Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD): A Review on Assessing Measures


Authors : W.A.S.S. Weerakoon; T. P. Hendavithrana

Volume/Issue : Volume 9 - 2024, Issue 11 - November


Google Scholar : https://tinyurl.com/bdhbwchs

Scribd : https://tinyurl.com/4ykkr7mj

DOI : https://doi.org/10.38124/ijisrt/IJISRT24NOV637

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Mutations in the encoding Dystrophin gene lead to lethal, genetic muscular dystrophies such as Duchenne Muscular Dystrophy (DMD), and Becker Muscular Dystrophy (BMD) which have a slower progression than DMD and an intermediate form. Dystrophin gene mutations abolish the production of Dystrophin in body muscles such as skeletal, cardiac, and smooth muscles. The progressive degeneration of muscle tissues and functions will occur. Most often respiratory, orthopaedic, and cardiac-related complications have led to death. These neuromuscular disorders occur at a frequency of about 1 in 5000 newborn males. The objective of this review was to identify and understand the available measures used for assessing muscular dystrophies in DMD and BMD. Review of studies identified from searching medical bibliographic sources relevant to assessing methods and techniques of DMD and BMD between the years of 2002 and 2022. The studies showed measures used to assess the muscles in DMD patients apart from clinical assessments to quantify the pathological changes involved in the muscles as objective parameters. The measures can be categorized into invasive and non- invasive methods. This study has resulted in manual muscle testing methods and methods of assessing the functional ability of the muscles such as muscle biopsies, Ultrasound scans (USS), and Magnetic Resonance Images (MRI) etc. It concludes that the most widely used effective and reliable investigation method has been identified as MRI scans due to various purposes and methods of assessing muscular dystrophies.

Keywords : Becker Muscular Dystrophy, Duchene Muscular Dystrophy, Dystrophin, Genetic, Measures, Mutations, Tests.

References :

  1. E.A.Martin, (2010). Concise colour medical dictionary (5th edition). Oxford Univ. Press.
  2. Lovering, R. M., Porter, N. C., & Bloch, R. J. (2005). The muscular dystrophies: from genes to therapies. Physical therapy, 85(12), 1372–1388.
  3. U.S. Department of Health and Human Services.(2019). Muscular dystrophy. National Institute of Neurological Disorders and Stroke.  https://www.ninds.nih.gov/health-information/disorders/muscular-dystrophy (26 March2020)
  4. Mousa, N.O, Osman, A., Fahmy, N., Abdellatif, A., & K. Zahra, W. (2020). Duchenne muscular dystrophy (DMD) treatment: Past and present perspectives. Muscular Dystrophy -Research Updates and Therapeutic Strategies. https://doi.org/10.5772/intechopen.92765
  5. Venugopal V., Pavlakis S.,(2022) Duchenne Muscular Dystrophy.  StatPearls Treasure Island (FL): StatPearls https://www.ncbi.nlm.nih.gov/books/NBK482346/
  6. Duan, D., Goemans, N., Takeda, S., Mercuri, E., & Aartsma-Rus, A. (2021). Duchenne muscular dystrophy. Nature Reviews Disease Primers, 7(1). https://doi.org/10.1038/s41572-021-00248-3
  7. Nowak, K. J., & Davies, K. E. (2004). Duchenne muscular dystrophy and dystrophin: Pathogenesis and opportunities for treatment. EMBO Reports, 5(9), 872–876. https://doi.org/10.1038/sj.embor.7400221
  8. Ryder, S., Leadley, R. M., Armstrong, N., Westwood, M., de Kock, S., Butt, T., Jain, M., &Kleijnen, J. (2017). The burden, epidemiology, costs and treatment for Duchenne Muscular Dystrophy: An evidence review. Orphanet Journal of Rare Diseases, 12(1). https://doi.org/10.1186/s13023-017-0631-3
  9. Yao, S., Chen, Z., Yu, Y., Zhang, N., Jiang, H., Zhang, G., Zhang, Z., & Zhang, B. (2021). Current pharmacological strategies for Duchenne Muscular Dystrophy. Frontiers in Cell and Developmental Biology, 9.
  10. Wright, M. A., Yang, M. L., Parsons, J. A., Westfall, J. M., & Yee, A. S. (2012). Consider muscle disease in children with elevated transaminase. The Journal of the American Board of Family Medicine, 25(4), 536–540. https://doi.org/10.3122/jabfm.2012.04.110183
  11. Van Westering, T., Betts, C., & Wood, M. (2015). Current understanding of molecular pathology and treatment of cardiomyopathy in Duchenne muscular dystrophy. Molecules,20(5),8823–8855. https://doi.org/10.3390/molecules20058823
  12. Thada, P.K., Bhandari, J., Umapathi ,K.K,. (2023)Becker Muscular Dystrophy. StatPearls          Treasure Island (FL): StatPearls https://www.ncbi.nlm.nih.gov/books/NBK556092/
  13. Beenakker, E. A. C., Maurits, N. M., Fock, J. M., Brouwer, O. F., & van der Hoeven, J. H. (2005). Functional ability and muscle force in healthy children and Ambulant Duchenne muscular dystrophy patients. European Journal of Paediatric Neurology, 9(6), 387–393. https://doi.org/10.1016/j.ejpn.2005.06.004
  14. Buckon, C., Sienko, S., Bagley, A., Sison-Williamson, M., Fowler, E., Staudt, L., Heberer, K., McDonald, C. M., & Sussman, M. (2016). Can Quantitative Muscle Strength and Functional Motor Ability Differentiate the Influence of Age and Corticosteroids in Ambulatory Boys with Duchenne Muscular Dystrophy?.  PLoS currents8
  15. Bushby, K., & Connor, E. (2011). Clinical outcome measures for trials in Duchenne muscular dystrophy: report from International Working Group meetings. Clinical investigation1(9),1217–1235. https://doi.org/10.4155/cli.11.113
  16. Lerario, A., Bonfiglio, S., Sormani, M., Tettamanti, A., Marktel, S., Napolitano, S., Previtali, S., Scarlato, M., Natali-Sora, M., Mercuri, E., Bresolin, N., Mongini, T., Comi, G., Gatti, R., Ciceri, F., Cossu, G., & Torrente, Y. (2012). Quantitative muscle strength assessment in duchenne muscular dystrophy: longitudinal study and correlation with functional measures. BMC neurology12, 91. https://doi.org/10.1186/1471-2377-12-91
  17. LoMauro, A., D'Angelo, M. G., &Aliverti, A. (2015). Assessment and management of respiratory function in patients with Duchenne muscular dystrophy: current and emerging options. Therapeutics and clinical risk management11, 1475–1488. https://doi.org/10.2147/TCRM.S55889
  18. American Thoracic Society/European Respiratory Society (2002). ATS/ERS Statement on respiratory muscle testing. American journal of respiratory and critical care medicine166(4),518–624. https://doi.org/10.1164/rccm.166.4.518
  19. Duiverman, M. L., van Eykern, L. A., Vennik, P. W., Koëter, G. H., Maarsingh, E. J., &Wijkstra, P. J. (2004). Reproducibility and responsiveness of a noninvasive EMG technique of the respiratory muscles in COPD patients and in healthy subjects. Journal of applied physiology (Bethesda, Md.1985)96(5),1723–1729. https://doi.org/10.1152/japplphysiol.00914.2003
  20. Beck, J., Sinderby, C., Weinberg, J., &Grassino, A. (1995). Effects of muscle-to-electrode distance on the human diaphragm electromyogram. Journal of applied physiology (Bethesda,Md.:1985)79(3),975–985. https://doi.org/10.1152/jappl.1995.79.3.975
  21. Wohlgemuth, M., van der Kooi, E. L., Hendriks, J. C., Padberg, G. W., &Folgering, H. T. (2003). Face mask spirometry and respiratory pressures in normal subjects. The European respiratory journal22(6), 1001–1006. https://doi.org/10.1183/09031936.03.00028103
  22. Cluzel, P., Similowski, T., Chartrand-Lefebvre, C., Zelter, M., Derenne, J. P., &Grenier, P. A. (2000). Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging-preliminary observations. Radiology215(2), 574–583. https://doi.org/10.1148/radiology.215.2.r00ma28574
  23. Chrzanowski, S.M., Darras, B.T. and Rutkove, S.B. (2019) ‘The value of imaging and composition-based biomarkers in Duchenne muscular dystrophy clinical trials’, Neurotherapeutics, 17(1), pp. 142–152. doi:10.1007/s13311-019-00825-1.
  24. Laviola, M., Priori, R., D'Angelo, M. G., &Aliverti, A. (2018). Assessment of diaphragmatic thickness by ultrasonography in Duchenne muscular dystrophy (DMD) patients. PloS one13(7), e0200582. https://doi.org/10.1371/journal.pone.0200582
  25. Testa, A., Soldati, G., Giannuzzi, R., Berardi, S., Portale, G.,&GentiloniSilveri, N. (2011). Ultrasound M-mode assessment of diaphragmatic kinetics by anterior transverse scanning in healthy subjects. Ultrasound in medicine & biology37(1),44–52. https://doi.org/10.1016/j.ultrasmedbio.2010.10.004
  26. Nève, V., Cuisset, J.-M., Edmé, J.-L., Carpentier, A., Howsam, M., Leclerc, O., &Matran, R. (2012). Sniff nasal inspiratory pressure in the longitudinal assessment of young Duchenne Muscular dystrophy children. European Respiratory Journal, 42(3), 671–680. https://doi.org/10.1183/09031936.00127712
  27. Fauroux, B., Aubertin, G., Cohen, E., Clément, A., &Lofaso, F. (2009). Sniff nasal inspiratory pressure in children with muscular, chest wall or lung disease. The European respiratory journal33(1),113–117. https://doi.org/10.1183/09031936.00050708
  28. Toussaint, M., Soudon, P., & Kinnear, W. (2008). Effect of non-invasive ventilation on respiratory muscle loading and endurance in patients with Duchenne muscular dystrophy. Thorax63(5),430–434. https://doi.org/10.1136/thx.2007.084574
  29. Toussaint, M., Chatwin, M., &Soudon, P. (2007). Mechanical ventilation in Duchenne patients with chronic respiratory insufficiency: clinical implications of 20 years published experience. Chronic respiratory disease4(3), 167–177. https://doi.org/10.1177/1479972307080697
  30. Mulreany, L. T., Weiner, D. J., McDonough, J. M., Panitch, H. B., & Allen, J. L. (2003). Noninvasive measurement of the tension-time index in children with neuromuscular disease. Journal of applied physiology (Bethesda,Md.:1985)95(3),931–937. https://doi.org/10.1152/japplphysiol.01087.200
  31. Bianchi, C., & Baiardi, P. (2008). Cough peak flows: standard values for children and adolescents. American journal of physical medicine & rehabilitation87(6), 461–467. https://doi.org/10.1097/PHM.0b013e318174e4c7
  32. Forced expiratory volume - statpearls - NCBI bookshelf. (2021). https://www.ncbi.nlm.nih.gov/books/NBK540970
  33. Miller, M. R., Crapo, R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Enright, P., van der Grinten, C. P., Gustafsson, P., Jensen, R., Johnson, D. C., MacIntyre, N., McKay, R., Navajas, D., Pedersen, O. F., Pellegrino, R., Viegi, G., Wanger, J., & ATS/ERS Task Force (2005). General considerations for lung function testing. The European respiratory journal26(1), 153–161. https://doi.org/10.1183/09031936.05.00034505
  34. Miller, M. R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Crapo, R., Enright, P., van der Grinten, C. P., Gustafsson, P., Jensen, R., Johnson, D. C., MacIntyre, N., McKay, R., Navajas, D., Pedersen, O. F., Pellegrino, R., Viegi, G., Wanger, J., & ATS/ERS Task Force (2005). Standardisation of spirometry. The European respiratory journal26(2), 319–338. https://doi.org/10.1183/09031936.05.00034805
  35. Wanger, J., Clausen, J. L., Coates, A., Pedersen, O. F., Brusasco, V., Burgos, F., Casaburi, R., Crapo, R., Enright, P., van der Grinten, C. P., Gustafsson, P., Hankinson, J., Jensen, R., Johnson, D., Macintyre, N., McKay, R., Miller, M. R., Navajas, D., Pellegrino, R., &Viegi, G. (2005). Standardisation of the measurement of lung volumes. The European respiratory journal26(3), 511–522. https://doi.org/10.1183/09031936.05.00035005
  36. Laghi, F. A., Saad, M., & Shaikh, H. (2021). Ultrasound and non-ultrasound imaging techniques in the assessment of diaphragmatic dysfunction. BMC Pulmonary Medicine, 21(1). https://doi.org/10.1186/s12890-021-01441-6
  37. Fauroux, B., Aubertin, G., Clément, A., Lofaso, F., &Bonora, M. (2009). Which tests may predict the need for noninvasive ventilation in children with neuromuscular disease?. Respiratory Medicine103(4),574–581. https://doi.org/10.1016/j.rmed.2008.10.023
  38. Nicot, F., Hart, N., Forin, V., Boulé, M., Clément, A., Polkey, M. I., Lofaso, F., &Fauroux, B. (2006). Respiratory muscle testing: a valuable tool for children with neuromuscular disorders. American journal of respiratory and critical care medicine174(1), 67–74. https://doi.org/10.1164/rccm.200512-1841OC
  39. Fauroux, B., Quijano-Roy, S., Desguerre, I., &Khirani, S. (2015). The value of respiratory muscle testing in children with neuromuscular disease. Chest147(2), 552–559. https://doi.org/10.1378/chest.14-0819
  40. Pennati, F., LoMauro, A., D'Angelo, M. G., &Aliverti, A. (2021). Non-Invasive Respiratory Assessment in Duchenne Muscular Dystrophy: From Clinical Research to Outcome Measures. Life (Basel, Switzerland)11(9),947. https://doi.org/10.3390/life11090947
  41. Ekblom B. (2017). The muscle biopsy technique. Historical and methodological considerations. Scandinavian journal of medicine & science in sports27(5), 458–461. https://doi.org/10.1111/sms.12808
  42. Beekman, C., Janson, A. A., Baghat, A., van Deutekom, J. C., &Datson, N. A. (2018a). Use of capillary western immunoassay (Wes) for quantification of dystrophin levels in skeletal muscle of healthy controls and individuals with Becker and Duchenne Muscular Dystrophy. PLOS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195850
  43. Aartsma-Rus, A., Ferlini, A., McNally, E. M., Spitali, P., Sweeney, H. L., & workshop participants (2018). 226th ENMC International Workshop:: Towards validated and qualified biomarkers for therapy development for Duchenne muscular dystrophy 20-22 January 2017, Heemskerk, The Netherlands. Neuromuscular disorders :NMD28(1), 77–86. https://doi.org/10.1016/j.nmd.2017.10.002
  44. Ferlini, A., Sabatelli, P., Fabris, M., Bassi, E., Falzarano, S., Vattemi, G., Perrone, D., Gualandi, F., Maraldi, N. M., Merlini, L., Sparnacci, K., Laus, M., Caputo, A., Bonaldo, P., Braghetta, P., &Rimessi, P. (2010). Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP-AON complexes. Gene therapy17(3), 432–438. https://doi.org/10.1038/gt.2009.145
  45. Heemskerk, H., de Winter, C., van Kuik, P., Heuvelmans, N., Sabatelli, P., Rimessi, P., Braghetta, P., van Ommen, G. J., de Kimpe, S., Ferlini, A., Aartsma-Rus, A., & van Deutekom, J. C. (2010). Preclinical PK and PD studies on 2'-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Molecular therapy : the journal of the American Society of Gene Therapy18(6), 1210–1217. https://doi.org/10.1038/mt.2010.72
  46. Birnkrant, D. J., Bushby, K., Bann, C. M., Apkon, S. D., Blackwell, A., Brumbaugh, D., Case, L. E., Clemens, P. R., Hadjiyannakis, S., Pandya, S., Street, N., Tomezsko, J., Wagner, K. R., Ward, L. M., Weber, D. R., & DMD Care Considerations Working Group (2018). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. The Lancet. Neurology17(3), 251–267. https://doi.org/10.1016/S1474-4422(18)30024-3
  47. Verma, S., Anziska, Y., &Cracco, J. (2010). Review of Duchenne muscular dystrophy (DMD) for the pediatricians in the community. Clinical pediatrics49(11), 1011–1017. https://doi.org/10.1177/0009922810378738.
  48. Beekman, C., Janson, A. A., Baghat, A., van Deutekom, J. C., &Datson, N. A. (2018). Use of capillary western immunoassay (Wes) for quantification of dystrophin levels in skeletal muscle of healthy controls and individuals with Becker and Duchenne Muscular Dystrophy. PLOS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195850
  49. Beekman, C., Sipkens, J. A., Testerink, J., Giannakopoulos, S., Kreuger, D., van Deutekom, J. C., Campion, G. V., de Kimpe, S. J., &Lourbakos, A. (2014). A sensitive, reproducible and objective immunofluorescence analysis method of dystrophin in individual fibers in samples from patients with Duchenne muscular dystrophy. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0107494
  50. Hulsker, M., Verhaart, I., van Vliet, L., Aartsma-Rus, A., & van Putten, M. (2016). Accurate Dystrophin Quantification in Mouse Tissue; Identification of New and Evaluation of Existing Methods. Journal of neuromuscular diseases3(1), 77–90. https://doi.org/10.3233/JND-150126
  51. Maruyama, N., Asai, T., Abe, C., Inada, A., Kawauchi, T., Miyashita, K., Maeda, M., Matsuo, M., &Nabeshima, Y. I. (2016). Establishment of a highly sensitive sandwich ELISA for the N-terminal fragment of titin in urine. Scientific reports6, 39375. https://doi.org/10.1038/srep39375
  52. Wikimedia Foundation. (2023, June 5). Mass spectrometry.Wikipedia. https://en.wikipedia.org/wiki/Mass_spectrometry
  53. Dabaj, I., Ferey, J., Marguet, F., Gilard, V., Basset, C., Bahri, Y., Brehin, A.-C., Vanhulle, C., Leturcq, F., Marret, S., Laquerrière, A., Schmitz-Afonso, I., Afonso, C., Bekri, S., &Tebani, A. (2021). Muscle metabolic remodelling patterns in Duchenne muscular dystrophy revealed by ultra-high-resolution mass spectrometry imaging. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81090-1
  54. Ricotti, V., Evans, M. R., Sinclair, C. D., Butler, J. W., Ridout, D. A., Hogrel, J.-Y., Emira, A., Morrow, J. M., Reilly, M. M., Hanna, M. G., Janiczek, R. L., Matthews, P. M., Yousry, T. A., Muntoni, F., & Thornton, J. S. (2016). Upper limb evaluation in Duchenne muscular dystrophy: Fat-water quantification by MRI, muscle force and function define endpoints for clinical trials. PLOS ONE, 11(9). https://doi.org/10.1371/journal.pone.0162542
  55. Finanger, E. L., Russman, B., Forbes, S. C., Rooney, W. D., Walter, G. A., &Vandenborne, K. (2012). Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Physical medicine and rehabilitation clinics of North America23(1), 1–ix. https://doi.org/10.1016/j.pmr.2011.11.004.
  56. Alic, L., Griffin, J. F., 4th, Eresen, A., Kornegay, J. N., & Ji, J. X. (2021). Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: A systematic mapping review. Muscle & nerve64(1), 8–22. https://doi.org/10.1002/mus.27133
  57. Sherlock, S. P., Zhang, Y., Binks, M., &Marraffino, S. (2021). Quantitative muscle MRI biomarkers in Duchenne muscular dystrophy: cross-sectional correlations with age and functional tests. Biomarkers in medicine15(10), 761–773. https://doi.org/10.2217/bmm-2020-0801
  58. Marden, F. A., Connolly, A. M., Siegel, M. J., & Rubin, D. A. (2005). Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging. Skeletal radiology34(3), 140–148. https://doi.org/10.1007/s00256-004-0825-3
  59. Prompers, J. J., Jeneson, J. A., Drost, M. R., Oomens, C. C., Strijkers, G. J., & Nicolay, K. (2006). Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR in biomedicine19(7),927–953. https://doi.org/10.1002/nbm.1095
  60. Harris-Love, M. O., Monfaredi, R., Ismail, C., Blackman, M. R., & Cleary, K. (2014). Quantitative ultrasound: measurement considerations for the assessment of muscular dystrophy and sarcopenia. Frontiers in aging neuroscience6, 172. https://doi.org/10.3389/fnagi.2014.00172
  61. Lobo-Prat, J., Janssen, M. M. H. P., Koopman, B. F. J. M., Stienen, A. H. A., & de Groot, I. J. M. (2017). Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study. Journal of neuroengineering and rehabilitation14(1), 86. https://doi.org/10.1186/s12984-017-0292-4
  62. Jansen, M., van Alfen, N., Geurts, A. C., & de Groot, I. J. (2013). Assisted bicycle training delays functional deterioration in boys with Duchenne muscular dystrophy: the randomized controlled trial "no use is disuse". Neurorehabilitation and neural repair27(9), 816–827. https://doi.org/10.1177/1545968313496326
  63. Jan Burgers, M.J. (2015a) ‘Upper limb training with dynamic arm support in boys with Duchenne Muscular Dystrophy: A feasibility study’, International Journal of Physical Medicine and Rehabilitation, 03(02). doi:10.4172/2329-9096.1000256
  64. Leitner, M. L., Kapur, K., Darras, B. T., Yang, M., Wong, B., DallePazze, L., Florence, J., Buck, M., Freedman, L., Bohorquez, J., Rutkove, S., &Zaidman, C. (2020). Electrical impedance myography for reducing sample size in Duchenne muscular dystrophy trials. Annals of clinical and translationalneurology7(1),4–14. https://doi.org/10.1002/acn3.50958
  65. Sanchez, B., & Rutkove, S. B. (2017). Present Uses, Future Applications, and Technical Underpinnings of Electrical Impedance Myography. Current neurology and neuroscience reports17(11),86. https://doi.org/10.1007/s11910-017-0793-3
  66. Nagy, J. A., DiDonato, C. J., Rutkove, S. B., & Sanchez, B. (2019). Permittivity of ex vivo healthy and diseased murine skeletal muscle from 10 kHz to 1 MHz. Scientific data6(1), 37. https://doi.org/10.1038/s41597-019-0045-2
  67. Rutkove, S. B., Kapur, K., Zaidman, C. M., Wu, J. S., Pasternak, A., Madabusi, L., Yim, S., Pacheck, A., Szelag, H., Harrington, T., & Darras, B. T. (2017). Electrical impedance myography for assessment of Duchenne muscular dystrophy. Annals of neurology81(5), 622–632. https://doi.org/10.1002/ana.24874
  68. Pizzato, T. M., Baptista, C. R., Souza, M. A., Benedicto, M. M., Martinez, E. Z., &Mattiello-Sverzut, A. C. (2014). Longitudinal assessment of grip strength using bulb dynamometer in Duchenne Muscular Dystrophy. Brazilian journal of physical therapy18(3), 245–251. https://doi.org/10.1590/bjpt-rbf.2014.0031
  69. Gotthelf, M., Townsend, D. and Durfee, W. (2021) ‘A video game-based hand grip system for measuring muscle force in children’, Journal of NeuroEngineering and Rehabilitation, 18(1). doi:10.1186/s12984-021-00908-1.
  70. Kato, T., Miyamoto, K., & Shimizu, K. (2004). Postural reaction during maximum grasping maneuvers using a hand dynamometer in healthy subjects. Gait & posture20(2), 189–195. https://doi.org/10.1016/j.gaitpost.2003.09.003
  71. McGorry, R. W., Dempsey, P. G., & Casey, J. S. (2004). The effect of force distribution and magnitude at the hand-tool interface on the accuracy of grip force estimates. Journal of occupational rehabilitation14(4), 255–266. https://doi.org/10.1023/b:joor.0000047428.92313.a7
  72. Amaral, J. F., Mancini, M., & Novo Júnior, J. M. (2012). Comparison of three hand dynamometers in relation to the accuracy and precision of the measurements. Revistabrasileira de fisioterapia (Sao Carlos (Sao Paulo, Brazil))16(3), 216–224. https://doi.org/10.1590/s1413-35552012000300007
  73. Mafi, P., Mafi, R., Hindocha, S., Griffin, M., & Khan, W. (2012). A systematic review of dynamometry and its role in hand trauma assessment. The open orthopaedics journal6, 95–102. https://doi.org/10.2174/1874325001206010095
  74. Lerario, A., Bonfiglio, S., Sormani, M., Tettamanti, A., Marktel, S., Napolitano, S., Previtali, S., Scarlato, M., Natali-Sora, M., Mercuri, E., Bresolin, N., Mongini, T., Comi, G., Gatti, R., Ciceri, F., Cossu, G., & Torrente, Y. (2012). Quantitative muscle strength assessment in duchenne muscular dystrophy: longitudinal study and correlation with functional measures. BMC neurology12, 91. https://doi.org/10.1186/1471-2377-12-91
  75. Gaeta, M., Messina, S., Mileto, A., Vita, G. L., Ascenti, G., Vinci, S., Bottari, A., Vita, G., Settineri, N., Bruschetta, D., Racchiusa, S., &Minutoli, F. (2012). Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience. Skeletal radiology41(8), 955–961. https://doi.org/10.1007/s00256-011-1301-5
  76. Akima, H., Lott, D., Senesac, C., Deol, J., Germain, S., Arpan, I., Bendixen, R., Lee Sweeney, H., Walter, G., &Vandenborne, K. (2012). Relationships of thigh muscle contractile and non-contractile tissue with function, strength, and age in boys with Duchenne muscular dystrophy. Neuromuscular disorders : NMD22(1), 16–25. https://doi.org/10.1016/j.nmd.2011.06.750
  77. Ropars, J., Gravot, F., Ben Salem, D., Rousseau, F., Brochard, S., & Pons, C. (2019). Muscle MRI. Neurology, 94(3),117–133. https://doi.org/10.1212/wnl.0000000000008811
  78. Godi, C., Ambrosi, A., Nicastro, F., Previtali, S. C., Santarosa, C., Napolitano, S., Iadanza, A., Scarlato, M., Natali Sora, M. G., Tettamanti, A., Gerevini, S., Cicalese, M. P., Sitzia, C., Venturini, M., Falini, A., Gatti, R., Ciceri, F., Cossu, G., Torrente, Y., &Politi, L. S. (2016). Longitudinal MRI quantification of muscle degeneration in Duchenne muscular dystrophy. Annals of clinical and translational neurology3(8), 607–622. https://doi.org/10.1002/acn3.319
  79. Garrood, P., Hollingsworth, K. G., Eagle, M., Aribisala, B. S., Birchall, D., Bushby, K., & Straub, V. (2009). MR imaging in Duchenne muscular dystrophy: quantification of T1-weighted signal, contrast uptake, and the effects of exercise. Journal of magnetic resonance imaging : JMRI30(5), 1130–1138. https://doi.org/10.1002/jmri.21941
  80. Bonati, U., Hafner, P., Schädelin, S., Schmid, M., NaduvilekootDevasia, A., Schroeder, J., Zuesli, S., Pohlman, U., Neuhaus, C., Klein, A., Sinnreich, M., Haas, T., Gloor, M., Bieri, O., Fischmann, A., & Fischer, D. (2015). Quantitative muscle MRI: A powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscular disorders : NMD25(9),679–685. https://doi.org/10.1016/j.nmd.2015.05.006
  81. De Souza, M. A., Martinez, E. Z., da Silva Lizzi, E. A., Cezarani, A., de Queiroz Davoli, G. B., Bená, M. I., da Rosa Sobreira, C. F., &Mattiello-Sverzut, A. C. (2022). Alternative instrument for the evaluation of Handgrip strength in Duchenne Muscular Dystrophy. BMC Pediatrics, 22(1). https://doi.org/10.1186/s12887-022-03388-x
  82. Clarke, M., Ni Mhuircheartaigh, D., Walsh, G., Walsh, J., & Meldrum, D. (2011). Intra-tester and inter-tester reliability of the microfet 3 hand-held dynamometer. Physiotherapy Practice and Research, 32(1), 13–18. https://doi.org/10.3233/ppr-2011-32103
  83. Beenakker, E. A., van der Hoeven, J. H., Fock, J. M., &Maurits, N. M. (2001). Reference values of maximum isometric muscle force obtained in 270 children aged 4-16 years by hand-held dynamometry. Neuromuscular disorders : NMD11(5),441–446.https://doi.org/10.1016/s0960-8966(01) 00193-6

Mutations in the encoding Dystrophin gene lead to lethal, genetic muscular dystrophies such as Duchenne Muscular Dystrophy (DMD), and Becker Muscular Dystrophy (BMD) which have a slower progression than DMD and an intermediate form. Dystrophin gene mutations abolish the production of Dystrophin in body muscles such as skeletal, cardiac, and smooth muscles. The progressive degeneration of muscle tissues and functions will occur. Most often respiratory, orthopaedic, and cardiac-related complications have led to death. These neuromuscular disorders occur at a frequency of about 1 in 5000 newborn males. The objective of this review was to identify and understand the available measures used for assessing muscular dystrophies in DMD and BMD. Review of studies identified from searching medical bibliographic sources relevant to assessing methods and techniques of DMD and BMD between the years of 2002 and 2022. The studies showed measures used to assess the muscles in DMD patients apart from clinical assessments to quantify the pathological changes involved in the muscles as objective parameters. The measures can be categorized into invasive and non- invasive methods. This study has resulted in manual muscle testing methods and methods of assessing the functional ability of the muscles such as muscle biopsies, Ultrasound scans (USS), and Magnetic Resonance Images (MRI) etc. It concludes that the most widely used effective and reliable investigation method has been identified as MRI scans due to various purposes and methods of assessing muscular dystrophies.

Keywords : Becker Muscular Dystrophy, Duchene Muscular Dystrophy, Dystrophin, Genetic, Measures, Mutations, Tests.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe