Cadmium Telluride (CdTe): A Comprehensive Review on Properties, Thin-Film Fabrication, and Applications


Authors : Ujjwal Prasad; Pushp Raj Harsh; S. R. Kumar; K. Prasad

Volume/Issue : Volume 11 - 2026, Issue 1 - January


Google Scholar : https://tinyurl.com/ycx5mhhj

Scribd : https://tinyurl.com/yz67jea4

DOI : https://doi.org/10.38124/ijisrt/26jan1101

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Cadmium telluride (CdTe) is a II–VI compound semiconductor that has attracted significant scientific and technological interest due to its favorable optoelectronic properties, particularly its direct band gap, high absorption coefficient, and excellent electronic characteristics. CdTe possesses a direct band gap of approximately 1.45 eV at room temperature, which is close to the optimal band gap for solar energy conversion according to the Shockley–Queisser limit. This makes CdTe one of the most promising absorber materials for thin-film photovoltaic applications. Moreover, CdTe exhibits a very high absorption coefficient (greater than 105 cm−1) in the visible spectral region, enabling the absorption of most incident solar radiation within a few micrometers of material thickness. These intrinsic properties allow the fabrication of efficient and cost-effective thin-film devices using relatively small amounts of material compared to conventional crystalline silicon technologies. Cadmium telluride (CdTe) is a II–VI compound semiconductor that has attracted significant attention due to its direct band gap, high absorption coefficient, and excellent optoelectronic properties. CdTe has been widely used in photovoltaic devices, photodetectors, radiation detectors, and other electronic and optoelectronic applications. This review article provides a comprehensive overview of CdTe, including its crystal structure, physical and chemical properties, fabrication techniques, device applications, challenges, and future research directions.

Keywords : CdTe, Optoelectronic, Solar Cell, Photodetector.

References :

  1. A. N. Tiwari, G. Khrypunov, F. Kurdzesau, D. L. Bätzner, A. Romeo, and H. Zogg, “CdTe solar cell in a novel configuration,” Prog. Photovolt. Res. Appl., vol. 12, no. 1, pp. 33–38, Jan. 2004, doi: 10.1002/pip.525.
  2. L. Kranz, S. Buecheler, and A. N. Tiwari, “Technological status of CdTe photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 119, pp. 278–280, Dec. 2013, doi: 10.1016/j.solmat.2013.08.028.
  3. C. Ferekides and J. Britt, “CdTe solar cells with efficiencies over 15%,” Sol. Energy Mater. Sol. Cells, vol. 35, pp. 255–262, Sep. 1994, doi: 10.1016/0927-0248(94)90148-1.
  4. C. S. Ferekides et al., “High efficiency CSS CdTe solar cells,” Thin Solid Films, vol. 361–362, pp. 520–526, Feb. 2000, doi: 10.1016/S0040-6090(99)00824-X.
  5. R. O. Bell, “Review of optical applications of CdTe,” Rev. Phys. Appliquée, vol. 12, no. 2, pp. 391–399, 1977, doi: 10.1051/rphysap:01977001202039100.
  6. M. A. Scarpulla et al., “CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects,” Sol. Energy Mater. Sol. Cells, vol. 255, p. 112289, Jun. 2023, doi: 10.1016/j.solmat.2023.112289.
  7. X. Mathew, J. P. Enriquez, A. Romeo, and A. N. Tiwari, “CdTe/CdS solar cells on flexible substrates,” Sol. Energy, vol. 77, no. 6, pp. 831–838, Dec. 2004, doi: 10.1016/j.solener.2004.06.020.
  8. V. I. Kozlovsky, A. B. Krysa, Yu. V. Korostelin, and Yu. G. Sadofyev, “MBE growth and characterization of ZnTe epilayers and ZnCdTe/ZnTe structures on GaAs(100) and ZnTe(100) substrates,” J. Cryst. Growth, vol. 214–215, pp. 35–39, Jun. 2000, doi: 10.1016/S0022-0248(00)00054-3.
  9. K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth, vol. 197, no. 3, pp. 733–742, Feb. 1999, doi: 10.1016/S0022-0248(98)00962-2.
  10. B. Segall, M. R. Lorenz, and R. E. Halsted, “Electrical Properties of n -Type CdTe,” Phys. Rev., vol. 129, no. 6, pp. 2471–2481, Mar. 1963, doi: 10.1103/PhysRev.129.2471.
  11. M. Gloeckler, I. Sankin, and Z. Zhao, “CdTe Solar Cells at the Threshold to 20% Efficiency,” IEEE J. Photovolt., vol. 3, no. 4, pp. 1389–1393, Oct. 2013, doi: 10.1109/JPHOTOV.2013.2278661.
  12. R. W. Birkmire and B. E. McCandless, “CdTe thin film technology: Leading thin film PV into the future,” Curr. Opin. Solid State Mater. Sci., vol. 14, no. 6, pp. 139–142, Dec. 2010, doi: 10.1016/j.cossms.2010.08.002.
  13. K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys., vol. 73, no. 2, pp. 926–931, Jan. 1993, doi: 10.1063/1.353305.
  14. S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: Experiment and modeling,” J. Appl. Phys., vol. 74, no. 5, pp. 3435–3441, Sep. 1993, doi: 10.1063/1.354543.
  15. B. E. McCandless and K. D. Dobson, “Processing options for CdTe thin film solar cells,” Sol. Energy, vol. 77, no. 6, pp. 839–856, Dec. 2004, doi: 10.1016/j.solener.2004.04.012.
  16. A. E. Rakhshani, “Electrodeposited CdTe—optical properties,” J. Appl. Phys., vol. 81, no. 12, pp. 7988–7993, Jun. 1997, doi: 10.1063/1.365402.
  17. A. Bosio, N. Romeo, S. Mazzamuto, and V. Canevari, “Polycrystalline CdTe thin films for photovoltaic applications,” Prog. Cryst. Growth Charact. Mater., vol. 52, no. 4, pp. 247–279, Dec. 2006, doi: 10.1016/j.pcrysgrow.2006.09.001.
  18. M. Fiederle et al., “Modified compensation model of CdTe,” J. Appl. Phys., vol. 84, no. 12, pp. 6689–6692, Dec. 1998, doi: 10.1063/1.368874.
  19. J. Sites and J. Pan, “Strategies to increase CdTe solar-cell voltage,” Thin Solid Films, vol. 515, no. 15, pp. 6099–6102, May 2007, doi: 10.1016/j.tsf.2006.12.147.
  20. N. Amin, K. Sopian, and M. Konagai, “Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 13, pp. 1202–1208, Aug. 2007, doi: 10.1016/j.solmat.2007.04.006.
  21. M. Barbato et al., “CdTe solar cells: technology, operation and reliability,” J. Phys. Appl. Phys., vol. 54, no. 33, p. 333002, Aug. 2021, doi: 10.1088/1361-6463/ac04e3.
  22. G. Khrypunov, A. Romeo, F. Kurdesau, D. Batzner, H. Zogg, and A. Tiwari, “Recent developments in evaporated CdTe solar cells,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 6, pp. 664–677, Apr. 2006, doi: 10.1016/j.solmat.2005.04.003.
  23. R. M. Geisthardt, M. Topic, and J. R. Sites, “Status and Potential of CdTe Solar-Cell Efficiency,” IEEE J. Photovolt., vol. 5, no. 4, pp. 1217–1221, Jul. 2015, doi: 10.1109/JPHOTOV.2015.2434594.
  24. R. W. Birkmire, B. E. McCANDLESS, and S. S. Hegedus, “EFFECTS OF PROCESSING ON CdTe/CdS MATERIALS AND DEVICES,” Int. J. Sol. Energy, vol. 12, no. 1–4, pp. 145–154, Jan. 1992, doi: 10.1080/01425919208909758.
  25. K. D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, “Stability of CdTe/CdS thin-film solar cells,” Sol. Energy Mater. Sol. Cells, vol. 62, no. 3, pp. 295–325, May 2000, doi: 10.1016/S0927-0248(00)00014-3.
  26. Y. Zhang, W. Chen, J. Zhang, J. Liu, G. Chen, and C. Pope, “In Vitro and In Vivo Toxicity of CdTe Nanoparticles,” J. Nanosci. Nanotechnol., vol. 7, no. 2, pp. 497–503, Feb. 2007, doi: 10.1166/jnn.2007.125.
  27. M. A. Berding, “Native defects in CdTe,” Phys. Rev. B, vol. 60, no. 12, pp. 8943–8950, Sep. 1999, doi: 10.1103/PhysRevB.60.8943.

Cadmium telluride (CdTe) is a II–VI compound semiconductor that has attracted significant scientific and technological interest due to its favorable optoelectronic properties, particularly its direct band gap, high absorption coefficient, and excellent electronic characteristics. CdTe possesses a direct band gap of approximately 1.45 eV at room temperature, which is close to the optimal band gap for solar energy conversion according to the Shockley–Queisser limit. This makes CdTe one of the most promising absorber materials for thin-film photovoltaic applications. Moreover, CdTe exhibits a very high absorption coefficient (greater than 105 cm−1) in the visible spectral region, enabling the absorption of most incident solar radiation within a few micrometers of material thickness. These intrinsic properties allow the fabrication of efficient and cost-effective thin-film devices using relatively small amounts of material compared to conventional crystalline silicon technologies. Cadmium telluride (CdTe) is a II–VI compound semiconductor that has attracted significant attention due to its direct band gap, high absorption coefficient, and excellent optoelectronic properties. CdTe has been widely used in photovoltaic devices, photodetectors, radiation detectors, and other electronic and optoelectronic applications. This review article provides a comprehensive overview of CdTe, including its crystal structure, physical and chemical properties, fabrication techniques, device applications, challenges, and future research directions.

Keywords : CdTe, Optoelectronic, Solar Cell, Photodetector.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe