Authors :
Snehal Rathod; Prachee Kawade; Laxmi Korde; Mohammed Sufiyan; Zahid Anwer; Shaikh Faizan
Volume/Issue :
Volume 9 - 2024, Issue 10 - October
Google Scholar :
https://tinyurl.com/mpfym7sk
Scribd :
https://tinyurl.com/2478ktzp
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24OCT456
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Ophthalmologists and drug delivery experts
have faced numerous anatomical and physiological
obstacles when it comes to ocular drug delivery. Ocular
barriers, both static and dynamic, block the entrance of
foreign substances and obstruct the active absorption of
therapeutic medications. This overview provides more
details on the eye's anatomy and related limitations. An
example of a few prevalent visual disorders, such as
glaucoma, and the current clinical treatments for it are
shown below, highlighting the importance of medication
therapy in the treatment of ocular diseases. Then, some
common research is presented along with
recommendations for improvements in ocular medication
delivery methods, particularly those based on
nanotechnology
Keywords :
Ocular Drug Delivery Systems, Nanotechnology, Ocular Barriers: Features and Clinical History.
References :
- Ma, Y., et al. (2019). Mammalian near-infrared Prodrugs image vision through injectable and self-powered retinal Nanoantennae. Cell, 177(2). doi: 10.1016/j.cell.2019.01.038
- Gote, V., Ansong, M., & Pal, D. (2020). Nanomicelles to overcome ocular barriers for drug penetration. Expert Opinion on Drug Metabolism & Toxicology, 16(10), 885–906. doi: 10.1080/17425255.2020.1803278
- Khiev, D., et al. (2021). Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials, 11(1), 173. doi: 10.3390/nano11010173
- Kels, B. D., Grzybowski, A., & Grant-Kels, J. M. (2015). Human ocular anatomy. Clinics in Dermatology, 33(2), 140–146. doi: 10.1016/j.clindermatol.2014.10.006
- Nayak, K., & Misra, M. (2020). Triamcinolone acetonide-loaded pegylated microemulsion for the posterior segment of Eye. ACS Omega, 5(14), 7928–7939. doi: 10.1021/acsomega.9b04244
- Tsai, C.-H., et al. (2018a). Ocular drug delivery: Role of degradable Polymeric Nanocarriers for ophthalmic application. International Journal of Molecular Sciences, 19(9), 2830. doi: 10.3390/ijms19092830
- McCluskey, P., & Powell, R. J. (2004). The eye in systemic inflammatory diseases. The Lancet, 364(9451), 2125–2133. doi: 10.1016/s0140-6736(04)17554-5
- Jumelle, C., et al. (2020). Advances and limitations of drug delivery systems formulated as Eye Drops. Journal of Controlled Release, 321, 1–22. doi: 10.1016/j.jconrel.2020.01.057
- Ahmed, S., Amin, M. M., & Sayed, S. (2023). Ocular Drug Delivery: A comprehensive review. AAPS PharmSciTech, 24(2). doi: 10.1208/s12249-023-02516-9
- Al-Kinani, A. A., et al. (2018). Ophthalmic gels: Past, present and future. Advanced Drug Delivery Reviews, 126, 113–126. doi: 10.1016/j.addr.2017.12.017
- Gholizadeh, S., et al. (2021). Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discovery Today, 26(6), 1437–1449. doi: 10.1016/j.drudis.2021.02.027
- Akhter, M. H., et al. (2022). Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels, 8(2), 82. doi: 10.3390/gels8020082
- Gorantla, S., et al. (2020). Nanocarriers for Ocular Drug Delivery: Current Status and translational opportunity. RSC Advances, 10(46), 27835–27855. doi: 10.1039/d0ra04971a
- Vaneev, A., et al. (2021). Nanotechnology for topical drug delivery to the anterior segment of the eye. International Journal of Molecular Sciences, 22(22), 12368. doi: 10.3390/ijms222212368
- Lang, J. C. (1995). Ocular drug delivery conventional ocular formulations. Advanced Drug Delivery Reviews, 16(1), 39–43. doi: 10.1016/0169-409x(95)00012-v
- Durairaj, C. (2016). Ocular pharmacokinetics. Handbook of Experimental Pharmacology, 31–55. doi: 10.1007/164_2016_32
- Karla, P. K., et al. (2009). Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Current Eye Research, 34(1), 1–9. doi: 10.1080/02713680802518251
- Kim, Y. C., et al. (2014). Ocular delivery of macromolecules. Journal of Controlled Release, 190, 172–181. doi: 10.1016/j.jconrel.2014.06.043
- Gaudana, R., et al. (2010). Ocular Drug Delivery. The AAPS Journal, 12(3), 348–360. doi: 10.1208/s12248-010-9183-3
- Karla, P. K., et al. (2009). Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Current Eye Research, 34(1), 1–9. doi: 10.1080/02713680802518251
- Ahmed, S., et al. (2022). Corneal targeted fenticonazole nitrate-loaded novasomes for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. Drug Delivery, 29(1), 2428–2441. doi: 10.1080/10717544.2022.2103600
- Tsai, C.-H., et al. (2018). Ocular drug delivery: Role of degradable Polymeric Nanocarriers for ophthalmic application. International Journal of Molecular Sciences, 19(9), 2830. doi: 10.3390/ijms19092830
- Bock, F., et al. (2013). Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Progress in Retinal and Eye Research, 34, 89–124. doi: 10.1016/j.preteyeres.2013.01.001
- Singh, S. P., Kumar, A., & Sharma, Dr. U. (2022). Nanosponges Novel Drug Delivery System: A comprehensive review. International Journal of Pharmaceutical Sciences Review and Research, 77(2). doi: 10.47583/ijpsrr.2022.v77i02.003
- Ahmed, I., et al. (1987). Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. Journal of Pharmaceutical Sciences, 76(8), 583–586. doi: 10.1002/jps.2600760802
- Coca-Prados, M. (2014). The blood-aqueous barrier in health and disease. Journal of Glaucoma, 23. doi: 10.1097/ijg.0000000000000107
- Dubald, M. et al. (2018) ‘Ophthalmic Drug Delivery Systems for antibiotherapy—a review’, Pharmaceutics, 10(1), p. 10. Doi:10.3390/pharmaceutics10010010.
- Singh, M., et al. (2020). Therapeutic nanoemulsions in Ophthalmic Drug Administration: Concept in formulations and characterization techniques for ocular drug delivery. Journal of Controlled Release, 328, 895–916. doi: 10.1016/j.jconrel.2020.10.025
- Tisi, A., et al. (2021). The impact of oxidative stress on blood-retinal barrier physiology in age-related macular degeneration. Cells, 10(1), 64. doi: 10.3390/cells10010064
- Díaz-Coránguez, M., Ramos, C., & Antonetti, D. A. (2017). The inner blood-retinal barrier: Cellular basis and development. Vision Research, 139, 123–137. doi: 10.1016/j.visres.2017.05.009
- Duvvuri, S., Majumdar, S., & Mitra, A. K. (2003). Drug delivery to the retina: Challenges and opportunities. Expert Opinion on Biological Therapy, 3(1), 45–56. doi: 10.1517/eobt.3.1.45.20945
- Weinreb, R. N., Aung, T., & Medeiros, F. A. (2014). The pathophysiology and treatment of glaucoma. JAMA, 311(18), 1901. doi: 10.1001/jama.2014.3192
- Tham, Y.-C., et al. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040. Ophthalmology, 121(11), 2081–2090. doi: 10.1016/j.ophtha.2014.05.013
- Renner, M., et al. (2017). Optic nerve degeneration after retinal ischemia/reperfusion in a rodent model. Frontiers in Cellular Neuroscience, 11. doi: 10.3389/fncel.2017.00254
- Cardigos, J., et al. (2018). Nanotechnology-ocular devices for glaucoma treatment: A literature review. Current Eye Research, 44(2), 111–117. doi: 10.1080/02713683.2018.1536218
- Subrizi, A., et al. (2019). Design principles of ocular drug delivery systems: Importance of drug payload, release rate, and material properties. Drug Discovery Today, 24(8), 1446–1457. doi: 10.1016/j.drudis.2019.02.001
- Wong, W. L., et al. (2014). Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. The Lancet Global Health, 2(2). doi: 10.1016/s2214-109x(13)70145-1
- Thomas, C. J., Mirza, R. G., & Gill, M. K. (2021). Age-related macular degeneration. Medical Clinics of North America, 105(3), 473–491. doi: 10.1016/j.mcna.2021.01.003
- Mitchell, P., et al. (2018). Age-related macular degeneration. The Lancet, 392(10153), 1147–1159. doi: 10.1016/s0140-6736(18)31550-2
- Bakri, S. J., et al. (2019). Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration. Ophthalmology, 126(1), 55–63. doi: 10.1016/j.ophtha.2018.07.028
- Ogurtsova, K., et al. (2017). IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40–50. doi: 10.1016/j.diabres.2017.03.024
- Cheung, N., Mitchell, P., & Wong, T. Y. (2010). Diabetic retinopathy. The Lancet, 376(9735), 124–136. doi: 10.1016/s0140-6736(09)62124-3
- Tan, T.-E., & Wong, T. Y. (2023). Diabetic retinopathy: Looking forward to 2030. Frontiers in Endocrinology, 13. doi: 10.3389/fendo.2022.1077669
- Ajlan, R. S., Silva, P. S., & Sun, J. K. (2016). Vascular endothelial growth factor and diabetic retinal disease. Seminars in Ophthalmology, 31(1–2), 40–48. doi: 10.3109/08820538.2015.1114833
- Liu, Y., & Wu, N. (2021). Progress of nanotechnology in diabetic retinopathy treatment. International Journal of Nanomedicine, 16, 1391–1403. doi: 10.2147/ijn.s294807
- Pflugfelder, S. C., & de Paiva, C. S. (2017). The pathophysiology of dry eye disease. Ophthalmology, 124(11). doi: 10.1016/j.ophtha.2017.07.010
- Craig, J. P., et al. (2017). TFOS DEWS II definition and classification report. The Ocular Surface, 15(3), 276–283. doi: 10.1016/j.jtos.2017.05.008
- Roda, M., et al. (2020). Dry Eye disease and tear cytokine levels—a meta-analysis. International Journal of Molecular Sciences, 21(9), 3111. doi: 10.3390/ijms21093111
- Asiedu, K., Dzasimatu, S. K., & Kyei, S. (2018). Impact of dry eye on psychosomatic symptoms and quality of life in a healthy youthful clinical sample. Eye & Contact Lens: Science & Clinical Practice, 44(2). doi: 10.1097/icl.0000000000000550
- Perez, V. L., Stern, M. E., & Pflugfelder, S. C. (2020). Inflammatory basis for dry eye disease flares. Experimental Eye Research, 201, 108294. doi: 10.1016/j.exer.2020.108294
- Craig, J. P., et al. (2017a). TFOS DEWS II definition and classification report. The Ocular Surface, 15(3), 276–283. doi: 10.1016/j.jtos.2017.05.008
- Jones, L., et al. (2017). TFOS DEWS II management and therapy report. The Ocular Surface, 15(3), 575–628. doi: 10.1016/j.jtos.2017.05.006
- Gaudana, R., et al. (2010). Ocular Drug Delivery. The AAPS Journal, 12(3), 348–360. doi: 10.1208/s12248-010-9183-3
- Gaudana, R., et al. (2010a). Ocular Drug Delivery. The AAPS Journal, 12(3), 348–360. doi: 10.1208/s12248-010-9183-3
- Wang, L., Zhou, M. B., & Zhang, H. (2021). The emerging role of topical ocular drugs to target the posterior eye. Ophthalmology and Therapy, 10(3), 465–494. doi: 10.1007/s40123-021-00365-y
- Shen, J., Lu, G. W., & Hughes, P. (2018). Targeted ocular drug delivery with pharmacokinetic/pharmacodynamic considerations. Pharmaceutical Research, 35(11). doi: 10.1007/s11095-018-2498-y
- Maulvi, F. A., et al. (2021). Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. International Journal of Pharmaceutics, 608, 121105. doi: 10.1016/j.ijpharm.2021.121105
- Gause, S., et al. (2016). Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses. Advances in Colloid and Interface Science, 233, 139–154. doi: 10.1016/j.cis.2015.08.002
- O'BrienLaramy, M. N., &Nagapudi, K. (2022). Long-acting ocular drug delivery technologies with clinical precedent. Expert Opinion on Drug Delivery, 19(10), 1285–1301. doi: 10.1080/17425247.2022.2108397
- Gote, V., et al. (2019). Ocular Drug Delivery: Present Innovations and future challenges. Journal of Pharmacology and Experimental Therapeutics, 370(3), 602–624. doi: 10.1124/jpet.119.256933
- Barocas, V. H., & Balachandran, R. K. (2007). Sustained transscleral drug delivery. Expert Opinion on Drug Delivery, 5(1), 1–10. doi: 10.1517/17425247.5.1.1
- Chiang, B., Jung, J. H., &Prausnitz, M. R. (2018). The suprachoroidal space as a route of administration to the posterior segment of the eye. Advanced Drug Delivery Reviews, 126, 58–66. doi: 10.1016/j.addr.2018.03.001
- Raghava, S., Hammond, M., & Kompella, U. B. (2004). Periocular routes for retinal drug delivery. Expert Opinion on Drug Delivery, 1(1), 99–114. doi: 10.1517/17425247.1.1.99
- Liebmann, J. M., et al. (2020). Evolving guidelines for Intracameral Injection. Journal of Glaucoma, 29(Supplement 1). doi: 10.1097/ijg.0000000000001451
- Gaballa, S. A., et al. (2020). Corticosteroids in ophthalmology: Drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Delivery and Translational Research, 11(3), 866–893. doi: 10.1007/s13346-020-00843-z
- Lane, S. S., et al. (2008). Evaluation of the safety of prophylactic intracameral moxifloxacin in cataract surgery. Journal of Cataract and Refractive Surgery, 34(9), 1451–1459. doi: 10.1016/j.jcrs.2008.05.034
- Labetoulle, M., et al. (2015). Evaluation of the efficacy and safety of a standardisedintracameral combination of mydriatics and anaesthetics for cataract surgery. British Journal of Ophthalmology, 100(7), 976–985. doi: 10.1136/bjophthalmol-2015-307587
- Ho, J. W., & Afshari, N. A. (2015). Advances in cataract surgery. Current Opinion in Ophthalmology, 26(1), 22–27. doi: 10.1097/icu.0000000000000121
- Vazirani, J., & Basu, S. (2013). Role of topical, subconjunctival, intracameral, and irrigative antibiotics in cataract surgery. Current Opinion in Ophthalmology, 24(1), 60–65. doi: 10.1097/icu.0b013e32835a93be
- delAmo, E. M., et al. (2017). Pharmacokinetic aspects of retinal drug delivery. Progress in Retinal and Eye Research, 57, 134–185. doi: 10.1016/j.preteyeres.2016.12.001
- Khiev, D., et al. (2021). Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials, 11(1), 173. doi: 10.3390/nano11010173
- Jonas, J. B., Spandau, U. H., &Schlichtenbrede, F. (2008). Short-term complications of intravitreal injections of triamcinolone and bevaciz
- Kang-Mieler, J. J., et al. (2020). Advances in ocular drug delivery systems. Eye, 34(8), 1371–1379. doi: 10.1038/s41433-020-0809-0
- Gross, A., & Cestari, D. M. (2014). Optic neuropathy following retrobulbar injection: A Review. Seminars in Ophthalmology, 29(5–6), 434–439. doi: 10.3109/08820538.2014.959191
- Hayashi, K., & Hayashi, H. (2005). Intravitreal versus retrobulbar injections of triamcinolone for macular edema associated with branch retinal vein occlusion. American Journal of Ophthalmology, 139(6), 972–982. doi: 10.1016/j.ajo.2004.12.087
- Safi, M., et al. (2020). Rhino-orbital-cerebral mucormycosis (ROCM) and associated cerebritis treated with adjuvant retrobulbar amphotericin B. American Journal of Ophthalmology Case Reports, 19, 100771. doi: 10.1016/j.ajoc.2020.100771
- Cosgrove, R., et al. (2020). Suspected systemic uptake of chlorpromazine after retrobulbar injection. American Journal of Ophthalmology Case Reports, 19, 100801. doi: 10.1016/j.ajoc.2020.100801
- Urtti, A., & Salminen, L. (1993). Minimizing systemic absorption of topically administered ophthalmic drugs. Survey of Ophthalmology, 37(6), 435–456. doi: 10.1016/0039-6257(93)90141-s
- Labetoulle, M., et al. (2015). Evaluation of the efficacy and safety of a standardisedintracameral combination of mydriatics and anaesthetics for cataract surgery. British Journal of Ophthalmology, 100(7), 976–985. doi: 10.1136/bjophthalmol-2015-307587
- Urtti, A. (2006a). Challenges and obstacles of ocular pharmacokinetics and drug delivery. Advanced Drug Delivery Reviews, 58(11), 1131–1135. doi: 10.1016/j.addr.2006.07.027
- Onugwu, A.L. et al. (2023a) ‘Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases’, Journal of Controlled Release, 354, pp. 465–488. doi:10.1016/j.jconrel.2023.01.018.
- Grimaudo, M.A. et al. (2019) ‘Topical application of polymeric nanomicelles in ophthalmology: A review on research efforts for the noninvasive delivery of Ocular Therapeutics’, Expert Opinion on Drug Delivery, 16(4), pp. 397–413. doi:10.1080/17425247.2019.1597848.
- Vaishya, R.D. et al. (2014) ‘Controlled ocular drug delivery with nanomicelles’, WIREs Nanomedicine and Nanobiotechnology, 6(5), pp. 422–437. doi:10.1002/wnan.1272.
- Hu, Q., et al. (2016). Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications. Journal of Controlled Release, 244, 314–325. doi: 10.1016/j.jconrel.2016.07.012
- Bourzac, K. (2012) ‘Nanotechnology: Carrying drugs’, Nature, 491(7425). doi:10.1038/491s58a.
- rivedi, R., & Kompella, U. B. (2010). Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine, 5(3), 485–505. doi: 10.2217/nnm.10.10.
- Akhter, M.H. et al. (2022) ‘Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system’, Gels, 8(2), p. 82. doi:10.3390/gels8020082.
- Peng, C., et al. (2022). Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. Journal of Controlled Release, 345, 625–645. doi: 10.1016/j.jconrel.2022.03.031.
- Xu, J., et al. (2020). Advances in the research of Bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting. Polymers, 12(6), 1237. doi: 10.3390/polym12061237.
- Akhter, S., et al. (2016). Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies. Colloids and Surfaces B: Biointerfaces, 148, 19–29. doi: 10.1016/j.colsurfb.2016.08.048.
- Janagam, D. R., et al. (2017). Nanoparticles for drug delivery to the anterior segment of the eye. Advanced Drug Delivery Reviews, 122, 31–64. doi: 10.1016/j.addr.2017.04.001.
- Jiang, C., et al. (2022). Dibenzazepine-loaded nanoparticles induce local browning of white adipose tissue to counteract obesity. Molecular Therapy, 30(1), 502. doi: 10.1016/j.ymthe.2021.11.016.
- Peltonen, L., & Hirvonen, J. (2018). Drug nanocrystals – versatile option for formulation of poorly soluble materials. International Journal of Pharmaceutics, 537(1–2), 73–83. doi: 10.1016/j.ijpharm.2017.12.005.
- Zhang, J., et al. (2021). Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: Current evidence, challenges, and future prospective. International Journal of Nanomedicine, 16, 6497–6530. doi: 10.2147/ijn.s329831.
- Tai, L., et al. (2017). A novel penetratin-modified complex for noninvasive intraocular delivery of antisense oligonucleotides. International Journal of Pharmaceutics, 529(1–2), 347–356. doi: 10.1016/j.ijpharm.2017.06.090.
- García-Millán, E., et al. (2017). Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. International Journal of Pharmaceutics, 525(1), 226–236. doi: 10.1016/j.ijpharm.2017.03.082.
- Qamar, Z., et al. (2020). Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective. Recent Patents on Drug Delivery & Formulation, 13(4), 246–254. doi: 10.2174/1872211314666191224115211.
- Singh, Y., et al. (2017). Nanoemulsion: Concepts, development and applications in Drug Delivery. Journal of Controlled Release, 252, 28–49. doi: 10.1016/j.jconrel.2017.03.008.
- Bhalerao, H., et al. (2019). Design, optimisation and evaluation of in situ gelling nanoemulsion formulations of Brinzolamide. Drug Delivery and Translational Research, 10(2), 529–547. doi: 10.1007/s13346-019-00697-0.
- Ustundag-Okur, N., et al. (2014). Novel ofloxacin loaded microemulsion formulations for ocular delivery. Journal of Ocular Pharmacology and Therapeutics, 30(4), 319–332. doi: 10.1089/jop.2013.0114.
- Kale, S. N., &Deore, S. L. (2016). Emulsion micro emulsion and Nano Emulsion: A Review. Systematic Reviews in Pharmacy, 8(1), 39–47. doi: 10.5530/srp.2017.1.8.
- Cunha Júnior, A. da, et al. (2003). Microemulsões Como veículo de Drogas Para Administração Ocular Tópica. ArquivosBrasileiros de Oftalmologia, 66(3), 385–391. doi: 10.1590/s0004-27492003000300025.
- Okur, N.Ü. et al. (2017) ‘Formulation of microemulsions for dermal delivery of Cephalexin’, ACTA Pharmaceutica Sciencia, 55(4), p. 27. doi:10.23893/1307-2080.aps.05524.
- Deepak, A., et al. 5(2018). Nanofiber in transmucosal drug delivery. Journal of Drug Delivery Science and Technology, 43, 379–387. doi: 10.1016/j.jddst.2017.11.008.
- Razavi, M. S., et al. (2022). Recent developments of nanostructures for the ocular delivery of natural compounds. Frontiers in Chemistry, 10. doi: 10.3389/fchem.2022.850757.
- Hu, X., et al. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 185, 12–21. doi: 10.1016/j.jconrel.2014.04.018.
- Zupančič, Š., et al. (2015). Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers. Molecular Pharmaceutics, 13(1), 295–305. doi: 10.1021/acs.molpharmaceut.5b00804.
- Carracedo-Rodríguez, G., et al. (2019). Effect of nutritional supplement based on melatonin on the intraocular pressure in normotensive subjects. International Ophthalmology, 40(2), 419–422. doi: 10.1007/s10792-019-01199-1.
- Ahmed, S., et al. (2023). Ocular Drug Delivery: A comprehensive review. AAPS PharmSciTech, 24(2). doi: 10.1208/s12249-023-02516-9
- Onugwu, A. L., et al. (2023). Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. Journal of Controlled Release, 354, 465–488. doi: 10.1016/j.jconrel.2023.01.018
- Barenholz, Y. (Chezy) (2012c) ‘Doxil® — the first FDA-approved Nano-Drug: Lessons Learned’, Journal of Controlled Release, 160(2), pp. 117–134. doi:10.1016/j.jconrel.2012.03.020.
- Lai, S. K., et al. (2009). Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advanced Drug Delivery Reviews, 61(2), 158–171. doi: 10.1016/j.addr.2008.11.002
- Toropainen, E., et al. (2021). Biopharmaceutics of topical ophthalmic suspensions: Importance of viscosity and particle size in ocular absorption of indomethacin. Pharmaceutics, 13(4), 452. doi: 10.3390/pharmaceutics13040452
- Younes, N. F., et al. (2018). Corneal targeted sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. International Journal of Pharmaceutics, 553(1–2), 386–397. doi: 10.1016/j.ijpharm.2018.10.057
- Singh, M., et al. (2020a). Therapeutic nanoemulsions in Ophthalmic Drug Administration: Concept in formulations and characterization techniques for ocular drug delivery. Journal of Controlled Release, 328, 895–916. doi: 10.1016/j.jconrel.2020.10.025
- Zhang, T. et al. (2023b) ‘Characterization and evaluation of rapamycin-loaded nano-micelle ophthalmic solution’, Journal of Functional Biomaterials, 14(1), p. 49. doi:10.3390/jfb14010049.
- Chen, S., et al. (2019). Recent advances in non-ionic surfactant vesicles (NIOSOMES): Fabrication, characterization, pharmaceutical and cosmetic applications. European Journal of Pharmaceutics and Biopharmaceutics, 144, 18–39. doi: 10.1016/j.ejpb.2019.08.015.
- Bali, V., Ali, M. and Ali, J. (2010) ‘Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of Ezetimibe’, Colloids and Surfaces B: Biointerfaces, 76(2), pp. 410–420. doi:10.1016/j.colsurfb.2009.11.021.
- Tamilvanan, S., & Benita, S. (2004). The potential of lipid emulsion for ocular delivery of lipophilic drugs. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 357–368. doi: 10.1016/j.ejpb.2004.03.033
- Apaolaza, P. S., et al. (2014). A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. International Journal of Pharmaceutics, 465(1–2), 413–426. doi: 10.1016/j.ijpharm.2014.02.038
- Fahmy, A. M., et al. (2021). Voriconazole ternary micellar systems for the treatment of ocular mycosis: Statistical Optimization and in vivo evaluation. Journal of Pharmaceutical Sciences, 110(5), 2130–2138. doi: 10.1016/j.xphs.2020.12.013
- Lakhani, P., et al. (2019). Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. International Journal of Pharmaceutics, 572, 118771. doi: 10.1016/j.ijpharm.2019.118771
- Balguri, S. P., et al. (2017). Ocular disposition of ciprofloxacin from topical, pegylated nanostructured lipid carriers: Effect of molecular weight and density of poly (ethylene) glycol. International Journal of Pharmaceutics, 529(1–2), 32–43. doi: 10.1016/j.ijpharm.2017.06.042
- Craig, J. P., et al. (1995). Refractive index and Osmolality of Human Tears. Optometry and Vision Science, 72(10), 718–724. doi: 10.1097/00006324-199510000-00004
- Patel, N., et al. (2016). Development of Loteprednol Etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Delivery, 23(9), 3712–3723. doi: 10.1080/10717544.2016.1223225
Ophthalmologists and drug delivery experts
have faced numerous anatomical and physiological
obstacles when it comes to ocular drug delivery. Ocular
barriers, both static and dynamic, block the entrance of
foreign substances and obstruct the active absorption of
therapeutic medications. This overview provides more
details on the eye's anatomy and related limitations. An
example of a few prevalent visual disorders, such as
glaucoma, and the current clinical treatments for it are
shown below, highlighting the importance of medication
therapy in the treatment of ocular diseases. Then, some
common research is presented along with
recommendations for improvements in ocular medication
delivery methods, particularly those based on
nanotechnology
Keywords :
Ocular Drug Delivery Systems, Nanotechnology, Ocular Barriers: Features and Clinical History.