Authors :
Sujapriya S, John Raj I
Volume/Issue :
Volume 9 - 2024, Issue 6 - June
Google Scholar :
https://tinyurl.com/3jantdun
Scribd :
https://tinyurl.com/yntyj7mb
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24JUN1899
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
The proposed framework merges Generative
Adversarial Networks (GANs) with Reinforcement
Learning (RL) techniques to enhance blindness
detection. GANs generate synthetic retinal images
covering various eye diseases, enriching training data
and improving generalization. RL optimizes screening
strategies dynamically, adjusting decisions based on
evolving patient profiles and environmental cues.
Empirical evaluations on real-world datasets
demonstrate superior performance over conventional
methods, addressing data imbalance and fostering
adaptable screening policies. This synergistic fusion
offers a comprehensive, adaptable, and interpretable
approach to early diagnosis and preventive care,
highlighting the potential of advanced AI techniques in
healthcare.
Keywords :
Generative Adversarial Networks, Reinforcement Learning, Healthcare and Patient.
References :
- Bilal, A.; Zhu, L.; Deng, A.; Lu, H.; Wu, N. AI-Based Automatic Detection and Classification of Diabetic RetinopathyUsing U-Net 293 and Deep Learning. SYMMETRY-BASEL 2022,14, 1955–1977.
- Shaban, M.; Mahmoud, A.H.; Shalaby, A.; Ghazal, M.; Sandhu, H.; El-Baz, A. Low - complexity computer-aided diagnosis for diabetic retinopathy. In Diabetes and Retinopathy; Elsevier: Amsterdam, The Netherlands, 2020.
- Kanimozhi, J.; Vasuki, P.; Roomi, S.M.M. Fundus image lesion detection algorithm for diabetic retinopathy screening. J. Ambient.Intell. Humaniz. Comput. 2020,12, 7407-7416.
- Manjaramkar, A.; Kokare, M. Automated Red Lesion Detection: An Overview. In Advances in Intelligent Systems and Computing;Springer: Singapore, 2020; Volume 1089.
- Bilal, A.; Sun, G.; Mazhar, S.; Imran, A.; Latif, J. A Transfer Learning and U-Net- based automatic detection of diabetic retinopathy from fundus images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 202.
- F. Bandello, M. A. Zarbin, R. Lattanzio and I. Zucchiatti, Clinical Strategies in the Management of Diabetic Retinopathy, Berlin Heidelberg:Springer-Verlag, 2014.
- B. Lumbroso, M. Rispoli and M. C. Savastano, Diabetic Retinopathy, Jaypee Brothers Medical Publisher, 2015.
- A. Akhter, K. Fatema, S. F. Ahmed, A. Afroz, L. Ali and A. Hussain, "Prevalence and associated risk indicators of retinopathy in a rural Bangladeshi population with and without diabetes", Ophthalmic Epidemiol., vol. 20, no. 4, pp. 220-7, Aug. 2013.
- M. S. Chowdhury, F. R. Taimy, N. Sikder and A.-A. Nahid, "Diabetic Retinopathy Classification with a Light Convolutional Neural Network", 2019 International Conference on Computer Communication Chemical Materials and Electronic Engineering (IC4ME2).
- M. U. Akram, S. Khalid and S. A. Khan, "Identification and classification of microaneurysms for early detection of diabetic retinopathy", Pattern Recognit., vol. 46, no. 1, pp. 107-116, Jan. 2013.
- M. U. Akram, S. Khalid, and S. A. Khan,“Identification and classification of microaneurysms for early detection of diabetic retinopathy,” Pattern Recognit., vol. 46, no. 1, pp. 107–116, Jan. 2013.
- E. Saleh et al., “Learning ensemble classifiers for diabetic retinopathy assessment,” Artif. Intell. Med.,vol. 85, pp. 50–63, Apr. 2018.
- N. Sikder, M. S. Chowdhury, A. M. Shamim Arif, and A.-A. Nahid, “Human Activity Recognition Using Multichannel Convolutional Neural Network,”2019 5th Int. Conf. Adv. Electr. Eng., 2019.
- B. Lumbroso, M. (Ophthalmologist) Rispoli, and M.C. Savastano, Diabetic retinopathy. .
- Lakshminarayanan, V., Kheradfallah, H., Sarkar, A., & Jothi Balaji, J. (2021). Automated Detection and Diagnosis of Diabetic Retinopathy: A Comprehensive Survey. Journal of Imaging, 7(9), 165.
- Hasan, D. A., Zeebaree, S. R., Sadeeq, M. A., Shukur, H. M., Zebari, R. R., & Alkhayyat, A. H. (2021, April). Machine Learning-based Diabetic Retinopathy Early Detection and Classification Systems-A Survey. In 2021 1st Babylon International Conference on Information Technology and Science (BICITS) (pp. 16-21). IEEE.
- Moshfeghi, D. M., & Trese, M. T. (2021). Reducing blindness resulting from retinopathy of prematurity using deep learning. Ophthalmology, 128(7), 1077-1078.
- Tymchenko, B., Marchenko, P., & Spodarets, D. (2020). Deep learning approach to diabetic retinopathy detection. arXiv preprint arXiv:2003.02261.
- A. Iqbal, et al. Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey International Journal of Multimedia Information Retrieval (2022), pp. 1-36
The proposed framework merges Generative
Adversarial Networks (GANs) with Reinforcement
Learning (RL) techniques to enhance blindness
detection. GANs generate synthetic retinal images
covering various eye diseases, enriching training data
and improving generalization. RL optimizes screening
strategies dynamically, adjusting decisions based on
evolving patient profiles and environmental cues.
Empirical evaluations on real-world datasets
demonstrate superior performance over conventional
methods, addressing data imbalance and fostering
adaptable screening policies. This synergistic fusion
offers a comprehensive, adaptable, and interpretable
approach to early diagnosis and preventive care,
highlighting the potential of advanced AI techniques in
healthcare.
Keywords :
Generative Adversarial Networks, Reinforcement Learning, Healthcare and Patient.