Current Developmentsand Prospects for Nanotechnology-Based Ocular Drug Delivery System


Authors : Snehal Rathod; Prachee Kawade; Laxmi Korde; Mohammed Sufiyan; Zahid Anwer; Shaikh Faizan

Volume/Issue : Volume 9 - 2024, Issue 10 - October


Google Scholar : https://tinyurl.com/mpfym7sk

Scribd : https://tinyurl.com/2478ktzp

DOI : https://doi.org/10.38124/ijisrt/IJISRT24OCT456

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Ophthalmologists and drug delivery experts have faced numerous anatomical and physiological obstacles when it comes to ocular drug delivery. Ocular barriers, both static and dynamic, block the entrance of foreign substances and obstruct the active absorption of therapeutic medications. This overview provides more details on the eye's anatomy and related limitations. An example of a few prevalent visual disorders, such as glaucoma, and the current clinical treatments for it are shown below, highlighting the importance of medication therapy in the treatment of ocular diseases. Then, some common research is presented along with recommendations for improvements in ocular medication delivery methods, particularly those based on nanotechnology

Keywords : Ocular Drug Delivery Systems, Nanotechnology, Ocular Barriers: Features and Clinical History.

References :

  1. Ma, Y., et al. (2019). Mammalian near-infrared Prodrugs image vision through injectable and self-powered retinal Nanoantennae. Cell, 177(2). doi: 10.1016/j.cell.2019.01.038
  2. Gote, V., Ansong, M., & Pal, D. (2020). Nanomicelles to overcome ocular barriers for drug penetration. Expert Opinion on Drug Metabolism & Toxicology, 16(10), 885–906. doi: 10.1080/17425255.2020.1803278
  3. Khiev, D., et al. (2021). Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials, 11(1), 173. doi: 10.3390/nano11010173
  4. Kels, B. D., Grzybowski, A., & Grant-Kels, J. M. (2015). Human ocular anatomy. Clinics in Dermatology, 33(2), 140–146. doi: 10.1016/j.clindermatol.2014.10.006
  5. Nayak, K., & Misra, M. (2020). Triamcinolone acetonide-loaded pegylated microemulsion for the posterior segment of Eye. ACS Omega, 5(14), 7928–7939. doi: 10.1021/acsomega.9b04244
  6. Tsai, C.-H., et al. (2018a). Ocular drug delivery: Role of degradable Polymeric Nanocarriers for ophthalmic application. International Journal of Molecular Sciences, 19(9), 2830. doi: 10.3390/ijms19092830
  7. McCluskey, P., & Powell, R. J. (2004). The eye in systemic inflammatory diseases. The Lancet, 364(9451), 2125–2133. doi: 10.1016/s0140-6736(04)17554-5
  8. Jumelle, C., et al. (2020). Advances and limitations of drug delivery systems formulated as Eye Drops. Journal of Controlled Release, 321, 1–22. doi: 10.1016/j.jconrel.2020.01.057
  9. Ahmed, S., Amin, M. M., & Sayed, S. (2023). Ocular Drug Delivery: A comprehensive review. AAPS PharmSciTech, 24(2). doi: 10.1208/s12249-023-02516-9
  10. Al-Kinani, A. A., et al. (2018). Ophthalmic gels: Past, present and future. Advanced Drug Delivery Reviews, 126, 113–126. doi: 10.1016/j.addr.2017.12.017
  11. Gholizadeh, S., et al. (2021). Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discovery Today, 26(6), 1437–1449. doi: 10.1016/j.drudis.2021.02.027
  12. Akhter, M. H., et al. (2022). Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels, 8(2), 82. doi: 10.3390/gels8020082
  13. Gorantla, S., et al. (2020). Nanocarriers for Ocular Drug Delivery: Current Status and translational opportunity. RSC Advances, 10(46), 27835–27855. doi: 10.1039/d0ra04971a
  14. Vaneev, A., et al. (2021). Nanotechnology for topical drug delivery to the anterior segment of the eye. International Journal of Molecular Sciences, 22(22), 12368. doi: 10.3390/ijms222212368
  15. Lang, J. C. (1995). Ocular drug delivery conventional ocular formulations. Advanced Drug Delivery Reviews, 16(1), 39–43. doi: 10.1016/0169-409x(95)00012-v
  16. Durairaj, C. (2016). Ocular pharmacokinetics. Handbook of Experimental Pharmacology, 31–55. doi: 10.1007/164_2016_32
  17. Karla, P. K., et al. (2009). Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Current Eye Research, 34(1), 1–9. doi: 10.1080/02713680802518251
  18. Kim, Y. C., et al. (2014). Ocular delivery of macromolecules. Journal of Controlled Release, 190, 172–181. doi: 10.1016/j.jconrel.2014.06.043
  19. Gaudana, R., et al. (2010). Ocular Drug Delivery. The AAPS Journal, 12(3), 348–360. doi: 10.1208/s12248-010-9183-3
  20. Karla, P. K., et al. (2009). Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Current Eye Research, 34(1), 1–9. doi: 10.1080/02713680802518251
  21. Ahmed, S., et al. (2022). Corneal targeted fenticonazole nitrate-loaded novasomes for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. Drug Delivery, 29(1), 2428–2441. doi: 10.1080/10717544.2022.2103600
  22. Tsai, C.-H., et al. (2018). Ocular drug delivery: Role of degradable Polymeric Nanocarriers for ophthalmic application. International Journal of Molecular Sciences, 19(9), 2830. doi: 10.3390/ijms19092830
  23. Bock, F., et al. (2013). Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Progress in Retinal and Eye Research, 34, 89–124. doi: 10.1016/j.preteyeres.2013.01.001
  24. Singh, S. P., Kumar, A., & Sharma, Dr. U. (2022). Nanosponges Novel Drug Delivery System: A comprehensive review. International Journal of Pharmaceutical Sciences Review and Research, 77(2). doi: 10.47583/ijpsrr.2022.v77i02.003
  25. Ahmed, I., et al. (1987). Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. Journal of Pharmaceutical Sciences, 76(8), 583–586. doi: 10.1002/jps.2600760802
  26. Coca-Prados, M. (2014). The blood-aqueous barrier in health and disease. Journal of Glaucoma, 23. doi: 10.1097/ijg.0000000000000107
  27. Dubald, M. et al. (2018) ‘Ophthalmic Drug Delivery Systems for antibiotherapy—a review’, Pharmaceutics, 10(1), p. 10. Doi:10.3390/pharmaceutics10010010.
  28. Singh, M., et al. (2020). Therapeutic nanoemulsions in Ophthalmic Drug Administration: Concept in formulations and characterization techniques for ocular drug delivery. Journal of Controlled Release, 328, 895–916. doi: 10.1016/j.jconrel.2020.10.025
  29. Tisi, A., et al. (2021). The impact of oxidative stress on blood-retinal barrier physiology in age-related macular degeneration. Cells, 10(1), 64. doi: 10.3390/cells10010064
  30. Díaz-Coránguez, M., Ramos, C., & Antonetti, D. A. (2017). The inner blood-retinal barrier: Cellular basis and development. Vision Research, 139, 123–137. doi: 10.1016/j.visres.2017.05.009
  31. Duvvuri, S., Majumdar, S., & Mitra, A. K. (2003). Drug delivery to the retina: Challenges and opportunities. Expert Opinion on Biological Therapy, 3(1), 45–56. doi: 10.1517/eobt.3.1.45.20945
  32. Weinreb, R. N., Aung, T., & Medeiros, F. A. (2014). The pathophysiology and treatment of glaucoma. JAMA, 311(18), 1901. doi: 10.1001/jama.2014.3192
  33. Tham, Y.-C., et al. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040. Ophthalmology, 121(11), 2081–2090. doi: 10.1016/j.ophtha.2014.05.013
  34. Renner, M., et al. (2017). Optic nerve degeneration after retinal ischemia/reperfusion in a rodent model. Frontiers in Cellular Neuroscience, 11. doi: 10.3389/fncel.2017.00254
  35. Cardigos, J., et al. (2018). Nanotechnology-ocular devices for glaucoma treatment: A literature review. Current Eye Research, 44(2), 111–117. doi: 10.1080/02713683.2018.1536218
  36. Subrizi, A., et al. (2019). Design principles of ocular drug delivery systems: Importance of drug payload, release rate, and material properties. Drug Discovery Today, 24(8), 1446–1457. doi: 10.1016/j.drudis.2019.02.001
  37. Wong, W. L., et al. (2014). Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. The Lancet Global Health, 2(2). doi: 10.1016/s2214-109x(13)70145-1
  38. Thomas, C. J., Mirza, R. G., & Gill, M. K. (2021). Age-related macular degeneration. Medical Clinics of North America, 105(3), 473–491. doi: 10.1016/j.mcna.2021.01.003
  39. Mitchell, P., et al. (2018). Age-related macular degeneration. The Lancet, 392(10153), 1147–1159. doi: 10.1016/s0140-6736(18)31550-2
  40. Bakri, S. J., et al. (2019). Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration. Ophthalmology, 126(1), 55–63. doi: 10.1016/j.ophtha.2018.07.028
  41. Ogurtsova, K., et al. (2017). IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40–50. doi: 10.1016/j.diabres.2017.03.024
  42. Cheung, N., Mitchell, P., & Wong, T. Y. (2010). Diabetic retinopathy. The Lancet, 376(9735), 124–136. doi: 10.1016/s0140-6736(09)62124-3
  43. Tan, T.-E., & Wong, T. Y. (2023). Diabetic retinopathy: Looking forward to 2030. Frontiers in Endocrinology, 13. doi: 10.3389/fendo.2022.1077669
  44. Ajlan, R. S., Silva, P. S., & Sun, J. K. (2016). Vascular endothelial growth factor and diabetic retinal disease. Seminars in Ophthalmology, 31(1–2), 40–48. doi: 10.3109/08820538.2015.1114833
  45. Liu, Y., & Wu, N. (2021). Progress of nanotechnology in diabetic retinopathy treatment. International Journal of Nanomedicine, 16, 1391–1403. doi: 10.2147/ijn.s294807
  46. Pflugfelder, S. C., & de Paiva, C. S. (2017). The pathophysiology of dry eye disease. Ophthalmology, 124(11). doi: 10.1016/j.ophtha.2017.07.010
  47. Craig, J. P., et al. (2017). TFOS DEWS II definition and classification report. The Ocular Surface, 15(3), 276–283. doi: 10.1016/j.jtos.2017.05.008
  48. Roda, M., et al. (2020). Dry Eye disease and tear cytokine levels—a meta-analysis. International Journal of Molecular Sciences, 21(9), 3111. doi: 10.3390/ijms21093111
  49. Asiedu, K., Dzasimatu, S. K., & Kyei, S. (2018). Impact of dry eye on psychosomatic symptoms and quality of life in a healthy youthful clinical sample. Eye & Contact Lens: Science & Clinical Practice, 44(2). doi: 10.1097/icl.0000000000000550
  50. Perez, V. L., Stern, M. E., & Pflugfelder, S. C. (2020). Inflammatory basis for dry eye disease flares. Experimental Eye Research, 201, 108294. doi: 10.1016/j.exer.2020.108294
  51. Craig, J. P., et al. (2017a). TFOS DEWS II definition and classification report. The Ocular Surface, 15(3), 276–283. doi: 10.1016/j.jtos.2017.05.008
  52. Jones, L., et al. (2017). TFOS DEWS II management and therapy report. The Ocular Surface, 15(3), 575–628. doi: 10.1016/j.jtos.2017.05.006
  53. Gaudana, R., et al. (2010). Ocular Drug Delivery. The AAPS Journal, 12(3), 348–360. doi: 10.1208/s12248-010-9183-3
  54. Gaudana, R., et al. (2010a). Ocular Drug Delivery. The AAPS Journal, 12(3), 348–360. doi: 10.1208/s12248-010-9183-3
  55. Wang, L., Zhou, M. B., & Zhang, H. (2021). The emerging role of topical ocular drugs to target the posterior eye. Ophthalmology and Therapy, 10(3), 465–494. doi: 10.1007/s40123-021-00365-y
  56. Shen, J., Lu, G. W., & Hughes, P. (2018). Targeted ocular drug delivery with pharmacokinetic/pharmacodynamic considerations. Pharmaceutical Research, 35(11). doi: 10.1007/s11095-018-2498-y
  57. Maulvi, F. A., et al. (2021). Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. International Journal of Pharmaceutics, 608, 121105. doi: 10.1016/j.ijpharm.2021.121105
  58. Gause, S., et al. (2016). Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses. Advances in Colloid and Interface Science, 233, 139–154. doi: 10.1016/j.cis.2015.08.002
  59. O'BrienLaramy, M. N., &Nagapudi, K. (2022). Long-acting ocular drug delivery technologies with clinical precedent. Expert Opinion on Drug Delivery, 19(10), 1285–1301. doi: 10.1080/17425247.2022.2108397
  60. Gote, V., et al. (2019). Ocular Drug Delivery: Present Innovations and future challenges. Journal of Pharmacology and Experimental Therapeutics, 370(3), 602–624. doi: 10.1124/jpet.119.256933
  61. Barocas, V. H., & Balachandran, R. K. (2007). Sustained transscleral drug delivery. Expert Opinion on Drug Delivery, 5(1), 1–10. doi: 10.1517/17425247.5.1.1
  62. Chiang, B., Jung, J. H., &Prausnitz, M. R. (2018). The suprachoroidal space as a route of administration to the posterior segment of the eye. Advanced Drug Delivery Reviews, 126, 58–66. doi: 10.1016/j.addr.2018.03.001
  63. Raghava, S., Hammond, M., & Kompella, U. B. (2004). Periocular routes for retinal drug delivery. Expert Opinion on Drug Delivery, 1(1), 99–114. doi: 10.1517/17425247.1.1.99
  64. Liebmann, J. M., et al. (2020). Evolving guidelines for Intracameral Injection. Journal of Glaucoma, 29(Supplement 1). doi: 10.1097/ijg.0000000000001451
  65. Gaballa, S. A., et al. (2020). Corticosteroids in ophthalmology: Drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Delivery and Translational Research, 11(3), 866–893. doi: 10.1007/s13346-020-00843-z
  66. Lane, S. S., et al. (2008). Evaluation of the safety of prophylactic intracameral moxifloxacin in cataract surgery. Journal of Cataract and Refractive Surgery, 34(9), 1451–1459. doi: 10.1016/j.jcrs.2008.05.034
  67. Labetoulle, M., et al. (2015). Evaluation of the efficacy and safety of a standardisedintracameral combination of mydriatics and anaesthetics for cataract surgery. British Journal of Ophthalmology, 100(7), 976–985. doi: 10.1136/bjophthalmol-2015-307587
  68. Ho, J. W., & Afshari, N. A. (2015). Advances in cataract surgery. Current Opinion in Ophthalmology, 26(1), 22–27. doi: 10.1097/icu.0000000000000121
  69. Vazirani, J., & Basu, S. (2013). Role of topical, subconjunctival, intracameral, and irrigative antibiotics in cataract surgery. Current Opinion in Ophthalmology, 24(1), 60–65. doi: 10.1097/icu.0b013e32835a93be
  70. delAmo, E. M., et al. (2017). Pharmacokinetic aspects of retinal drug delivery. Progress in Retinal and Eye Research, 57, 134–185. doi: 10.1016/j.preteyeres.2016.12.001
  71. Khiev, D., et al. (2021). Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials, 11(1), 173. doi: 10.3390/nano11010173
  72. Jonas, J. B., Spandau, U. H., &Schlichtenbrede, F. (2008). Short-term complications of intravitreal injections of triamcinolone and bevaciz
  73. Kang-Mieler, J. J., et al. (2020). Advances in ocular drug delivery systems. Eye, 34(8), 1371–1379. doi: 10.1038/s41433-020-0809-0
  74. Gross, A., & Cestari, D. M. (2014). Optic neuropathy following retrobulbar injection: A Review. Seminars in Ophthalmology, 29(5–6), 434–439. doi: 10.3109/08820538.2014.959191
  75. Hayashi, K., & Hayashi, H. (2005). Intravitreal versus retrobulbar injections of triamcinolone for macular edema associated with branch retinal vein occlusion. American Journal of Ophthalmology, 139(6), 972–982. doi: 10.1016/j.ajo.2004.12.087
  76. Safi, M., et al. (2020). Rhino-orbital-cerebral mucormycosis (ROCM) and associated cerebritis treated with adjuvant retrobulbar amphotericin B. American Journal of Ophthalmology Case Reports, 19, 100771. doi: 10.1016/j.ajoc.2020.100771
  77. Cosgrove, R., et al. (2020). Suspected systemic uptake of chlorpromazine after retrobulbar injection. American Journal of Ophthalmology Case Reports, 19, 100801. doi: 10.1016/j.ajoc.2020.100801
  78. Urtti, A., & Salminen, L. (1993). Minimizing systemic absorption of topically administered ophthalmic drugs. Survey of Ophthalmology, 37(6), 435–456. doi: 10.1016/0039-6257(93)90141-s
  79. Labetoulle, M., et al. (2015). Evaluation of the efficacy and safety of a standardisedintracameral combination of mydriatics and anaesthetics for cataract surgery. British Journal of Ophthalmology, 100(7), 976–985. doi: 10.1136/bjophthalmol-2015-307587
  80. Urtti, A. (2006a). Challenges and obstacles of ocular pharmacokinetics and drug delivery. Advanced Drug Delivery Reviews, 58(11), 1131–1135. doi: 10.1016/j.addr.2006.07.027
  81. Onugwu, A.L. et al. (2023a) ‘Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases’, Journal of Controlled Release, 354, pp. 465–488. doi:10.1016/j.jconrel.2023.01.018.
  82. Grimaudo, M.A. et al. (2019) ‘Topical application of polymeric nanomicelles in ophthalmology: A review on research efforts for the noninvasive delivery of Ocular Therapeutics’, Expert Opinion on Drug Delivery, 16(4), pp. 397–413. doi:10.1080/17425247.2019.1597848.
  83. Vaishya, R.D. et al. (2014) ‘Controlled ocular drug delivery with nanomicelles’, WIREs Nanomedicine and Nanobiotechnology, 6(5), pp. 422–437. doi:10.1002/wnan.1272.
  84. Hu, Q., et al. (2016). Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications. Journal of Controlled Release, 244, 314–325. doi: 10.1016/j.jconrel.2016.07.012
  85. Bourzac, K. (2012) ‘Nanotechnology: Carrying drugs’, Nature, 491(7425). doi:10.1038/491s58a.
  86. rivedi, R., & Kompella, U. B. (2010). Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine, 5(3), 485–505. doi: 10.2217/nnm.10.10.
  87. Akhter, M.H. et al. (2022) ‘Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system’, Gels, 8(2), p. 82. doi:10.3390/gels8020082.
  88. Peng, C., et al. (2022). Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. Journal of Controlled Release, 345, 625–645. doi: 10.1016/j.jconrel.2022.03.031.
  89. Xu, J., et al. (2020). Advances in the research of Bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting. Polymers, 12(6), 1237. doi: 10.3390/polym12061237.
  90. Akhter, S., et al. (2016). Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies. Colloids and Surfaces B: Biointerfaces, 148, 19–29. doi: 10.1016/j.colsurfb.2016.08.048.
  91. Janagam, D. R., et al. (2017). Nanoparticles for drug delivery to the anterior segment of the eye. Advanced Drug Delivery Reviews, 122, 31–64. doi: 10.1016/j.addr.2017.04.001.
  92. Jiang, C., et al. (2022). Dibenzazepine-loaded nanoparticles induce local browning of white adipose tissue to counteract obesity. Molecular Therapy, 30(1), 502. doi: 10.1016/j.ymthe.2021.11.016.
  93. Peltonen, L., & Hirvonen, J. (2018). Drug nanocrystals – versatile option for formulation of poorly soluble materials. International Journal of Pharmaceutics, 537(1–2), 73–83. doi: 10.1016/j.ijpharm.2017.12.005.
  94. Zhang, J., et al. (2021). Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: Current evidence, challenges, and future prospective. International Journal of Nanomedicine, 16, 6497–6530. doi: 10.2147/ijn.s329831.
  95. Tai, L., et al. (2017). A novel penetratin-modified complex for noninvasive intraocular delivery of antisense oligonucleotides. International Journal of Pharmaceutics, 529(1–2), 347–356. doi: 10.1016/j.ijpharm.2017.06.090.
  96. García-Millán, E., et al. (2017). Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. International Journal of Pharmaceutics, 525(1), 226–236. doi: 10.1016/j.ijpharm.2017.03.082.
  97. Qamar, Z., et al. (2020). Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective. Recent Patents on Drug Delivery & Formulation, 13(4), 246–254. doi: 10.2174/1872211314666191224115211.
  98. Singh, Y., et al. (2017). Nanoemulsion: Concepts, development and applications in Drug Delivery. Journal of Controlled Release, 252, 28–49. doi: 10.1016/j.jconrel.2017.03.008.
  99. Bhalerao, H., et al. (2019). Design, optimisation and evaluation of in situ gelling nanoemulsion formulations of Brinzolamide. Drug Delivery and Translational Research, 10(2), 529–547. doi: 10.1007/s13346-019-00697-0.
  100. Ustundag-Okur, N., et al. (2014). Novel ofloxacin loaded microemulsion formulations for ocular delivery. Journal of Ocular Pharmacology and Therapeutics, 30(4), 319–332. doi: 10.1089/jop.2013.0114.
  101. Kale, S. N., &Deore, S. L. (2016). Emulsion micro emulsion and Nano Emulsion: A Review. Systematic Reviews in Pharmacy, 8(1), 39–47. doi: 10.5530/srp.2017.1.8.
  102. Cunha Júnior, A. da, et al. (2003). Microemulsões Como veículo de Drogas Para Administração Ocular Tópica. ArquivosBrasileiros de Oftalmologia, 66(3), 385–391. doi: 10.1590/s0004-27492003000300025.
  103. Okur, N.Ü. et al. (2017) ‘Formulation of microemulsions for dermal delivery of Cephalexin’, ACTA Pharmaceutica Sciencia, 55(4), p. 27. doi:10.23893/1307-2080.aps.05524.
  104. Deepak, A., et al. 5(2018). Nanofiber in transmucosal drug delivery. Journal of Drug Delivery Science and Technology, 43, 379–387. doi: 10.1016/j.jddst.2017.11.008.
  105. Razavi, M. S., et al. (2022). Recent developments of nanostructures for the ocular delivery of natural compounds. Frontiers in Chemistry, 10. doi: 10.3389/fchem.2022.850757.
  106. Hu, X., et al. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 185, 12–21. doi: 10.1016/j.jconrel.2014.04.018.
  107. Zupančič, Š., et al. (2015). Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers. Molecular Pharmaceutics, 13(1), 295–305. doi: 10.1021/acs.molpharmaceut.5b00804.
  108. Carracedo-Rodríguez, G., et al. (2019). Effect of nutritional supplement based on melatonin on the intraocular pressure in normotensive subjects. International Ophthalmology, 40(2), 419–422. doi: 10.1007/s10792-019-01199-1.
  109. Ahmed, S., et al. (2023). Ocular Drug Delivery: A comprehensive review. AAPS PharmSciTech, 24(2). doi: 10.1208/s12249-023-02516-9
  110. Onugwu, A. L., et al. (2023). Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. Journal of Controlled Release, 354, 465–488. doi: 10.1016/j.jconrel.2023.01.018
  111. Barenholz, Y. (Chezy) (2012c) ‘Doxil® — the first FDA-approved Nano-Drug: Lessons Learned’, Journal of Controlled Release, 160(2), pp. 117–134. doi:10.1016/j.jconrel.2012.03.020.
  112. Lai, S. K., et al. (2009). Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advanced Drug Delivery Reviews, 61(2), 158–171. doi: 10.1016/j.addr.2008.11.002
  113. Toropainen, E., et al. (2021). Biopharmaceutics of topical ophthalmic suspensions: Importance of viscosity and particle size in ocular absorption of indomethacin. Pharmaceutics, 13(4), 452. doi: 10.3390/pharmaceutics13040452
  114. Younes, N. F., et al. (2018). Corneal targeted sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. International Journal of Pharmaceutics, 553(1–2), 386–397. doi: 10.1016/j.ijpharm.2018.10.057
  115. Singh, M., et al. (2020a). Therapeutic nanoemulsions in Ophthalmic Drug Administration: Concept in formulations and characterization techniques for ocular drug delivery. Journal of Controlled Release, 328, 895–916. doi: 10.1016/j.jconrel.2020.10.025
  116. Zhang, T. et al. (2023b) ‘Characterization and evaluation of rapamycin-loaded nano-micelle ophthalmic solution’, Journal of Functional Biomaterials, 14(1), p. 49. doi:10.3390/jfb14010049.
  117. Chen, S., et al. (2019). Recent advances in non-ionic surfactant vesicles (NIOSOMES): Fabrication, characterization, pharmaceutical and cosmetic applications. European Journal of Pharmaceutics and Biopharmaceutics, 144, 18–39. doi: 10.1016/j.ejpb.2019.08.015.
  118. Bali, V., Ali, M. and Ali, J. (2010) ‘Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of Ezetimibe’, Colloids and Surfaces B: Biointerfaces, 76(2), pp. 410–420. doi:10.1016/j.colsurfb.2009.11.021.
  119. Tamilvanan, S., & Benita, S. (2004). The potential of lipid emulsion for ocular delivery of lipophilic drugs. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 357–368. doi: 10.1016/j.ejpb.2004.03.033
  120. Apaolaza, P. S., et al. (2014). A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. International Journal of Pharmaceutics, 465(1–2), 413–426. doi: 10.1016/j.ijpharm.2014.02.038
  121. Fahmy, A. M., et al. (2021). Voriconazole ternary micellar systems for the treatment of ocular mycosis: Statistical Optimization and in vivo evaluation. Journal of Pharmaceutical Sciences, 110(5), 2130–2138. doi: 10.1016/j.xphs.2020.12.013
  122. Lakhani, P., et al. (2019). Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. International Journal of Pharmaceutics, 572, 118771. doi: 10.1016/j.ijpharm.2019.118771
  123. Balguri, S. P., et al. (2017). Ocular disposition of ciprofloxacin from topical, pegylated nanostructured lipid carriers: Effect of molecular weight and density of poly (ethylene) glycol. International Journal of Pharmaceutics, 529(1–2), 32–43. doi: 10.1016/j.ijpharm.2017.06.042
  124. Craig, J. P., et al. (1995). Refractive index and Osmolality of Human Tears. Optometry and Vision Science, 72(10), 718–724. doi: 10.1097/00006324-199510000-00004
  125. Patel, N., et al. (2016). Development of Loteprednol Etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Delivery, 23(9), 3712–3723. doi: 10.1080/10717544.2016.1223225

Ophthalmologists and drug delivery experts have faced numerous anatomical and physiological obstacles when it comes to ocular drug delivery. Ocular barriers, both static and dynamic, block the entrance of foreign substances and obstruct the active absorption of therapeutic medications. This overview provides more details on the eye's anatomy and related limitations. An example of a few prevalent visual disorders, such as glaucoma, and the current clinical treatments for it are shown below, highlighting the importance of medication therapy in the treatment of ocular diseases. Then, some common research is presented along with recommendations for improvements in ocular medication delivery methods, particularly those based on nanotechnology

Keywords : Ocular Drug Delivery Systems, Nanotechnology, Ocular Barriers: Features and Clinical History.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe