Carbon-Dioxide Capture in Simulated Gas Stream


Authors : Abhishek Kr Kushwaha; Vaishnava Raghunath Chelluboyana; Devina Ratnam; Poornima Pandey

Volume/Issue : Volume 10 - 2025, Issue 11 - November


Google Scholar : https://tinyurl.com/bddj4ju3

Scribd : https://tinyurl.com/3mchxfv9

DOI : https://doi.org/10.38124/ijisrt/25nov1538

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : The solubility of CO2 determined by an aqueous blend of (TSP+PZ+K-Lys) were experimentally investigated to obtained new data on CO2 loading at total concentrations ranging from (1.0 to 3.0) mol.kg-1, temperature between (303.07 to 353.07) K and CO2 partial pressure ranging from (10.08 to 20.08) kPa with the help of a bubbling absorber. The results were compared to data available in the literature, the (TSP+PZ+K-Lys) blend demonstrated higher CO2 absorption capacity, indicating that this blend could serve as an efficient and promising absorbent for CO2 capture applications.

Keywords : CO2 Solubility, Chemical Absorption, Sustainable CO2 Capture, Solvent Utilization, Potassium Lysinate, TSP.

References :

  1. IPCC. Summary for policymakers. In: climate change 2007: the physical science basis, contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Geneva: World Meteorological Organization/United Nations Environment Program; 2007.
  2. Shahzad, U. Global warming: Causes, Effects and Solutions. Durreesamin J. 2015,8,1-7.
  3. Mondal, M. K.; Balsora, H. K.; Varshney, P. Progress and Trends in CO2 Capture/ Separation Technologies: A Review. Energy 2012,46,431-441.
  4. Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon capture, utilization and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results in surfaces and Interfaces 2024,18.
  5. Raganati, F., Chirone, R., Minutillo, M., & Puccini, M. (2021). Adsorption of carbon dioxide for post-combustion capture: A review. ACS Energy & Fuels, 35(11), 9259-9287.
  6. Balsora, H. K.; Mondal, M. K. Solubility of Carbon Dioxide in an aqueous blend of Diethanolamine and Tri-sodium Phosphate. J. Chem. Eng.
  7. Pires, J.C. M.; Alvim- Ferraz, M.C.M.; Martins, F.G.; Simoes, M. Carbon Dioxide Capture from Flue gases using Microalgae: Engineering Aspects and Biorefinery Concept. Renew. Sustain Energy. Rev 2012, 16,3043-3053.
  8. Kanniche, M.; Gros- Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.-M.; Bouallou, C. Pre- combustion, post- combustion and oxy-combustion in Thermal Power Plant for CO2 capture. Appl. Them. Eng. 2010, 30,53-62.
  9. Pires, J.C.M.; Martins, F.G.; Alvim- Ferraz, M. C. M.; Simoes, M. Recent Developments on Carbon capture and Storage: An overview. Chem. Eng. Res. Des. 2011, 89,1446-1460.
  10. Balsora, H.K.; Mondal, M.K. Solubility of CO2 in aqueous Trisodium Phosphate (TSP). Fluid Phase Equilib. 2012, 328, 21-24.
  11. Bishnoi, S.; Rochelle, G.T. Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility. Chem. Eng. Sci. 2000, 55, 5531-5543.
  12. Zhao, Y.; Shen, S.; Bian, Y.; Yang, Y.; yang, Y.-n. CO2 solubility in Aqueous Potassium Lysinate Solutions at Absorber Conditions. J. Chem. Thermodyn. 2017, 111,100-105.
  13. Oko, E., Akinola, T. E.; Cheng, C.-H; Wang, M; Chen, J.; Ramshaw, C. Experimental study of COs solubility in high concentration MEA solution for intensified solvent-based carbon capture. MATEC Web Conf. 2019, 272, 01004.
  14. Versteeg, G. F.; Qyevaar, M. H. The Reaction between CO2 and Diethanolamine at 298 K. Chem. Eng. Sci. 1989, 44, 1264-1268.
  15. Saghafi, H.; Arabloo, M. Modeling of CO2 Solubility in MEA, DEA, TEA and MDEA Aqueous Solutions Using AdaBoost- Decision Tree and artificial Neural Network. Int. J. greenh gas Control 2017, 58, 256-265.
  16. Rinker, E. B.; Sami, S.A.; Sandal, O.C. Kinetics and Modeling of Carbon Dioxide Absorption into Aqueous Solutions of N-methyldiethanolamine. Chem. Eng. Sci. 1995,50,755-768.
  17. Kontos, G.; soldatou, M.A.; Tzimpilis, E.; tsiyintzelis, I. Solubility of CO2 in 2- Amino-2-methyl-1-propanol (AMP) and 3- (Methylamino)propylamine (MAPA): Experimental Investigation and Modeling with the Cubic-Plus-Association and the Modified kent-Eisenberg Models. Separations 2022,9,338.
  18. Haghtalab, A.; Gholami, V. Carbon dioxide Solubility in the Aqueous Mixtures of Diisopropanolamine + L-arginine and Diethanolamine + L-arginine at High Pressure. J. Mol. Liq. 2019, 291,111338.
  19. Zahid, U.; Al Rowani, F. N.; Ayodeji, M.K.; Ahmed, U. Simulation and parametric Analysis of CO2 Capture from Natural gas Using Digycolamine. Int. J. Greenhouse gas Control 2017,57,42-51.
  20. Dared, V.; well, W.J.M.V.; Fosboel, P.L.; Stenby, E.H.; Thomsen, K. Experimental Measurement and Modeling of the Rate of Absorption of Carbon Dioxide by Aqueous Ammonia. Int. J. Greenhouse Gas Control 2011,5,1149-1162.
  21. Nikulsinha, V.; Ayesa, N.; Galvez, M.E.; Stenfeld, A. Feasibility of Na-based Thermochemical Cycles for the Capture of CO2 from Air- Thermodynamics and Thermogravimetric Analysis. Chem. Eng. J. 2008, 140,62-70.
  22. Montes-Hemandez, G.; Chiriac, R; Toche, F., Renard, F. Gassolid Carbonation of Ca (OH)2 and CaO Particles under Nonisotherwal and Isothermal Conditions by using a Thermogravimetric Analyzer: Implications for CO2 Capture, Int. J. Greenhouse Gas Control 2012, 11, 172-180.
  23. Freeman, S. A., Davis, J.; Rochelle, G. T. CO2 Capture with Concentrated Aqueous Piperazine. Int. J. Greenhouse Gas Control 2010, 4, 119-124.
  24. Chang, Y., Leron, R.B., Li, M.H., 2015. Carbon dioxide solubility in aqueous potassium salt solutions of L-proline and DL-a-aminobutyric acid at high pressures. J. Chem. Thermodx 83, 110-116. Chen, Z. W., Leron, R.B., Li, M., 2015.
  25. Equilibrium solubility of carbon dioxide in aqueous potassium L. asparaginate and potassium L-glutarinate solutions. Fluid Phase Eguilib 400, 20-26.
  26. A.Samanta and S.S. Bandyopahyay. “Absorption of    Carbon Dioxide into Aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol,” Chem. Eng. Sci., Vol. 64, pp. 1185-1194, 2009.

The solubility of CO2 determined by an aqueous blend of (TSP+PZ+K-Lys) were experimentally investigated to obtained new data on CO2 loading at total concentrations ranging from (1.0 to 3.0) mol.kg-1, temperature between (303.07 to 353.07) K and CO2 partial pressure ranging from (10.08 to 20.08) kPa with the help of a bubbling absorber. The results were compared to data available in the literature, the (TSP+PZ+K-Lys) blend demonstrated higher CO2 absorption capacity, indicating that this blend could serve as an efficient and promising absorbent for CO2 capture applications.

Keywords : CO2 Solubility, Chemical Absorption, Sustainable CO2 Capture, Solvent Utilization, Potassium Lysinate, TSP.

CALL FOR PAPERS


Paper Submission Last Date
31 - January - 2026

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe