Authors :
Abhishek Kr Kushwaha; Vaishnava Raghunath Chelluboyana; Devina Ratnam; Poornima Pandey
Volume/Issue :
Volume 10 - 2025, Issue 11 - November
Google Scholar :
https://tinyurl.com/bddj4ju3
Scribd :
https://tinyurl.com/3mchxfv9
DOI :
https://doi.org/10.38124/ijisrt/25nov1538
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
The solubility of CO2 determined by an aqueous blend of (TSP+PZ+K-Lys) were experimentally investigated to
obtained new data on CO2 loading at total concentrations ranging from (1.0 to 3.0) mol.kg-1, temperature between (303.07
to 353.07) K and CO2 partial pressure ranging from (10.08 to 20.08) kPa with the help of a bubbling absorber. The results
were compared to data available in the literature, the (TSP+PZ+K-Lys) blend demonstrated higher CO2 absorption
capacity, indicating that this blend could serve as an efficient and promising absorbent for CO2 capture applications.
Keywords :
CO2 Solubility, Chemical Absorption, Sustainable CO2 Capture, Solvent Utilization, Potassium Lysinate, TSP.
References :
- IPCC. Summary for policymakers. In: climate change 2007: the physical science basis, contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Geneva: World Meteorological Organization/United Nations Environment Program; 2007.
- Shahzad, U. Global warming: Causes, Effects and Solutions. Durreesamin J. 2015,8,1-7.
- Mondal, M. K.; Balsora, H. K.; Varshney, P. Progress and Trends in CO2 Capture/ Separation Technologies: A Review. Energy 2012,46,431-441.
- Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon capture, utilization and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results in surfaces and Interfaces 2024,18.
- Raganati, F., Chirone, R., Minutillo, M., & Puccini, M. (2021). Adsorption of carbon dioxide for post-combustion capture: A review. ACS Energy & Fuels, 35(11), 9259-9287.
- Balsora, H. K.; Mondal, M. K. Solubility of Carbon Dioxide in an aqueous blend of Diethanolamine and Tri-sodium Phosphate. J. Chem. Eng.
- Pires, J.C. M.; Alvim- Ferraz, M.C.M.; Martins, F.G.; Simoes, M. Carbon Dioxide Capture from Flue gases using Microalgae: Engineering Aspects and Biorefinery Concept. Renew. Sustain Energy. Rev 2012, 16,3043-3053.
- Kanniche, M.; Gros- Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.-M.; Bouallou, C. Pre- combustion, post- combustion and oxy-combustion in Thermal Power Plant for CO2 capture. Appl. Them. Eng. 2010, 30,53-62.
- Pires, J.C.M.; Martins, F.G.; Alvim- Ferraz, M. C. M.; Simoes, M. Recent Developments on Carbon capture and Storage: An overview. Chem. Eng. Res. Des. 2011, 89,1446-1460.
- Balsora, H.K.; Mondal, M.K. Solubility of CO2 in aqueous Trisodium Phosphate (TSP). Fluid Phase Equilib. 2012, 328, 21-24.
- Bishnoi, S.; Rochelle, G.T. Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility. Chem. Eng. Sci. 2000, 55, 5531-5543.
- Zhao, Y.; Shen, S.; Bian, Y.; Yang, Y.; yang, Y.-n. CO2 solubility in Aqueous Potassium Lysinate Solutions at Absorber Conditions. J. Chem. Thermodyn. 2017, 111,100-105.
- Oko, E., Akinola, T. E.; Cheng, C.-H; Wang, M; Chen, J.; Ramshaw, C. Experimental study of COs solubility in high concentration MEA solution for intensified solvent-based carbon capture. MATEC Web Conf. 2019, 272, 01004.
- Versteeg, G. F.; Qyevaar, M. H. The Reaction between CO2 and Diethanolamine at 298 K. Chem. Eng. Sci. 1989, 44, 1264-1268.
- Saghafi, H.; Arabloo, M. Modeling of CO2 Solubility in MEA, DEA, TEA and MDEA Aqueous Solutions Using AdaBoost- Decision Tree and artificial Neural Network. Int. J. greenh gas Control 2017, 58, 256-265.
- Rinker, E. B.; Sami, S.A.; Sandal, O.C. Kinetics and Modeling of Carbon Dioxide Absorption into Aqueous Solutions of N-methyldiethanolamine. Chem. Eng. Sci. 1995,50,755-768.
- Kontos, G.; soldatou, M.A.; Tzimpilis, E.; tsiyintzelis, I. Solubility of CO2 in 2- Amino-2-methyl-1-propanol (AMP) and 3- (Methylamino)propylamine (MAPA): Experimental Investigation and Modeling with the Cubic-Plus-Association and the Modified kent-Eisenberg Models. Separations 2022,9,338.
- Haghtalab, A.; Gholami, V. Carbon dioxide Solubility in the Aqueous Mixtures of Diisopropanolamine + L-arginine and Diethanolamine + L-arginine at High Pressure. J. Mol. Liq. 2019, 291,111338.
- Zahid, U.; Al Rowani, F. N.; Ayodeji, M.K.; Ahmed, U. Simulation and parametric Analysis of CO2 Capture from Natural gas Using Digycolamine. Int. J. Greenhouse gas Control 2017,57,42-51.
- Dared, V.; well, W.J.M.V.; Fosboel, P.L.; Stenby, E.H.; Thomsen, K. Experimental Measurement and Modeling of the Rate of Absorption of Carbon Dioxide by Aqueous Ammonia. Int. J. Greenhouse Gas Control 2011,5,1149-1162.
- Nikulsinha, V.; Ayesa, N.; Galvez, M.E.; Stenfeld, A. Feasibility of Na-based Thermochemical Cycles for the Capture of CO2 from Air- Thermodynamics and Thermogravimetric Analysis. Chem. Eng. J. 2008, 140,62-70.
- Montes-Hemandez, G.; Chiriac, R; Toche, F., Renard, F. Gassolid Carbonation of Ca (OH)2 and CaO Particles under Nonisotherwal and Isothermal Conditions by using a Thermogravimetric Analyzer: Implications for CO2 Capture, Int. J. Greenhouse Gas Control 2012, 11, 172-180.
- Freeman, S. A., Davis, J.; Rochelle, G. T. CO2 Capture with Concentrated Aqueous Piperazine. Int. J. Greenhouse Gas Control 2010, 4, 119-124.
- Chang, Y., Leron, R.B., Li, M.H., 2015. Carbon dioxide solubility in aqueous potassium salt solutions of L-proline and DL-a-aminobutyric acid at high pressures. J. Chem. Thermodx 83, 110-116. Chen, Z. W., Leron, R.B., Li, M., 2015.
- Equilibrium solubility of carbon dioxide in aqueous potassium L. asparaginate and potassium L-glutarinate solutions. Fluid Phase Eguilib 400, 20-26.
- A.Samanta and S.S. Bandyopahyay. “Absorption of Carbon Dioxide into Aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol,” Chem. Eng. Sci., Vol. 64, pp. 1185-1194, 2009.
The solubility of CO2 determined by an aqueous blend of (TSP+PZ+K-Lys) were experimentally investigated to
obtained new data on CO2 loading at total concentrations ranging from (1.0 to 3.0) mol.kg-1, temperature between (303.07
to 353.07) K and CO2 partial pressure ranging from (10.08 to 20.08) kPa with the help of a bubbling absorber. The results
were compared to data available in the literature, the (TSP+PZ+K-Lys) blend demonstrated higher CO2 absorption
capacity, indicating that this blend could serve as an efficient and promising absorbent for CO2 capture applications.
Keywords :
CO2 Solubility, Chemical Absorption, Sustainable CO2 Capture, Solvent Utilization, Potassium Lysinate, TSP.