Biodegradable Implants and In-Situ Forming Systems: Advances in Sustained and Localized Drug Delivery


Authors : Chaitanya Dixit Dornala; Keerthi G.; Sri Ramchandra Magam; Hania Zainab Bhatti

Volume/Issue : Volume 10 - 2025, Issue 10 - October


Google Scholar : https://tinyurl.com/4rwj9kfs

Scribd : https://tinyurl.com/59vnexrp

DOI : https://doi.org/10.38124/ijisrt/25oct646

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : Biodegradable implants and in-situ gels are transforming drug delivery by enabling precise, localized, and sustained release of medications while naturally breaking down into harmless byproducts in the body. Unlike traditional treatments requiring frequent dosing or invasive removal surgeries, these systems improve patient comfort and adherence by reducing side effects and minimizing procedural risks. Biodegradable implants are compact devices, often inserted through minimally invasive methods, designed to deliver drugs or support tissue healing over extended periods. In-situ gels start as liquids and rapidly transition to gels in response to body temperature, pH, or other triggers, ensuring that drugs remain at the target site longer for improved effectiveness. Recent advancements in smart polymers, biosensing technology, and innovative manufacturing methods such as 3D and 4D printing are enabling highly personalized and adaptive therapies tailored to individual patients. The incorporation of nanotechnology further enhances these platforms by improving drug targeting, tissue integration, and controlled responsiveness to physiological signals. These technologies have made significant clinical strides across oncology, ophthalmology, orthopaedics’, cardiovascular medicine, and nerve repair. However, challenges remain in fine-tuning degradation rates, ensuring mechanical stability, achieving consistent formulation performance, and meeting stringent regulatory requirements. Addressing these issues through interdisciplinary collaboration and rigorous evaluation is crucial for their widespread clinical adoption. Looking ahead, biodegradable implants and in-situ gels are poised to revolutionize personalized medicine by seamlessly combining structural support with smart, site-specific drug delivery. Together, they offer the potential for less invasive, more effective, and patient-centred treatments, improving outcomes and quality of life across diverse medical fields worldwide.

Keywords : Biodegradable Implants, In-Situ Gels Controlled Drug Delivery, Smart Polymers, Personalized Medicine, Nanotechnology,3D Printing, Sustained Release.

References :

  1. Dash, T. K., & Konkimalla, V. B. (2012). Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158(1), 15–33. https://doi.org/10.1016/j.jconrel.2011.09.064
  2. Mujahidul islam', Indian scientist dr Hemachandran Ravikumar. Orlean college of pharmacy, macy, knowledge park, gressier moika up Reval Royal s society of biology, UK international Journal of Pharmaceutical Research and Applications INNN: 2456-4494 Volume 10, Issue 3 May-June 2025, pp: 2271-2276 www.ijprajournal.com DOI: 10.35629/4494-100322712276 Impact Factor value 7.429 ISO 9001: 2008 Certified Jounal Page 2271.
  3. Tsung TH, Chen YH, Lu DW. Updates on Biodegradable Formulations for Ocular Drug Delivery.Pharmaceutics.2023 Feb 22;15(3):734. doi: 10.3390/pharmaceutics15030734. PMID: 36986595; PMCID: PMC10057390.: 10.3390/pharmaceutics15030734
  4. Holcman V, Dallaev R, Papež N, Allaham MM. Biodegradable Polymers: Characteristics, Uses, and Environmental Effects. Basel polymers. July 18, 2025, 17(14):1981. 10.3390/polym17141981 is the doi. PMCID: PMC12298952; PMID: 40732859.
  5. A Review on Advanced Drug Delivery Systems Using 3D-Printed Biodegradable Polymers: Review Article. (2025). Journal of Pharma Insights and Research, 3(3), 127-140. https://doi.org/10.69613/2q6qdy97.
  6. Heying R, Mela P, Mozafari M, and Kabirian F. Biodegradable 3D-printed cardiovascular implants function better when controlled release systems are used. doi: 10.1021/acsbiomaterials.3c00559. Epub 2023 Oct 19. PMID: 37856240. ACS Biomater Sci Eng. 2023 Nov 13;9(11):5953-5967.
  7. Picco CJ, Domínguez-Robles J, Utomo E, Paredes AJ, Volpe-Zanutto F, Malinova D, Donnelly RF, Larrañeta E. 3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Deliv. 2022 Dec;29(1):1038-1048. doi: 10.1080/10717544.2022.2057620. PMID: 35363100; PMCID: PMC8979538.
  8. Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346. https://doi.org/10.1016/S0142-9612(00)00101-0.
  9. Xia B, Liu Y, Xing Y, Shi Z, Pan X. Biodegradable Medical Implants: Reshaping Future Medical Practice. Adv Sci (Weinh). 2025 Sep;12(35): e08014. doi: 10.1002/advs.202508014. Epub 2025 Aug 9. PMID: 40782070; PMCID: PMC12462970.
  10. Hydrolytic Degradation and Erosion of Polyester Biomaterials Lindsay N. Woodard and Melissa A. Grunlan ACS Macro Letters 2018 7 (8), 976-982 DOI: 10.1021/acsmacrolett.8b00424
  11. 11.Li Y, Chen Q, Shi H, and Thouas GA have conducted a study on the breakdown of poly (polyol sebacate) by oxidation and enzymes. The DOI for the article published in April 2014 in the Journal of Biomaterials Applications, volume 28, issue 8, pages 1138-50 is 10.1177/0885328213499195. July 31, 2013. PMID: 23904286. Epub.
  12. Li Y, Chen Q, Shi H, and Thouas GA have conducted a study on the breakdown of poly (polyol sebacate) by oxidation and enzymes. The DOI for the article published in April 2014 in the Journal of Biomaterials Applications, volume 28, issue 8, pages 1138-50 is 10.1177/0885328213499195. July 31, 2013. PMID: 23904286. Epub.
  13. Sudesh, K., Abe, H., Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25(10), 1503–1555. https://doi.org/10.1016/S0079-6700(00)00035-6.
  14. Dash, T. K., & Konkimalla, V. B. (2012). Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158(1), 15–33. https://doi.org/10.1016/j.jconrel.2011.09.064.
  15. Thakur, V.K., Thakur, M.K. (2014). Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102–117. https://doi.org/10.1016/j.carbpol.2014.03.039.
  16. Athanasiou KA, Singhal AR, Agrawal CM, Boyan BD. In vitro degradation and release characteristics of biodegradable implants containing trypsin inhibitor. Clin Orthop Relat Res. 1995 Jun;(315):272-81. PMID: 7634681.
  17. Hydrolytic Degradation and Erosion of Polyester Biomaterials Lindsay N. Woodard and Melissa A. Grunlan ACS Macro Letters 2018 7 (8), 976-982 DOI: 10.1021/acsmacrolett.8b00424
  18. Humberto Valencia C. Hydrolytic degradation and in vivo resorption of poly-l-lactic acid-chitosan biomedical devices in the parietal bones of Wistar rats. Journal of International Medical Research. 2019;47(4):1705-1716. doi:10.1177/0300060519828935
  19. Kotteda AK, Saikumar T, Shreegan AA. Advancements in Biodegradable Orthopaedic Implants: A Literature Review. Indian J Orthop. 2025 Jun 22;59(8):1090-1100. doi: 10.1007/s43465-025-01445-y. PMID: 40852561; PMCID: PMC12367625.
  20. Thakur, V.K., Thakur, M.K. (2014). Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102–117. https://doi.org/10.1016/j.carbpol.2014.03.039.
  21. Amini AR, Wallace JS, Nukavarapu SP. Short-term and long-term effects of orthopedic biodegradable implants. J Long Term Eff Med Implants. 2011;21(2):93-122. doi: 10.1615/jlongtermeffmedimplants. v21.i2.10. PMID: 22043969; PMCID: PMC3470866.
  22. Huang C, Yang H, Shi J, He W, Zheng Y, Chen S, Lu Y, Zhang T, Chen K, Canavese F. Biodegradable metals are replacing absorbable polymers in the use of biodegradable implants in pediatric orthopedics. PMID: 40256329; PMCID: PMC12008652; doi: 10.1016/j.bioactmat.2025.04.001. Bioact Mater. 2025 Apr 10; 50:189-214.
  23. Huang C, Yang H, Shi J, He W, Zheng Y, Chen S, Lu Y, Zhang T, Chen K, Canavese F. Biodegradable metals are replacing absorbable polymers in the use of biodegradable implants in pediatric orthopedics. PMID: 40256329; PMCID: PMC12008652; doi: 10.1016/j.bioactmat.2025.04.001. Bioact Mater. 2025 Apr 10; 50:189-214.
  24. Amini AR, Wallace JS, Nukavarapu SP. Short-term and long-term effects of orthopedic biodegradable implants. J Long Term Eff Med Implants. 2011;21(2):93-122. doi: 10.1615/jlongtermeffmedimplants. v21.i2.10. PMID: 22043969; PMCID: PMC3470866.
  25. Amini AR, Wallace JS, Nukavarapu SP. Short-term and long-term effects of orthopedic biodegradable implants. J Long Term Eff Med Implants. 2011;21(2):93-122. doi: 10.1615/jlongtermeffmedimplants. v21.i2.10. PMID: 22043969; PMCID: PMC3470866.
  26. Seetharaman S, Gupta M, and Sankaranarayanan D. Magnesium-Based Temporary Implants: Prospects, Present Situation, Uses, and Difficulties. Biomater J Funct. June 17, 2023; 14(6):324. 10.3390/jfb14060324 is the doi. PMCID: PMC10299300; PMID: 37367288.
  27. Huang C, Yang H, Shi J, He W, Zheng Y, Chen S, Lu Y, Zhang T, Chen K, Canavese F. Biodegradable metals are replacing absorbable polymers in the use of biodegradable implants in pediatric orthopedics. PMID: 40256329; PMCID: PMC12008652; doi: 10.1016/j.bioactmat.2025.04.001. Bioact Mater. 2025 Apr 10; 50:189-214.
  28. B. Xia, Y. Liu, Y. Xing, Z. Shi, and X. Pan, “Biodegradable Medical Implants: Reshaping Future Medical Practice.” Adv. Sci. 12, no. 35 (2025): 12, e08014. https://doi.org/10.1002/advs.202508014.
  29. Huang C, Yang H, Shi J, He W, Zheng Y, Chen S, Lu Y, Zhang T, Chen K, Canavese F. Biodegradable metals are replacing absorbable polymers in the use of biodegradable implants in pediatric orthopedics. PMID: 40256329; PMCID: PMC12008652; doi: 10.1016/j.bioactmat.2025.04.001. Bioact Mater. 2025 Apr 10; 50:189-214.
  30. Recent advances in bio-medical implants; mechanical properties, surface modifications and applications Mohammed Zwawi Engineering Research Express, Volume 4, Number 3 Mohammed Zwawi 2022 Eng. Res. Express 4 032003DOI 10.1088/2631-8695/ac8ae2
  31. Amini AR, Wallace JS, Nukavarapu SP. Short-term and long-term effects of orthopedic biodegradable implants. J Long Term Eff Med Implants. 2011;21(2):93-122. doi: 10.1615/jlongtermeffmedimplants. v21.i2.10. PMID: 22043969; PMCID: PMC3470866.
  32. Amini AR, Wallace JS, Nukavarapu SP. Short-term and long-term effects of orthopedic biodegradable implants. J Long Term Eff Med Implants. 2011;21(2):93-122. doi: 10.1615/jlongtermeffmedimplants. v21.i2.10. PMID: 22043969; PMCID: PMC3470866.
  33. Huang C, Yang H, Shi J, He W, Zheng Y, Chen S, Lu Y, Zhang T, Chen K, Canavese F. Biodegradable metals are replacing absorbable polymers in the use of biodegradable implants in pediatric orthopedics. PMID: 40256329; PMCID: PMC12008652; doi: 10.1016/j.bioactmat.2025.04.001. Bioact Mater. 2025 Apr 10; 50:189-214.
  34. Wang L, Guo X, Chen J, Zhen Z, Cao B, Wan W, Dou Y, Pan H, Xu F, Zhang Z, Wang J, Li D, Guo Q, Jiang Q, Du Y, Yu J, Heng BC, Han Q, Ge Z. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact Mater. 2021 Aug 3; 9:332-342. doi: 10.1016/j.bioactmat.2021.07.031. PMID: 34820574; PMCID: PMC8586440.
  35. Wang L, Guo X, Chen J, Zhen Z, Cao B, Wan W, Dou Y, Pan H, Xu F, Zhang Z, Wang J, Li D, Guo Q, Jiang Q, Du Y, Yu J, Heng BC, Han Q, Ge Z. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact Mater. 2021 Aug 3; 9:332-342. doi: 10.1016/j.bioactmat.2021.07.031. PMID: 34820574; PMCID: PMC8586440.
  36. Aikin, Mykyta, Vadim Shalomeev, Volodymyr Kukhar, Andrii Kostryzhev, Ihor Kuziev, Viktoriia Kulynych, Oleksandr Dykha, Volodymyr Dytyniuk, Oleksandr Shapoval, Alvydas Zagorskis, and et al. 2025. "Recent Advances in Biodegradable Magnesium Alloys for Medical Implants: Evolution, Innovations, and Clinical Translation" Crystals 15, no. 8: 671. https://doi.org/10.3390/cryst15080671
  37. Wang L, Guo X, Chen J, Zhen Z, Cao B, Wan W, Dou Y, Pan H, Xu F, Zhang Z, Wang J, Li D, Guo Q, Jiang Q, Du Y, Yu J, Heng BC, Han Q, Ge Z. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact Mater. 2021 Aug 3; 9:332-342. doi: 10.1016/j.bioactmat.2021.07.031. PMID: 34820574; PMCID: PMC8586440.
  38. Dykha, O., Dytyniuk, V., Shapoval, O., Zagorskis, A., Burko, V., Khliestova, O., Titov, V., & Hrushko, O. (2025) Aikin, M., Shalomeev, V., Kukhar, V., Kostryzhev, A., Kuziev, I., Kulynych, V. Current Developments, Innovations, and Clinical Applications of Biodegradable Magnesium Alloys for Medical Implants. 15(8), Crystals, 671. The article is https://doi.org/10.3390/cryst15080671.
  39. Wang L, Guo X, Chen J, Zhen Z, Cao B, Wan W, Dou Y, Pan H, Xu F, Zhang Z, Wang J, Li D, Guo Q, Jiang Q, Du Y, Yu J, Heng BC, Han Q, Ge Z. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact Mater. 2021 Aug 3; 9:332-342. doi: 10.1016/j.bioactmat.2021.07.031. PMID: 34820574; PMCID: PMC8586440.
  40. Kotteda AK, Saikumar T, Shreegan AA. Advancements in Biodegradable Orthopaedic Implants: A Literature Review. Indian J Orthop. 2025 Jun 22;59(8):1090-1100. doi: 10.1007/s43465-025-01445-y. PMID: 40852561; PMCID: PMC12367625.
  41. Wang L, Guo X, Chen J, Zhen Z, Cao B, Wan W, Dou Y, Pan H, Xu F, Zhang Z, Wang J, Li D, Guo Q, Jiang Q, Du Y, Yu J, Heng BC, Han Q, Ge Z. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact Mater. 2021 Aug 3; 9:332-342. doi: 10.1016/j.bioactmat.2021.07.031. PMID: 34820574; PMCID: PMC8586440.
  42. Wang L, Guo X, Chen J, Zhen Z, Cao B, Wan W, Dou Y, Pan H, Xu F, Zhang Z, Wang J, Li D, Guo Q, Jiang Q, Du Y, Yu J, Heng BC, Han Q, Ge Z. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact Mater. 2021 Aug 3; 9:332-342. doi: 10.1016/j.bioactmat.2021.07.031. PMID: 34820574; PMCID: PMC8586440.
  43. Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. Int J Mol Sci. 2023 Aug 19;24(16):12976. doi: 10.3390/ijms241612976. PMID: 37629157; PMCID: PMC10455181.
  44. Thakur R, Jones D, “Biodegradeable Implants for Sustained Intraocular Delivery of Small and Large Molecules”. ON drug Delivery Magazine, Issue 82 (Jan 2018), pp 28-31.
  45. Kwong JS, Yu CM. Clinical outcomes of biodegradable polymer drug-eluting stents for percutaneous coronary intervention: an updated meta-analysis of randomized controlled trials. Clin Cardiol. 2014 Jul;37(7):440-53. doi: 10.1002/clc.22285. Epub 2014 Apr 10. PMID: 24723467; PMCID: PMC6649413.
  46. Kwong JS, Yu CM. Clinical outcomes of biodegradable polymer drug-eluting stents for percutaneous coronary intervention: an updated meta-analysis of randomized controlled trials. Clin Cardiol. 2014 Jul;37(7):440-53. doi: 10.1002/clc.22285. Epub 2014 Apr 10. PMID: 24723467; PMCID: PMC6649413.
  47. Kyriakides TR, Kim HJ, Zheng C, Harkins L, Tao W, Deschenes E. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomed Mater. 2022 Mar 4;17(2):10.1088/1748-605X/ac5574. doi: 10.1088/1748-605X/ac5574. PMID: 35168213; PMCID: PMC9159526.
  48. Witte F, Calliess T, and Windhagen H. Biodegradable synthetic implants: clinical uses and immunological considerations [Biodegradable artificial implant materials: immunological characteristics and clinical applications]. 2008 Feb. 37(2):125-30; Orthopaedics. PMID: 18214423; German. doi: 10.1007/s00132-008-1193-9.
  49. Omar R, Saliba W, Khatib M, Zheng Y, Pieters C, Oved H, Silberman E, Zohar O, Hu Z, Kloper V, Broza YY, Dvir T, Grinberg Dana A, Wang Y, Haick H. Biodegradable, Biocompatible, and Implantable Multifunctional Sensing Platform for Cardiac Monitoring. ACS Sens. 2024 Jan 26;9(1):126-138. doi: 10.1021/acssensors.3c01755. Epub 2024 Jan 3. PMID: 38170944; PMCID: PMC10825867.
  50. Ahsan Riaz Khan, Navdeep Singh Grewal, Chao Zhou, Kunshan Yuan, Hai-Jun Zhang, Zhang Jun, Recent advances in biodegradable metals for implant applications: Exploring in vivo and in vitro responses Results in Engineering, Volume 20,2023,101526, ISSN2590-1230, https://doi.org/10.1016/j.rineng.2023.101526.

Biodegradable implants and in-situ gels are transforming drug delivery by enabling precise, localized, and sustained release of medications while naturally breaking down into harmless byproducts in the body. Unlike traditional treatments requiring frequent dosing or invasive removal surgeries, these systems improve patient comfort and adherence by reducing side effects and minimizing procedural risks. Biodegradable implants are compact devices, often inserted through minimally invasive methods, designed to deliver drugs or support tissue healing over extended periods. In-situ gels start as liquids and rapidly transition to gels in response to body temperature, pH, or other triggers, ensuring that drugs remain at the target site longer for improved effectiveness. Recent advancements in smart polymers, biosensing technology, and innovative manufacturing methods such as 3D and 4D printing are enabling highly personalized and adaptive therapies tailored to individual patients. The incorporation of nanotechnology further enhances these platforms by improving drug targeting, tissue integration, and controlled responsiveness to physiological signals. These technologies have made significant clinical strides across oncology, ophthalmology, orthopaedics’, cardiovascular medicine, and nerve repair. However, challenges remain in fine-tuning degradation rates, ensuring mechanical stability, achieving consistent formulation performance, and meeting stringent regulatory requirements. Addressing these issues through interdisciplinary collaboration and rigorous evaluation is crucial for their widespread clinical adoption. Looking ahead, biodegradable implants and in-situ gels are poised to revolutionize personalized medicine by seamlessly combining structural support with smart, site-specific drug delivery. Together, they offer the potential for less invasive, more effective, and patient-centred treatments, improving outcomes and quality of life across diverse medical fields worldwide.

Keywords : Biodegradable Implants, In-Situ Gels Controlled Drug Delivery, Smart Polymers, Personalized Medicine, Nanotechnology,3D Printing, Sustained Release.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe