Authors :
Jeewon Kim
Volume/Issue :
Volume 10 - 2025, Issue 9 - September
Google Scholar :
https://tinyurl.com/jzayw2nr
Scribd :
https://tinyurl.com/yshf59dw
DOI :
https://doi.org/10.38124/ijisrt/25sep693
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Veterinary radiology faces persistent hurdles for deep learning: limited labeled data within each species and
substantial domain shift driven by anatomical, acquisition, and contrast differences. We investigate a domain adaptation
framework that transfers a pneumonia detector trained on canine chest radiographs to feline radiographs, enabling accurate,
dataefficient cross-species diagnosis without requiring large labeled target datasets. The approach integrates adversarial
distribution alignment with optional semi-supervised fine-tuning, and supports deployment practices such as probability
calibration and visual explanations.
References :
- T. Banzato, M. Wodzinski, S. Burti, V. L. Osti, V. Rossoni, M. Atzori, and A. Zotti, “Automatic classification of canine thoracic radiographs using deep learning,” Scientific Reports, vol. 11, Art. no. 3964, 2021. doi:10.1038/s41598-021-83515-3.
- L. Dumortier, F. Guepin, M.-L. Delignette-Muller, C. Boulocher, and´ T. Grenier, “Deep learning in veterinary medicine, an approach based on CNN to detect pulmonary abnormalities from lateral thoracic radiographs in cats,” Scientific Reports, vol. 12, Art. no. 11418, 2022. doi:10.1038/s41598-022-14993-2.
- W. Celniak, M. Wodzinski, A. Jurgas, S. Burti, A. Zotti, M. Atzori,´ H. Muller, and T. Banzato, “Improving the classification of veterinary¨ thoracic radiographs through inter-species and inter-pathology selfsupervised pre-training of deep learning models,” Scientific Reports, vol. 13, Art. no. 19518, 2023. doi:10.1038/s41598-023-46345-z.
- Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-Adversarial Training of Neural Networks,” Journal of Machine Learning Research, vol. 17, no. 59, pp. 1–35, 2016.
- E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial Discriminative Domain Adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 7167–7176.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 770–778.
- G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 4700–4708.
- J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya, J. Seekins, D. A. Mong, S. S. Halabi, J. K. Sandberg, R. Jones, D. B. Larson, C. P. Langlotz, B. N. Patel, M. P. Lungren, and A. Y. Ng, “CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison,” in Proc. AAAI Conf. on Artificial Intelligence, vol. 33, 2019, pp. 590–597. doi:10.1609/aaai.v33i01.3301590.
- R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2017, pp. 618–626.
- Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-Adversarial Training of Neural Networks,” Journal of Machine Learning Research, vol. 17, no. 59, pp. 1–35, 2016.
- E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial Discriminative Domain Adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 7167–7176.
- M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional Adversarial Domain Adaptation,” in Advances in Neural Information Processing Systems (NeurIPS), 2018, pp. 1640–1650.
- J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. L. Ball, K. Shpanskaya, et al., “CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison,” in Proc. AAAI Conf. Artificial Intelligence, vol. 33, 2019, pp. 590–597.
- C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On Calibration of Modern Neural Networks,” in Proc. Int. Conf. Machine Learning (ICML), 2017, pp. 1321–1330.
- R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2017, pp. 618–626.
- T. Banzato, M. Wodzinski, S. Burti, V. L. Osti, V. Rossoni, M. Atzori, and A. Zotti, “Automatic classification of canine thoracic radiographs using deep learning,” Scientific Reports, vol. 11, art. 3964, 2021.
- L. Dumortier, F. Guepin, M.-L. Delignette-Muller, C. Boulocher, and´ T. Grenier, “Deep learning in veterinary medicine: a CNN approach to detect pulmonary abnormalities from lateral thoracic radiographs in cats,” Scientific Reports, vol. 12, art. 11418, 2022.
- C. A. F. Duenas, S. M. G. Camacho, M. F. M. G˜ omez,´ et al., “Canine thoracic radiographic images as an educational dataset for distance learning and research on vertebral heart score
- C. A. F. Duenas, S. M. G. Camacho, M. F. M. G˜ omez,´ et al., “Radiographic Dataset for VHS determination learning process (Canine latero-lateral thoracic radiographs),” Mendeley Data, v1, 2020. doi:10.17632/ktx4cj55pn.1. CC BY 4.0. (156 patients; PNG images). Available: https://data.mendeley.com/datasets/ktx4cj55pn/1.
- University of Illinois College of Veterinary Medicine, “Feline Thorax Example 1 (3-view radiographs),” 2019. Available: https://vetmed. illinois.edu/imaging anatomy/feline/thorax/ex01/thor01-f%20.html.
- University of Illinois College of Veterinary Medicine, “Feline Thorax Example 3 (3-view radiographs),” 2019. Available: https://vetmed. illinois.edu/imaging anatomy/feline/thorax/ex03/thor03-f%20.html.
- J. Irvin, P. Rajpurkar, M. Ko, et al., “CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison,” in Proc. AAAI, 2019, pp. 590–597. Available: https://ojs.aaai.org/index. php/AAAI/article/view/3834.
- A. E. W. Johnson, T. J. Pollard, S. J. Berkowitz, et al., “MIMIC-CXR, a de-identified publicly available database of chest radiographs with freetext reports,” Scientific Data, vol. 6, art. 317, 2019. Available: https: //www.nature.com/articles/s41597-019-0322-0.
- H. Q. Nguyen, K. Lam, L. T. Le, et al., “VinDr-CXR: An open dataset of chest X-rays with radiologist annotations,” Scientific Data, vol. 9, art. 429, 2022. Available: https://www.nature.com/articles/ s41597-022-01498-w.
- Google, “Colab Paid Services and Pricing,” 2025. Available: https:// colab.research.google.com/signup.
- Google, “Making the Most of your Colab Subscription (Pro/Pro+ guide),” 2025. Available: https://colab.research.google.com/notebooks/ pro.ipynb.
27. Google, “Colab FAQ (GPUs/TPUs, limits, runtimes),” 2025. Available: https://research.google.com/colaboratory/faq.html.
Veterinary radiology faces persistent hurdles for deep learning: limited labeled data within each species and
substantial domain shift driven by anatomical, acquisition, and contrast differences. We investigate a domain adaptation
framework that transfers a pneumonia detector trained on canine chest radiographs to feline radiographs, enabling accurate,
dataefficient cross-species diagnosis without requiring large labeled target datasets. The approach integrates adversarial
distribution alignment with optional semi-supervised fine-tuning, and supports deployment practices such as probability
calibration and visual explanations.