Authors :
Mba, Blessing Amarachi; Asiwe Emeka Sabastine; Ezeji-Chigbu Nmadike Gabriel Nnamemeka; Chimdi Ezichi Esonu; Chiamaka P. Ihedimbu; Nkwocha Uchechukwu Basil
Volume/Issue :
Volume 10 - 2025, Issue 11 - November
Google Scholar :
https://tinyurl.com/mw84m2nb
Scribd :
https://tinyurl.com/3fjtz3jd
DOI :
https://doi.org/10.38124/ijisrt/25nov646
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Sensors are vital tools in the medical field and advancement in sensor technologies has given room for development
of several types of sensors to meet specific medical demands. Recent advances in developing low-cost and highly efficient
biosensors devices which are highly sensitive and possess great specificity have opened new scope for discovery and diagnosis
through conversion of biochemical signals into measurable physicochemical signals. This chapter presents a review on the
application of biosensors in the medical field. The review captures biosensor concept, principle of detection, components and
its application in detection and diagnosis of diseases. Biosensors and their functions in medical field are critical aspects and
their special advantage of fast response and high sensitivity makes them imperative.
Keywords :
Sensors, Biosensors, Detection, Diagnosis.
References :
- Nagata M and Sode K (2025) In-vivo continuous monitoring with biosensors based on engineered biological recognition elements: opportunities and challenges. Front. Sens. 6:1579359. doi: 10.3389/fsens.2025.1579359
- Batchu, K., Probst, D., Satomura, T., Younce, J., and Sode, K. (2025). The development and application of an engineered direct electron transfer enzyme for continuous levodopa monitoring. Npj Biosensing 2 (1), 1–11. doi:10.1038/s44328-024-00020-z
- Zhang, T., Zhou, P., Simon, T., Cui, T., 2022. Vibrating a sessile droplet to enhance mass transfer for high-performance electrochemical sensors. Sens Actuators B Chem 362. https://doi.org/10.1016/j.snb.2022.131788.
- Masoud Madadelahi, Fabian O. Romero-Soto, Rudra Kumar, Uriel Bonilla Tlaxcala, Marc J. Madou (2025) Electrochemical sensors: Types, applications, and the novel impacts of vibration and fluid flow for microfluidic integration, Biosensors and Bioelectronics 272; 117099 https://doi.org/10.1016/j.bios.2024.117099
- Kaur H, Bhosale A, Shrivastav S (2018). Biosensors: classification, fundamental characterization and new trends: a review. Int J Health Sci Res 8: 315-333.
- Akyüz, D., Koca, A., 2019. An electrochemical sensor for the detection of pesticides based on the hybrid of manganese phthalocyanine and polyaniline. Sens Actuators B Chem 283, 848–856. https://doi.org/10.1016/j.snb.2018.11.155.
- Alzahrani, K.E., Assaifan, A.K., Al-Gawati, M., Alswieleh, A.M., Albrithen, H., Alodhayb, A., 2023. Microelectromechanical system-based biosensor for label-free detection of human cytomegalovirus. IET Nanobiotechnol. 17 (1), 32–39. https:// doi.org/10.1049/nbt2.12109.
- Xiang, Y., et al., 2022. Novel electrochemical immunosensor based on an Abs-AuNPs@ ZIF-67 probe for the simultaneous detection of Fenpropathrin and Deltamethrin in vegetables. Int. J. Electrochem. Sci. 17. https://doi.org/10.20964/2022.04.23.
- Probst, D., Batchu, K., Younce, J. R., and Sode, K. (2024). Levodopa: from biological significance to continuous monitoring. ACS Sens. 9 (8), 3828–3839. doi:10.1021/acssensors.4c00602
- Morales MA, Halpern JM (2018) Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug Chem 17:29(10):3231-3239. doi: 10.1021/acs.bioconjchem.8b00592..
- Wignarajah, S., Chianella, I., Tothill, I.E., 2023. Development of electrochemical immunosensors for HER-1 and HER-2 analysis in serum for Breast cancer Patients. Biosensors 13 (3). https://doi.org/10.3390/bios13030355.
- Yence, M., Cetinkaya, A., Çorman, M.E., Uzun, L., Caglayan, M.G., Ozkan, S.A., 2023. Fabrication of molecularly imprinted electrochemical sensors for sensitive codeine detection. Microchem. J. 193. https://doi.org/10.1016/j.microc.2023.109060.
- Traiwatcharanon, P., Siriwatcharapiboon, W., Jongprateep, O., Wongchoosuk, C., 2022. Electrochemical paraquat sensor based on lead oxide nanoparticles. RSC Adv. 12 (25), 16079–16092. https://doi.org/10.1039/d2ra02034c.
- Kaushik, A.M., Hsieh, K., Wang, T.-H., 2018. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers. WIREs Nanomedicine and Nanobiotechnology 10 (6), e1522.
- Anusha, J.R., Kim, B.C., Yu, K.H., Raj, C.J., 2019. Electrochemical biosensing of mosquito-borne viral disease, dengue: a review. Elsevier. https://doi.org/10.1016/j. bios.2019.111511.
- Wasiewska, L.A., Juska, V.B., Seymour, I., Burgess, C.M., Duffy, G., O’Riordan, A., 2023. Electrochemical Nucleic Acid-Based Sensors for Detection of Escherichia coli and Shiga Toxin-Producing E. coli—Review of the Recent Developments. John Wiley and Sons Inc. https://doi.org/10.1111/1541-4337.13132.
- Baranwal J, Barse B, Gatto G, Broncova G, Kumar A (2022) Electrochemical Sensor and their applications. Chemosensors. 10. 10.3390/chemosensors10090363.
- Baranwal J, Barse B, Gatto G, Broncova G, Kumar A (2022) Emerging technologies for the electrochemical detection of bacteria. Electrochem Sci Adv 38:e00199. https://doi.org/10.1021/acsomega.3c08060
- Lopes LC, Santos A, Bueno PR (2022) An outlook on electrochemical approaches for molecular diagnostics assays and discussions on the limitations of miniaturized technologies for point-of-care devices. Sens Act Rep 4: 100087 DOI: 10.1016/j.snr.2022.100087
- Wignarajah, S., Chianella, I., Tothill, I.E., 2023. Development of electrochemical immunosensors for HER-1 and HER-2 analysis in serum for Breast cancer Patients. Biosensors 13 (3). https://doi.org/10.3390/bios13030355.
- Kolatorova L, Vitku J, Suchopar J, Hill M, Parizek A. (2022) Progesterone: A Steroid with Wide Range of Effects in Physiology as Well as Human Medicine. Inter J Mol Sci 23(14):7989. https://doi.org/10.3390/ijms23147989
- Chen J, Zhao Z, Zhu H and Li X (2025) Advances in electrochemical biosensors for the detection of tumor-derived exosomes. Front. Chem. 13:1556595. doi: 10.3389/fchem.2025.1556595
- Baranwal, J., Barse, B., Gatto, G., Broncova, G., and Kumar, A. (2020). Electrochemical sensors and their applications: a review. Chemosensors 10 (9), 363. doi:10.3390/chemosensors10090363
- Wang C, Liu M, Wang Z, Li S, Deng Y, He N. (2021) Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 37:101092. doi: 10.1016/j.nantod.2021.101092.
- Das S, Dey MK, Devireddy R, Gartia MR (2023) Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors 20;24(1):37. doi: 10.3390/s24010037.
- Iqbal, M.J., Javed, Z., Herrera-Bravo, J. et al. (2022) Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell Int 22, 354 https://doi.org/10.1186/s12935-022-02777-7
- Irani, K., Siampour, H., Allahverdi, A., Moshaii, A., and Naderi-Manesh, H. (2023). Lung cancer cell-derived exosome detection using electrochemical approach towards early cancer screening. Int. J. Mol. Sci. 24 (24), 17225. doi:10.3390/ijms242417225
- Rotimi SO, Rotimi OA, Salhia B (2021) A Review of Cancer Genetics and Genomics Studies in Africa. Front Oncol 15:10:606400. doi: 10.3389/fonc.2020.606400.
- Huang, Y., Zhou, F., Jia, F., and Yang, N. (2023). Divalent aptamer-functionalized nanochannels for facile detection of cancer cell-derived exosomes. Sensors 23 (22), 9139. doi:10.3390/s23229139
- Jin, X., Guan, Y., Zhang, Z., Wang, H., 2020. Microarray data analysis on gene and miRNA expression to identify biomarkers in non-small cell lung cancer. BMC Cancer 20, 1–10.
- An, Y., Jin, T., Zhu, Y., Zhang, F., and He, P. (2019). An ultrasensitive electrochemical aptasensor for the determination of tumor exosomes based on click chemistry. Biosens. Bioelectron. 142, 111503. doi:10.1016/j.bios.2019.111503
- Melis A, Ozlem O, Mert Sahinler SI,. Ilker PP (2018). Recent Developments in Enzyme, DNA and Immuno-Based Biosensors. Sensors 18: 1924
- Kashefi-Kheyrabadi, L., Kim, J., Chakravarty, S., Park, S., Gwak, H., Kim, S. I.,. et al., (2020). Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes. Biosens. Bioelectron. 169, 112622. doi:10.1016/j.bios.2020.112622
- Jiang, B., Zhang, T., Liu, S., Sheng, Y., and Hu, J. (2024). Polydopamine-assisted aptamer-carrying tetrahedral DNA microelectrode sensor for ultrasensitive electrochemical detection of exosomes. J. Nanobiotechnol. 22 (1), 55. doi:10.1186/s12951-024-02318-6
- Donati, S., Ciuffi, S., Brandi, M.L., 2019. Human circulating miRNAs real-time qRT-PCRbased analysis: an overview of endogenous reference genes used for data normalization. Int. J. Mol. Sci. 20, 4353.
- Langford TF, Huang BK, Lim JB, Moon SJ, Sikes HD (2018) Monitoring the action of redox-directed cancer therapeutics using a human peroxiredoxin-2-based probe. Nat Commun 7;9(1):3145.
- zahirifar, F., Rahimnejad, M., Abdulkareem, R.A., Najafpour, G., 2019. Determination of Diazinon in fruit samples using electrochemical sensor based on carbon nanotubes modified carbon paste electrode. Biocatal. Agric. Biotechnol. 20. https://doi.org/ 10.1016/j.bcab.2019.101245.
- Yongli Y, Guo H, Sun X. (2019) Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron. ;126:389-404
- Mechanic OJ, Gavin M, Grossman SA (2019) Acute myocardial infaction. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459269/
- Kilic, T., Valinhas, A. T. D. S., Wall, I., Renaud, P., and Carrara, S. (2018). Label-free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells. Sci. Rep. 8 (1), 9402. doi:10.1038/s41598-018-27203-9
- De Tommasi, E., Esposito, E., Romano, S., Crescitelli, A., Di Meo, V., Mocella, V., Zito, G., Rendina, I., 2021. Frontiers of light manipulation in natural, metallic, and dielectric nanostructures. La Rivista del Nuovo Cimento 44, 1–68.
- Wilson, M., Al-Hamid, A., Abbas, I., Birkett, J., Khan, I., Harper, M., Al-Jumeily Obe, D., Assi, S., 2024. Identification of diagnostic biomarkers used in the diagnosis of cardiovascular diseases and diabetes mellitus: a systematic review of quantitative studies. Diabetes Obes. Metabol. 2024; 26(8): 3009-3019. doi:10.1111/dom.15593.
- Sheela A. Sangam, Raghavendra P.Bakale, Meera R. Gumaste, Shridhar N.Mathad, Shivalingsarj V. Desai (2025) Advances in Biosensors: A Comprehensive Review of Types, Enzyme-Based Glucose Biosensors, and Applications. Journal of Chemistry Letters. 6: 33-48
- Pullano SA, Greco M, Bianco MG, Foti D, Brunetti A, Fiorillo AS (2022) Glucose biosensors in clinical practice: principles, limits and perspectives of currently used devices. Theranostics. 12(2):493-511. doi: 10.7150/thno.64035.
- Same S, Samee G. (2018) Carbon nanotube biosensor for diabetes disease crescent. J. Med. Biol. Sci 5:1–6.
- Baranwal, J., Barse, B., Gatto, G., Broncova, G., and Kumar, A. (2020). Electrochemical sensors and their applications: a review. Chemosensors 10 (9), 363. doi:10.3390/chemosensors10090363
- Suthar, J., Taub, M., Carney, R. P., Williams, G. R., and Guldin, S. (2023). Recent developments in biosensing methods for extracellular vesicle protein characterization. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15 (1), e1839. doi:10.1002/wnan.1839
- Bao, J., Hou, C., Zhao, Y., Geng, X., Samalo, M., Yang, H., Bian, M., Huo, D., (2019). An enzyme-free sensitive electrochemical microRNA-16 biosensor by applying a multiple signal amplification strategy based on Au/PPy-rGO nanocomposite as a substrate. Talanta 196, 329–336
- Hatada M, Loew N, Inose-Takahashi Y, OkudaShimazaki J, Tsugawa W, Mulchandani A, Sode K. (2018) Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference. Bioelectrochemistry. ;121:185-90.
- Cho MJ, Park SY. (2018) Carbon-dot-based ratiometric fluorescence glucose biosensor. Sensors and Actuators B Chemical 282. DOI:10.1016/J.snb.2018.11.055.
- Aryankalayil, M.J., Bylicky, M.A., Martello, S., Chopra, S., Sproull, M., May, J.M., Shankardass, A., MacMillan, L., Vanpouille-Box, C., Dalo, J., (2023). Microarray analysis identifies coding and non-coding RNA markers of liver injury in whole body irradiated mice. Sci. Rep. 13, 200.
- Guoqiang G, Liang Q, Yani Z, Pengyun W, Fanzhuo K, Yuyang Z, Zhiyuan L, Xing N, Xue Z, Qiongya L and Bin Z (2025) Recent advances in glucose monitoring utilizing oxidase electrochemical biosensors integrating carbonbased nanomaterials and smart enzyme design. Front. Chem. 13:1591302. doi: 10.3389/fchem.2025.1591302
- Zhang, Y., Cui, Y., Hong, X., and Du, D. (2018). Using of tyramine signal amplification to improve the sensitivity of ELISA for aflatoxin B1 in edible oil samples. Food Anal. Methods 11 (9), 2553–2560. doi:10.1007/s12161-018-1235-9
- Liu, S., Tian, W., Ma, Y., Li, J., Yang, J., and Li, B. (2022). Serum exosomal proteomics analysis of lung adenocarcinoma to discover new tumor markers. BMC Cancer 22 (1), 279. doi:10.1186/s12885-022-09366-x
- Lv, C., Yang, X., Wang, Z., Ying, M., Han, Q., and Li, S. (2021). Enhanced performance of bioelectrodes made with amination-modified glucose oxidase 10.3389/fchem.2025.1591302immobilized on carboxyl-functionalized ordered mesoporous carbon. Nanomaterials 11 (11), 3086. doi:10.3390/nano11113086
- Kilic, N. M., Singh, S., Keles, G., Cinti, S., Kurbanoglu, S., and Odaci, D. (2023). Novel approaches to enzyme-based electrochemical nanobiosensors. Biosensors-Basel 13 (6), 622. doi:10.3390/bios13060622
- Lehrich, B. M., Zhang, J., Monga, S. P., and Dhanasekaran, R. (2024). Battle of the biopsies: role of tissue and liquid biopsy in hepatocellular carcinoma. J. Hepatol. 80 (3), 515–530. doi:10.1016/j.jhep.2023.11.030
- Ahmad, R., Khan, M., Mishra, P., Jahan, N., Ahsan, M. A., Ahmad, I., et al. (2021). Engineered hierarchical CuO nanoleaves based electrochemical nonenzymatic biosensor for glucose detection. J. Electrochem. Soc. 168 (1), 017501. doi:10.1149/ 1945-7111/abd515
- Kohama, I., Kosaka, N., Chikuda, H., and Ochiya, T. (2019). An insight into the roles of microRNAs and exosomes in sarcoma. Cancers (Basel) 11 (3), 428. doi:10.3390/ cancers11030428
- L. Nécula, L. Matei, D. Dragu, et al., (2022) “Collagen Family as Promising Biomarkers and Therapeutic Targets in Cancer,” International Journal of Molecular Sciences 23, no. 20: 12415, https://doi.org/10.3390/ijms232012415.
- Anwar, A., Kaur, T., Chaugule, S., Yang, Y.-S., Mago, A., Shim, J.-H., & John, A. A. (2024). Sensors in Bone: Technologies, Applications, and Future Directions. Sensors, 24(19), 6172. https://doi.org/10.3390/s24196172
- Valverde, A. Ben Hassine, V. Serafin, et al., (2020) “Dual Amperometric Immunosensor for Improving Cancer Metastasis Detection by the Simultaneous Determination of Extracellular and Soluble Circulating Fraction of Emerging Metastatic Biomarkers,” Electroanalysis 32, no. 4: 706–714, https://doi.org/10.1002/elan.201900506
- Hui, X., Yang, C., Li, D., He, X., Huang, H., Zhou, H., Chen, M., Lee, C., Mu, X., 2021. Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155. Adv. Sci. 8, e2100583.
- L. Guo, Y. Zhao, Q. Huang, et al., (2024) “Electrochemical Protein Biosensors for Disease Marker Detection: Progress and Opportunities,” Microsystems & Nanoengineering 10: 65, https://doi.org/10.1038/s41378-024-00700-w.
- Di Meo, V., Crescitelli, A., Moccia, M., Sandomenico, A., Cusano, A.M., Portaccio, M., Lepore, M., Galdi, V., Esposito, E., 2020. Pixeled metasurface for multiwavelength detection of vitamin D. Nanophotonics 9, 3921–3930.
- Alhadrami HA. Biosensors: classifications, medical applications, and future prospective. Biotechnol Appl Biochem. 2018;65(3):497–508
- Saylan Y, Erdem Ö, Ünal S, Denizli A. (2019) An alternative medical diagnosis method: biosensors for virus detection. Biosensors; 9(2):65.
- Shariati M (2018) The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology. Biosens Bioelectron 105:58–64.
- Manzano M, Viezzi S, Mazerat S, Marks RS, Vidic J (2018) Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens Bioelec 100: 89–95.
- Luo, L., Wang, L., Zeng, L., Wang, Y., Weng, Y., Liao, Y., et al. (2020). A ratiometric electrochemical DNA biosensor for detection of exosomal microRNA. Talanta 207, 120298. doi:10.1016/j.talanta.2019.120298
- Boriachek, K., Islam, M. N., Möller, A., Salomon, C., Nguyen, N. T., Hossain, M. S. A., et al. (2018). Biological functions and current advances in isolation and detection strategies for exosome nanovesicles. Small 14 (6), 1702153. doi:10.1002/smll.20170215
Sensors are vital tools in the medical field and advancement in sensor technologies has given room for development
of several types of sensors to meet specific medical demands. Recent advances in developing low-cost and highly efficient
biosensors devices which are highly sensitive and possess great specificity have opened new scope for discovery and diagnosis
through conversion of biochemical signals into measurable physicochemical signals. This chapter presents a review on the
application of biosensors in the medical field. The review captures biosensor concept, principle of detection, components and
its application in detection and diagnosis of diseases. Biosensors and their functions in medical field are critical aspects and
their special advantage of fast response and high sensitivity makes them imperative.
Keywords :
Sensors, Biosensors, Detection, Diagnosis.