600-0722.1998.tb02182.x
  34. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci. 1998;106(3):721–764. doi:10.1111/j.1600-0722.1998.tb02190.x
  35. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (III). Foreign body reactions, microbial infection, and implant contamination. Eur J Oral Sci. 1998;106(3):721–764. doi:10.1111/j.1600-0722.1998.tb02191.x
  36. Asscherickx K, Vande Vannet B, Wehrbein H, Sabzevar MM. Success rate of miniscrews relative to the amount of orthodontic force and patient characteristics. Eur J Orthod. 2008;30(3):211–216. doi:10.1093/ejo/cjm124
  37. Suzuki EY, Suzuki B. Placement and removal torque values of orthodontic miniscrew implants. Am J Orthod Dentofacial Orthop. 2011;139(5):669–678. doi:10.1016/j.ajodo.2009.07.026
  38. Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of miniscrew implant as anchorage for orthodontic treatment. Am J Orthod Dentofacial Orthop. 2004;126(1):42–51. doi:10.1016/j.ajodo.2003.02.006
  39. Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: Success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop. 2007;131(1):9–15. doi:10.1016/j.ajodo.2005.01.008
  40. Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop. 2004;126(1):42–51. doi:10.1016/j.ajodo.2004.03.018.

Background In modern orthodontics, orthodontic miniscrew implants (MSIs) have become essential instruments for supplying transient skeletal anchoring. Success rates vary despite their extensive use and are impacted by a number of biological, biomechanical, and clinical factors. Because of the intricate interactions between these factors, predicting MSI success has historically been difficult.  Objective The purpose of this review is to present a thorough synthesis of the available data on the application of artificial intelligence (AI) to forecast the stability and success of orthodontic miniscrew implants.  Methods Using the PubMed, Scopus, Web of Science, and Google Scholar databases, a systematic literature review spanning research from 2005 to 2025 was carried out. Artificial intelligence, machine learning, deep learning, success rate, failure prediction, orthodontic miniscrew implant, and temporary anchorage device were among the search phrases used. With a focus on methodological approaches, predictive accuracy, and clinical translation, pertinent papers examining AI models for MSI outcome prediction were critically assessed.  Results When compared to traditional statistical methods, AI-based models such as artificial neural networks (ANNs), support vector machines (SVMs), random forest classifiers, and deep learning architectures showed superior predictive accuracy. The most significant predictors of success were cortical bone thickness, insertion torque, root proximity, and patient-related factors (age, sex, oral hygiene, and inflammation). The reported predictive accuracies of AI models ranged from 78% to 96%, outperforming clinician-based estimation and logistic regression.  Conclusion By offering precise, personalized forecasts of MSI success, artificial intelligence (AI) holds great promise for improving clinical decision-making in orthodontics. Even while recent research shows encouraging findings, widespread clinical integration won't happen until more validation in huge, multicenter, real-world clinical datasets.

Keywords : Artificial Intelligence, Orthodontics, Miniscrew Implant, Anchorage, Machine Learning, Deep Learning, Prediction.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe