Authors :
Never Assan
Volume/Issue :
Volume 10 - 2025, Issue 8 - August
Google Scholar :
https://tinyurl.com/wykpzf3k
Scribd :
https://tinyurl.com/4uejb7pz
DOI :
https://doi.org/10.38124/ijisrt/25aug022
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
This systematic review examines the correlation between direct and maternal genetic effects on growth traits in
sheep, goats, and cattle, with a focus on tropical production systems. Reported estimates of this correlation exhibit significant
variability, ranging from strongly negative to moderately positive, reflecting considerable uncertainty and biological
complexity. The sign and magnitude of this relationship are crucial in genetic evaluation, as they influence the estimation of
breeding values and ultimately impact selection decisions. Recent literature emphasizes that omitting or inaccurately
estimating the covariance between direct and maternal genetic effects can result in biased rankings of selection candidates
and diminished genetic gains, particularly for pre-weaning traits where maternal influence is most significant. The
variability in estimates is affected by several factors, including breed differences in maternal ability, environmental and
management conditions, model specification (e.g., fixed assumptions of zero covariance), and the structure and quality of
pedigree and performance data. In tropical systems, where environmental stressors and incomplete records are prevalent,
these issues are especially pronounced. This review highlights the necessity for appropriate statistical modeling that accounts
for direct maternal covariance to enhance the accuracy of genetic parameter estimation. For animal breeding programs in
tropical regions, such considerations are essential for improving the efficiency and sustainability of genetic improvement
strategies.
References :
- Akanno, E. C., Chen, L., Crowley, J. J., & Plastow, G. (2021). Incorporating G×E interaction in beef cattle breeding programs: A review. Livestock Science, 248, 104481. https://doi.org/10.1016/j.livsci.2021.104481
- Akanno, E. C., Schenkel, F. S., Sullivan, B. P., & Li, C. (2013). Estimation of genetic parameters for growth traits in crossbred beef cattle using random regression models. Animal, 7(1), 145–153. https://doi.org/10.1017/S1751731112001060
- Amoah, E. A., Van der Westhuizen, R. R., & Neser, F. W. C. (2021). Estimation of (co)variance components for growth traits in beef cattle under tropical conditions using Bayesian approaches. Tropical Animal Health and Production, 53(5), 504. https://doi.org/10.1007/s11250-021-02805-2
- Asadi Fozi, M., Moradi, M. H., & Shahneh, A. Z. (2021). Estimation of genetic parameters for growth traits using random regression in Markhoz goats. Small Ruminant Research, 200, 106387. https://doi.org/10.1016/j.smallrumres.2021.106387
- Assan, N. (2024). Modeling maternal genetic effects under genotype-by-environment interaction in Zimbabwean goats. African Journal of Agricultural Research, 19(2), 124–131. https://doi.org/10.5897/AJAR2023.16234
- Assan, N., & Makuza, S. (2023). Maternal effects and growth traits in tropical beef cattle under smallholder systems. Tropical Animal Genetics, 15(1), 25–39.
- Ayres, D. R., Silva, L. O. C., Silva, M. C., Gouvêa, V. N., Silva, R. M. O., & Albuquerque, L. G. (2020). Genetic evaluation of growth traits in Polled Nelore cattle using single- and multi-trait animal models. Livestock Science, 240, 104102. https://doi.org/10.1016/j.livsci.2020.104102
- Bakhshalizadeh, S., Moradi, M. H., Esmailizadeh, A., & Nejati-Javaremi, A. (2022). Genetic parameter estimation of growth traits in sheep using a multi-trait animal model incorporating maternal effects. Small Ruminant Research, 210, 106650. https://doi.org/10.1016/j.smallrumres.2022.106650
- Barbosa, R. T., Mercadante, M. E. Z., & Cyrillo, J. N. S. G. (2021). Estimates of genetic parameters for growth traits in Nelore cattle raised under tropical conditions. Tropical Animal Health and Production, 53, 458. https://doi.org/10.1007/s11250-021-02776-4
- Boujenane, I., & El-Hazzab, A. (2024). Estimation of direct and maternal genetic effects for growth traits in Moroccan sheep using Bayesian approaches. Tropical Animal Health and Production, 56(1), 36. https://doi.org/10.1007/s11250-023-03706-2
- Carter, M. L., Robinson, D. L., & Fogarty, N. M. (2023). Influence of maternal behaviour on early lamb survival and implications for genetic evaluations. Animal Production Science, 63(2), 124–132. https://doi.org/10.1071/AN22125
- Chen, L., Sun, X., & Wang, Y. (2021). Genetic correlation between growth and reproductive traits in beef cattle. Journal of Animal Breeding and Genetics, 138(2), 157–168.
- Costa, M. R., Savegnago, R. P., Brito, L. F., & Albuquerque, L. G. (2020). Genetic parameters and trends for growth traits in Nelore cattle under tropical conditions. Journal of Animal Breeding and Genetics, 137(1), 60–69. https://doi.org/10.1111/jbg.12403
- Da Costa, R. M. T., De Faria, C. U., & De Oliveira, E. A. (2020). Genetic evaluation of growth traits in Nellore cattle with different statistical models. Livestock Science, 238, 104026. https://doi.org/10.1016/j.livsci.2020.104026
- Edea, Z., Dadi, H., Dessie, T., & Kim, K. S. (2021). Breed-specific genetic parameter estimates for growth traits in indigenous Ethiopian cattle. Tropical Animal Health and Production, 53(1), 12–20. https://doi.org/10.1007/s11250-020-02415-3
- Eler, J. P., Van Vleck, L. D., Ferraz, J. B., & Lôbo, R. B. (1995). Estimation of variances due to direct and maternal effects for growth traits of Nelore cattle. Journal of Animal Science, 73(11), 3253–3258. https://doi.org/10.2527/1995.73113253x
- Emamgholi Begli, H., Hossein-Zadeh, N. G., & Miraei-Ashtiani, S. R. (2020). A review of maternal effects in genetic evaluation models of livestock. Livestock Science, 238, 104049. https://doi.org/10.1016/j.livsci.2020.104049
- Getachew, T., Haile, A., Rischkowsky, B., & Gizaw, S. (2021). Meta-analysis of genetic parameter estimates for growth traits in sheep. Animal, 15(1), 100032. https://doi.org/10.1016/j.animal.2020.100032
- Gomes, C. C. G., Silva, R. M. O., Lima, A. O., & Albuquerque, L. G. (2022). Direct–maternal genetic correlations for growth traits in Nelore cattle reared in tropical environments. Animal, 16(7), 100582. https://doi.org/10.1016/j.animal.2022.100582
- Kahi, A. K., Bett, R. C., & Wasike, C. B. (2020). Genetic improvement of indigenous livestock in developing countries: Opportunities and challenges. Tropical Animal Health and Production, 52(4), 1781–1791. https://doi.org/10.1007/s11250-019-02159-w
- Lopes, F. B., Magnabosco, C. U., Paulini, F., da Silva, M. C., Miyagi, E. S., & Lôbo, R. B. (2013). Genetic analysis of growth traits in Polled Nellore cattle raised on pasture in tropical region using Bayesian approaches. PLoS ONE, 8(9), e75423. https://doi.org/10.1371/journal.pone.0075423
- Lopez, H. L., Peters, S. O., & Silva, L. F. (2020). Modeling maternal environmental effects in tropical cattle. Animal, 14(10), 2085–2092.
- Mandal, A., Singh, M. K., & Rout, P. K. (2021). Genetic evaluation and maternal effects for growth traits in goats under semi-intensive production system. Tropical Animal Health and Production, 53, 112. https://doi.org/10.1007/s11250-021-02544-y
- Marai, I. F. M., El-Darawany, A. A., & Fadiel, A. (2022). Environmental and management factors affecting maternal performance in tropical goats. Small Ruminant Research, 214, 106701. https://doi.org/10.1016/j.smallrumres.2022.106701
- Martins, R. F. S., Eler, J. P., Silva, J. A. I. I. V., & Ferraz, J. B. S. (2019). Genetic parameter estimates for growth traits in Nelore cattle using random regression models. Animal Production Science, 59(4), 718–726. https://doi.org/10.1071/AN17182
- Mbole-Kariuki, M. N., Onzere, S. N., & Ojango, J. M. (2021). Data quality and pedigree completeness in African indigenous cattle populations. Frontiers in Genetics, 12, 682718.
- Mekuriaw, Z., & Haile, A. (2023). Genetic parameter estimation for growth and reproductive traits in crossbred goats under low-input systems in Ethiopia. Tropical Animal Health and Production, 55(2), 110. https://doi.org/10.1007/s11250-023-03647-3
- Mensah, G. A., Tongoona, P., & Dzama, K. (2024). Genetic architecture of adaptation traits in indigenous livestock of sub-Saharan Africa. Livestock Science, 272, 105216.
- Meyer, K. (1992). Variance components due to direct and maternal effects for growth traits of Australian beef cattle. Livestock Production Science, 31(3-4), 179–204. https://doi.org/10.1016/S0301-6226(12)80017-3
- Meyer, K. (2021). Advances in estimation of genetic parameters for maternal traits in beef cattle. Journal of Animal Science, 99(6), skab095. https://doi.org/10.1093/jas/skab095
- Misztal, I., Tsuruta, S., Lourenco, D. A. L., & Aguilar, I. (2022). Advances in modeling maternal effects in genomic evaluations. Journal of Animal Science, 100(Supplement_1), skac034.
- Moghbeli, R., Alijani, S., & Moradi-Shahrbabak, M. (2021). Estimates of maternal genetic parameters for growth traits in sheep. Small Ruminant Research, 204, 106525.
- Mokhtari, M. S., Rashidi, A., & Hossein-Zadeh, N. G. (2020). Estimation of genetic parameters for growth traits in Iranian Kermani sheep using animal models. Small Ruminant Research, 183, 106032. https://doi.org/10.1016/j.smallrumres.2019.106032
- Mrode, R. A. (2014). Linear models for the prediction of animal breeding values (3rd ed.). CABI.
- Mulder, H. A., & Bijma, P. (2022). Genotype by environment interaction and breeding for robustness in livestock. Frontiers in Genetics, 13, 825937. https://doi.org/10.3389/fgene.2022.825937
- Mulder, H. A., Bijma, P., & Hill, W. G. (2016). Prediction of breeding values and selection response with genetic and environmental variation in residual variance. Genetics, 202(4), 1313–1329. https://doi.org/10.1534/genetics.115.183699
- Mulindwa, H., Karoui, S., Mpofu, N., & van Marle-Köster, E. (2023). Genetic parameters for early growth traits in crossbred cattle under smallholder systems in East Africa. Tropical Animal Health and Production, 55(3), 213. https://doi.org/10.1007/s11250-023-03622-5
- Mwai, A. O., Wasike, C. B., & Bett, R. C. (2023). Adaptation and genetic improvement of livestock in low-input systems: Addressing G×E for sustainable productivity in the tropics. Tropical Animal Health and Production, 55(3), 169. https://doi.org/10.1007/s11250-023-03707-5
- Mwai, O., Kosgey, I. S., & Muasya, T. K. (2021). Climate-related stress and its impact on maternal and growth traits in East African cattle. Frontiers in Genetics, 12, 689823. https://doi.org/10.3389/fgene.2021.689823
- Nephawe, K. A. (2004). Application of random regression models to the genetic evaluation of cow weight in Bonsmara cattle of South Africa. South African Journal of Animal Science, 34(suppl. 2), 86–88. https://doi.org/10.4314/sajas.v34i5.3777
- Notter, D. R. (2021). The importance of maternal effects in genetic evaluation of growth in sheep and goats. Journal of Animal Breeding and Genetics, 138(2), 141–151. https://doi.org/10.1111/jbg.12509
- Oguno, R., Onzima, R. B., & Kugonza, D. R. (2022). Genetic parameters for growth traits of indigenous goats under low-input systems in Uganda. Tropical Animal Health and Production, 54, 154. https://doi.org/10.1007/s11250-022-03221-9
- Okello, D., Mpairwe, D., & Kugonza, D. R. (2021). Comparison of growth performance of suckled vs. artificially fed calves. East African Agricultural and Forestry Journal, 87(3), 241–252.
- Oyeyemi, M. O., Yakubu, A., & Salako, A. E. (2021). Genetic parameters for growth and reproductive traits in tropical cattle: Implications for sustainable improvement. Tropical Animal Health and Production, 53, 456. https://doi.org/10.1007/s11250-021-02848-2
- Pérez, P., & de los Campos, G. (2022). Assessment of genetic and maternal covariance in weaning traits of tropical cattle. Journal of Animal Breeding and Genetics, 139(3), 217–226. https://doi.org/10.1111/jbg.12617
- Safari, A., Amer, P. R., & Fakhrzadeh, S. (2023). Challenges in separating maternal and direct genetic effects in animal models: Implications for sheep breeding programs. Animal Genetics, 54(1), 45–52. https://doi.org/10.1111/age.13221
- Shirali, M., Blasco, A., & Ros-Freixedes, R. (2022). Estimation of maternal and direct effects on lamb growth using reaction norm models. Animal, 16(12), 100580. https://doi.org/10.1016/j.animal.2022.100580
- Tibbo, M., Gebreselassie, G., & Haile, A. (2023). Maternal genetic effects and their implications in genetic improvement programs for African sheep. Livestock Science, 269, 105232. https://doi.org/10.1016/j.livsci.2023.105232
- Tito, A. B., Haile, A., & Mwai, O. (2023). Genetic evaluation challenges under low-input livestock systems. African Journal of Animal Science, 53(4), 377–392.
- Toghiani, S., Hay, E. H., & Aggrey, S. E. (2020). Impact of incomplete pedigrees and model choice on maternal and direct genetic estimates in livestock. Genetics Selection Evolution, 52, 68. https://doi.org/10.1186/s12711-020-00587-z
- Togtokhbayar, N., Khan, M. A., & Kim, S. D. (2020). Estimation of direct and maternal genetic effects for growth traits in cattle using various animal models. Asian-Australasian Journal of Animal Sciences, 33(4), 563–571. https://doi.org/10.5713/ajas.19.0648
- Togtokhbayar, N., Narantsatsral, S., & Lee, J. H. (2023). Breed-specific maternal genetic effects on growth traits in Mongolian cattle. Livestock Science, 264, 105125. https://doi.org/10.1016/j.livsci.2022.105125
- Van der Werf, J. H. J., & Tier, B. (2021). Accounting for genotype by environment interaction in genetic evaluation of livestock. Animal Production Science, 61(6), 553–564. https://doi.org/10.1071/AN20271
- Van der Werf, J. H. J., Kinghorn, B. P., & Banks, R. G. (2021). GxE interactions for maternal and direct effects in sheep: Implications for breeding programs in variable environments. Genetics Selection Evolution, 53, 15. https://doi.org/10.1186/s12711-021-00614-4
- Van Marle-Köster, E., Visser, C., & Maiwashe, A. (2022). Genetic evaluation of direct and maternal effects in beef cattle breeds of South Africa. South African Journal of Animal Science, 52(3), 225–234. https://doi.org/10.4314/sajas.v52i3.1
- Van Vleck, L. D. (2006). Estimation of direct and maternal genetic components of variance for weaning weight in beef cattle. Journal of Animal Science, 84(5), 1246–1252. https://doi.org/10.2527/2006.8451246x
- Wurzinger, M., Gutiérrez, G. A., & Sölkner, J. (2023). Participatory approaches for sustainable breeding of indigenous livestock in marginal areas. Animal Frontiers, 13(2), 26–34. https://doi.org/10.1093/af/vfac093
- Yakubu, A., & Alabi, O. J. (2021). Genetic evaluation of maternal performance in Nigerian local chickens. Poultry Science, 100(6), 101123. https://doi.org/10.1016/j.psj.2021.101123
- Yakubu, A., Musa, I. S., & Ogah, D. M. (2024). Genotype by environment interaction and maternal effects in West African Dwarf goats under different agro-ecologies. Tropical Animal Health and Production, 56(1), 45. https://doi.org/10.1007/s11250-023-03922-8
- Yao, C., & Misztal, I. (2020). Reaction norm models for G×E in livestock: Statistical implementation and applications. Journal of Dairy Science, 103(10), 9491–9506. https://doi.org/10.3168/jds.2019-17843
- Yu, X., & Boerner, V. (2021). Influence of fixed and random effects modeling on genetic parameter estimation. Genetics Selection Evolution, 53(1), 1–13.
- Yusuf, M., Alabi, O. J., & Mbajiorgu, C. A. (2023). Genetic parameters for body weight and maternal effects in indigenous cattle breeds under smallholder production systems in Africa. Animals, 13(5), 702. https://doi.org/10.3390/ani13050702
This systematic review examines the correlation between direct and maternal genetic effects on growth traits in
sheep, goats, and cattle, with a focus on tropical production systems. Reported estimates of this correlation exhibit significant
variability, ranging from strongly negative to moderately positive, reflecting considerable uncertainty and biological
complexity. The sign and magnitude of this relationship are crucial in genetic evaluation, as they influence the estimation of
breeding values and ultimately impact selection decisions. Recent literature emphasizes that omitting or inaccurately
estimating the covariance between direct and maternal genetic effects can result in biased rankings of selection candidates
and diminished genetic gains, particularly for pre-weaning traits where maternal influence is most significant. The
variability in estimates is affected by several factors, including breed differences in maternal ability, environmental and
management conditions, model specification (e.g., fixed assumptions of zero covariance), and the structure and quality of
pedigree and performance data. In tropical systems, where environmental stressors and incomplete records are prevalent,
these issues are especially pronounced. This review highlights the necessity for appropriate statistical modeling that accounts
for direct maternal covariance to enhance the accuracy of genetic parameter estimation. For animal breeding programs in
tropical regions, such considerations are essential for improving the efficiency and sustainability of genetic improvement
strategies.