Authors :
W.A.S.S. Weerakoon; T. P. Hendavithrana
Volume/Issue :
Volume 9 - 2024, Issue 11 - November
Google Scholar :
https://tinyurl.com/bdhbwchs
Scribd :
https://tinyurl.com/4ykkr7mj
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24NOV637
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Mutations in the encoding Dystrophin gene
lead to lethal, genetic muscular dystrophies such as
Duchenne Muscular Dystrophy (DMD), and Becker
Muscular Dystrophy (BMD) which have a slower
progression than DMD and an intermediate form.
Dystrophin gene mutations abolish the production of
Dystrophin in body muscles such as skeletal, cardiac,
and smooth muscles. The progressive degeneration of
muscle tissues and functions will occur. Most often
respiratory, orthopaedic, and cardiac-related
complications have led to death. These neuromuscular
disorders occur at a frequency of about 1 in 5000
newborn males. The objective of this review was to
identify and understand the available measures used for
assessing muscular dystrophies in DMD and BMD.
Review of studies identified from searching medical
bibliographic sources relevant to assessing methods and
techniques of DMD and BMD between the years of 2002
and 2022. The studies showed measures used to assess
the muscles in DMD patients apart from clinical
assessments to quantify the pathological changes
involved in the muscles as objective parameters. The
measures can be categorized into invasive and non-
invasive methods. This study has resulted in manual
muscle testing methods and methods of assessing the
functional ability of the muscles such as muscle biopsies,
Ultrasound scans (USS), and Magnetic Resonance
Images (MRI) etc. It concludes that the most widely
used effective and reliable investigation method has
been identified as MRI scans due to various purposes
and methods of assessing muscular dystrophies.
Keywords :
Becker Muscular Dystrophy, Duchene Muscular Dystrophy, Dystrophin, Genetic, Measures, Mutations, Tests.
References :
- E.A.Martin, (2010). Concise colour medical dictionary (5th edition). Oxford Univ. Press.
- Lovering, R. M., Porter, N. C., & Bloch, R. J. (2005). The muscular dystrophies: from genes to therapies. Physical therapy, 85(12), 1372–1388.
- U.S. Department of Health and Human Services.(2019). Muscular dystrophy. National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/health-information/disorders/muscular-dystrophy (26 March2020)
- Mousa, N.O, Osman, A., Fahmy, N., Abdellatif, A., & K. Zahra, W. (2020). Duchenne muscular dystrophy (DMD) treatment: Past and present perspectives. Muscular Dystrophy -Research Updates and Therapeutic Strategies. https://doi.org/10.5772/intechopen.92765
- Venugopal V., Pavlakis S.,(2022) Duchenne Muscular Dystrophy. StatPearls Treasure Island (FL): StatPearls https://www.ncbi.nlm.nih.gov/books/NBK482346/
- Duan, D., Goemans, N., Takeda, S., Mercuri, E., & Aartsma-Rus, A. (2021). Duchenne muscular dystrophy. Nature Reviews Disease Primers, 7(1). https://doi.org/10.1038/s41572-021-00248-3
- Nowak, K. J., & Davies, K. E. (2004). Duchenne muscular dystrophy and dystrophin: Pathogenesis and opportunities for treatment. EMBO Reports, 5(9), 872–876. https://doi.org/10.1038/sj.embor.7400221
- Ryder, S., Leadley, R. M., Armstrong, N., Westwood, M., de Kock, S., Butt, T., Jain, M., &Kleijnen, J. (2017). The burden, epidemiology, costs and treatment for Duchenne Muscular Dystrophy: An evidence review. Orphanet Journal of Rare Diseases, 12(1). https://doi.org/10.1186/s13023-017-0631-3
- Yao, S., Chen, Z., Yu, Y., Zhang, N., Jiang, H., Zhang, G., Zhang, Z., & Zhang, B. (2021). Current pharmacological strategies for Duchenne Muscular Dystrophy. Frontiers in Cell and Developmental Biology, 9.
- Wright, M. A., Yang, M. L., Parsons, J. A., Westfall, J. M., & Yee, A. S. (2012). Consider muscle disease in children with elevated transaminase. The Journal of the American Board of Family Medicine, 25(4), 536–540. https://doi.org/10.3122/jabfm.2012.04.110183
- Van Westering, T., Betts, C., & Wood, M. (2015). Current understanding of molecular pathology and treatment of cardiomyopathy in Duchenne muscular dystrophy. Molecules,20(5),8823–8855. https://doi.org/10.3390/molecules20058823
- Thada, P.K., Bhandari, J., Umapathi ,K.K,. (2023)Becker Muscular Dystrophy. StatPearls Treasure Island (FL): StatPearls https://www.ncbi.nlm.nih.gov/books/NBK556092/
- Beenakker, E. A. C., Maurits, N. M., Fock, J. M., Brouwer, O. F., & van der Hoeven, J. H. (2005). Functional ability and muscle force in healthy children and Ambulant Duchenne muscular dystrophy patients. European Journal of Paediatric Neurology, 9(6), 387–393. https://doi.org/10.1016/j.ejpn.2005.06.004
- Buckon, C., Sienko, S., Bagley, A., Sison-Williamson, M., Fowler, E., Staudt, L., Heberer, K., McDonald, C. M., & Sussman, M. (2016). Can Quantitative Muscle Strength and Functional Motor Ability Differentiate the Influence of Age and Corticosteroids in Ambulatory Boys with Duchenne Muscular Dystrophy?. PLoS currents, 8
- Bushby, K., & Connor, E. (2011). Clinical outcome measures for trials in Duchenne muscular dystrophy: report from International Working Group meetings. Clinical investigation, 1(9),1217–1235. https://doi.org/10.4155/cli.11.113
- Lerario, A., Bonfiglio, S., Sormani, M., Tettamanti, A., Marktel, S., Napolitano, S., Previtali, S., Scarlato, M., Natali-Sora, M., Mercuri, E., Bresolin, N., Mongini, T., Comi, G., Gatti, R., Ciceri, F., Cossu, G., & Torrente, Y. (2012). Quantitative muscle strength assessment in duchenne muscular dystrophy: longitudinal study and correlation with functional measures. BMC neurology, 12, 91. https://doi.org/10.1186/1471-2377-12-91
- LoMauro, A., D'Angelo, M. G., &Aliverti, A. (2015). Assessment and management of respiratory function in patients with Duchenne muscular dystrophy: current and emerging options. Therapeutics and clinical risk management, 11, 1475–1488. https://doi.org/10.2147/TCRM.S55889
- American Thoracic Society/European Respiratory Society (2002). ATS/ERS Statement on respiratory muscle testing. American journal of respiratory and critical care medicine, 166(4),518–624. https://doi.org/10.1164/rccm.166.4.518
- Duiverman, M. L., van Eykern, L. A., Vennik, P. W., Koëter, G. H., Maarsingh, E. J., &Wijkstra, P. J. (2004). Reproducibility and responsiveness of a noninvasive EMG technique of the respiratory muscles in COPD patients and in healthy subjects. Journal of applied physiology (Bethesda, Md.1985), 96(5),1723–1729. https://doi.org/10.1152/japplphysiol.00914.2003
- Beck, J., Sinderby, C., Weinberg, J., &Grassino, A. (1995). Effects of muscle-to-electrode distance on the human diaphragm electromyogram. Journal of applied physiology (Bethesda,Md.:1985), 79(3),975–985. https://doi.org/10.1152/jappl.1995.79.3.975
- Wohlgemuth, M., van der Kooi, E. L., Hendriks, J. C., Padberg, G. W., &Folgering, H. T. (2003). Face mask spirometry and respiratory pressures in normal subjects. The European respiratory journal, 22(6), 1001–1006. https://doi.org/10.1183/09031936.03.00028103
- Cluzel, P., Similowski, T., Chartrand-Lefebvre, C., Zelter, M., Derenne, J. P., &Grenier, P. A. (2000). Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging-preliminary observations. Radiology, 215(2), 574–583. https://doi.org/10.1148/radiology.215.2.r00ma28574
- Chrzanowski, S.M., Darras, B.T. and Rutkove, S.B. (2019) ‘The value of imaging and composition-based biomarkers in Duchenne muscular dystrophy clinical trials’, Neurotherapeutics, 17(1), pp. 142–152. doi:10.1007/s13311-019-00825-1.
- Laviola, M., Priori, R., D'Angelo, M. G., &Aliverti, A. (2018). Assessment of diaphragmatic thickness by ultrasonography in Duchenne muscular dystrophy (DMD) patients. PloS one, 13(7), e0200582. https://doi.org/10.1371/journal.pone.0200582
- Testa, A., Soldati, G., Giannuzzi, R., Berardi, S., Portale, G.,&GentiloniSilveri, N. (2011). Ultrasound M-mode assessment of diaphragmatic kinetics by anterior transverse scanning in healthy subjects. Ultrasound in medicine & biology, 37(1),44–52. https://doi.org/10.1016/j.ultrasmedbio.2010.10.004
- Nève, V., Cuisset, J.-M., Edmé, J.-L., Carpentier, A., Howsam, M., Leclerc, O., &Matran, R. (2012). Sniff nasal inspiratory pressure in the longitudinal assessment of young Duchenne Muscular dystrophy children. European Respiratory Journal, 42(3), 671–680. https://doi.org/10.1183/09031936.00127712
- Fauroux, B., Aubertin, G., Cohen, E., Clément, A., &Lofaso, F. (2009). Sniff nasal inspiratory pressure in children with muscular, chest wall or lung disease. The European respiratory journal, 33(1),113–117. https://doi.org/10.1183/09031936.00050708
- Toussaint, M., Soudon, P., & Kinnear, W. (2008). Effect of non-invasive ventilation on respiratory muscle loading and endurance in patients with Duchenne muscular dystrophy. Thorax, 63(5),430–434. https://doi.org/10.1136/thx.2007.084574
- Toussaint, M., Chatwin, M., &Soudon, P. (2007). Mechanical ventilation in Duchenne patients with chronic respiratory insufficiency: clinical implications of 20 years published experience. Chronic respiratory disease, 4(3), 167–177. https://doi.org/10.1177/1479972307080697
- Mulreany, L. T., Weiner, D. J., McDonough, J. M., Panitch, H. B., & Allen, J. L. (2003). Noninvasive measurement of the tension-time index in children with neuromuscular disease. Journal of applied physiology (Bethesda,Md.:1985), 95(3),931–937. https://doi.org/10.1152/japplphysiol.01087.200
- Bianchi, C., & Baiardi, P. (2008). Cough peak flows: standard values for children and adolescents. American journal of physical medicine & rehabilitation, 87(6), 461–467. https://doi.org/10.1097/PHM.0b013e318174e4c7
- Forced expiratory volume - statpearls - NCBI bookshelf. (2021). https://www.ncbi.nlm.nih.gov/books/NBK540970
- Miller, M. R., Crapo, R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Enright, P., van der Grinten, C. P., Gustafsson, P., Jensen, R., Johnson, D. C., MacIntyre, N., McKay, R., Navajas, D., Pedersen, O. F., Pellegrino, R., Viegi, G., Wanger, J., & ATS/ERS Task Force (2005). General considerations for lung function testing. The European respiratory journal, 26(1), 153–161. https://doi.org/10.1183/09031936.05.00034505
- Miller, M. R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Crapo, R., Enright, P., van der Grinten, C. P., Gustafsson, P., Jensen, R., Johnson, D. C., MacIntyre, N., McKay, R., Navajas, D., Pedersen, O. F., Pellegrino, R., Viegi, G., Wanger, J., & ATS/ERS Task Force (2005). Standardisation of spirometry. The European respiratory journal, 26(2), 319–338. https://doi.org/10.1183/09031936.05.00034805
- Wanger, J., Clausen, J. L., Coates, A., Pedersen, O. F., Brusasco, V., Burgos, F., Casaburi, R., Crapo, R., Enright, P., van der Grinten, C. P., Gustafsson, P., Hankinson, J., Jensen, R., Johnson, D., Macintyre, N., McKay, R., Miller, M. R., Navajas, D., Pellegrino, R., &Viegi, G. (2005). Standardisation of the measurement of lung volumes. The European respiratory journal, 26(3), 511–522. https://doi.org/10.1183/09031936.05.00035005
- Laghi, F. A., Saad, M., & Shaikh, H. (2021). Ultrasound and non-ultrasound imaging techniques in the assessment of diaphragmatic dysfunction. BMC Pulmonary Medicine, 21(1). https://doi.org/10.1186/s12890-021-01441-6
- Fauroux, B., Aubertin, G., Clément, A., Lofaso, F., &Bonora, M. (2009). Which tests may predict the need for noninvasive ventilation in children with neuromuscular disease?. Respiratory Medicine, 103(4),574–581. https://doi.org/10.1016/j.rmed.2008.10.023
- Nicot, F., Hart, N., Forin, V., Boulé, M., Clément, A., Polkey, M. I., Lofaso, F., &Fauroux, B. (2006). Respiratory muscle testing: a valuable tool for children with neuromuscular disorders. American journal of respiratory and critical care medicine, 174(1), 67–74. https://doi.org/10.1164/rccm.200512-1841OC
- Fauroux, B., Quijano-Roy, S., Desguerre, I., &Khirani, S. (2015). The value of respiratory muscle testing in children with neuromuscular disease. Chest, 147(2), 552–559. https://doi.org/10.1378/chest.14-0819
- Pennati, F., LoMauro, A., D'Angelo, M. G., &Aliverti, A. (2021). Non-Invasive Respiratory Assessment in Duchenne Muscular Dystrophy: From Clinical Research to Outcome Measures. Life (Basel, Switzerland), 11(9),947. https://doi.org/10.3390/life11090947
- Ekblom B. (2017). The muscle biopsy technique. Historical and methodological considerations. Scandinavian journal of medicine & science in sports, 27(5), 458–461. https://doi.org/10.1111/sms.12808
- Beekman, C., Janson, A. A., Baghat, A., van Deutekom, J. C., &Datson, N. A. (2018a). Use of capillary western immunoassay (Wes) for quantification of dystrophin levels in skeletal muscle of healthy controls and individuals with Becker and Duchenne Muscular Dystrophy. PLOS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195850
- Aartsma-Rus, A., Ferlini, A., McNally, E. M., Spitali, P., Sweeney, H. L., & workshop participants (2018). 226th ENMC International Workshop:: Towards validated and qualified biomarkers for therapy development for Duchenne muscular dystrophy 20-22 January 2017, Heemskerk, The Netherlands. Neuromuscular disorders :NMD, 28(1), 77–86. https://doi.org/10.1016/j.nmd.2017.10.002
- Ferlini, A., Sabatelli, P., Fabris, M., Bassi, E., Falzarano, S., Vattemi, G., Perrone, D., Gualandi, F., Maraldi, N. M., Merlini, L., Sparnacci, K., Laus, M., Caputo, A., Bonaldo, P., Braghetta, P., &Rimessi, P. (2010). Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP-AON complexes. Gene therapy, 17(3), 432–438. https://doi.org/10.1038/gt.2009.145
- Heemskerk, H., de Winter, C., van Kuik, P., Heuvelmans, N., Sabatelli, P., Rimessi, P., Braghetta, P., van Ommen, G. J., de Kimpe, S., Ferlini, A., Aartsma-Rus, A., & van Deutekom, J. C. (2010). Preclinical PK and PD studies on 2'-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Molecular therapy : the journal of the American Society of Gene Therapy, 18(6), 1210–1217. https://doi.org/10.1038/mt.2010.72
- Birnkrant, D. J., Bushby, K., Bann, C. M., Apkon, S. D., Blackwell, A., Brumbaugh, D., Case, L. E., Clemens, P. R., Hadjiyannakis, S., Pandya, S., Street, N., Tomezsko, J., Wagner, K. R., Ward, L. M., Weber, D. R., & DMD Care Considerations Working Group (2018). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. The Lancet. Neurology, 17(3), 251–267. https://doi.org/10.1016/S1474-4422(18)30024-3
- Verma, S., Anziska, Y., &Cracco, J. (2010). Review of Duchenne muscular dystrophy (DMD) for the pediatricians in the community. Clinical pediatrics, 49(11), 1011–1017. https://doi.org/10.1177/0009922810378738.
- Beekman, C., Janson, A. A., Baghat, A., van Deutekom, J. C., &Datson, N. A. (2018). Use of capillary western immunoassay (Wes) for quantification of dystrophin levels in skeletal muscle of healthy controls and individuals with Becker and Duchenne Muscular Dystrophy. PLOS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195850
- Beekman, C., Sipkens, J. A., Testerink, J., Giannakopoulos, S., Kreuger, D., van Deutekom, J. C., Campion, G. V., de Kimpe, S. J., &Lourbakos, A. (2014). A sensitive, reproducible and objective immunofluorescence analysis method of dystrophin in individual fibers in samples from patients with Duchenne muscular dystrophy. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0107494
- Hulsker, M., Verhaart, I., van Vliet, L., Aartsma-Rus, A., & van Putten, M. (2016). Accurate Dystrophin Quantification in Mouse Tissue; Identification of New and Evaluation of Existing Methods. Journal of neuromuscular diseases, 3(1), 77–90. https://doi.org/10.3233/JND-150126
- Maruyama, N., Asai, T., Abe, C., Inada, A., Kawauchi, T., Miyashita, K., Maeda, M., Matsuo, M., &Nabeshima, Y. I. (2016). Establishment of a highly sensitive sandwich ELISA for the N-terminal fragment of titin in urine. Scientific reports, 6, 39375. https://doi.org/10.1038/srep39375
- Wikimedia Foundation. (2023, June 5). Mass spectrometry.Wikipedia. https://en.wikipedia.org/wiki/Mass_spectrometry
- Dabaj, I., Ferey, J., Marguet, F., Gilard, V., Basset, C., Bahri, Y., Brehin, A.-C., Vanhulle, C., Leturcq, F., Marret, S., Laquerrière, A., Schmitz-Afonso, I., Afonso, C., Bekri, S., &Tebani, A. (2021). Muscle metabolic remodelling patterns in Duchenne muscular dystrophy revealed by ultra-high-resolution mass spectrometry imaging. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81090-1
- Ricotti, V., Evans, M. R., Sinclair, C. D., Butler, J. W., Ridout, D. A., Hogrel, J.-Y., Emira, A., Morrow, J. M., Reilly, M. M., Hanna, M. G., Janiczek, R. L., Matthews, P. M., Yousry, T. A., Muntoni, F., & Thornton, J. S. (2016). Upper limb evaluation in Duchenne muscular dystrophy: Fat-water quantification by MRI, muscle force and function define endpoints for clinical trials. PLOS ONE, 11(9). https://doi.org/10.1371/journal.pone.0162542
- Finanger, E. L., Russman, B., Forbes, S. C., Rooney, W. D., Walter, G. A., &Vandenborne, K. (2012). Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Physical medicine and rehabilitation clinics of North America, 23(1), 1–ix. https://doi.org/10.1016/j.pmr.2011.11.004.
- Alic, L., Griffin, J. F., 4th, Eresen, A., Kornegay, J. N., & Ji, J. X. (2021). Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: A systematic mapping review. Muscle & nerve, 64(1), 8–22. https://doi.org/10.1002/mus.27133
- Sherlock, S. P., Zhang, Y., Binks, M., &Marraffino, S. (2021). Quantitative muscle MRI biomarkers in Duchenne muscular dystrophy: cross-sectional correlations with age and functional tests. Biomarkers in medicine, 15(10), 761–773. https://doi.org/10.2217/bmm-2020-0801
- Marden, F. A., Connolly, A. M., Siegel, M. J., & Rubin, D. A. (2005). Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging. Skeletal radiology, 34(3), 140–148. https://doi.org/10.1007/s00256-004-0825-3
- Prompers, J. J., Jeneson, J. A., Drost, M. R., Oomens, C. C., Strijkers, G. J., & Nicolay, K. (2006). Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR in biomedicine, 19(7),927–953. https://doi.org/10.1002/nbm.1095
- Harris-Love, M. O., Monfaredi, R., Ismail, C., Blackman, M. R., & Cleary, K. (2014). Quantitative ultrasound: measurement considerations for the assessment of muscular dystrophy and sarcopenia. Frontiers in aging neuroscience, 6, 172. https://doi.org/10.3389/fnagi.2014.00172
- Lobo-Prat, J., Janssen, M. M. H. P., Koopman, B. F. J. M., Stienen, A. H. A., & de Groot, I. J. M. (2017). Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study. Journal of neuroengineering and rehabilitation, 14(1), 86. https://doi.org/10.1186/s12984-017-0292-4
- Jansen, M., van Alfen, N., Geurts, A. C., & de Groot, I. J. (2013). Assisted bicycle training delays functional deterioration in boys with Duchenne muscular dystrophy: the randomized controlled trial "no use is disuse". Neurorehabilitation and neural repair, 27(9), 816–827. https://doi.org/10.1177/1545968313496326
- Jan Burgers, M.J. (2015a) ‘Upper limb training with dynamic arm support in boys with Duchenne Muscular Dystrophy: A feasibility study’, International Journal of Physical Medicine and Rehabilitation, 03(02). doi:10.4172/2329-9096.1000256
- Leitner, M. L., Kapur, K., Darras, B. T., Yang, M., Wong, B., DallePazze, L., Florence, J., Buck, M., Freedman, L., Bohorquez, J., Rutkove, S., &Zaidman, C. (2020). Electrical impedance myography for reducing sample size in Duchenne muscular dystrophy trials. Annals of clinical and translationalneurology, 7(1),4–14. https://doi.org/10.1002/acn3.50958
- Sanchez, B., & Rutkove, S. B. (2017). Present Uses, Future Applications, and Technical Underpinnings of Electrical Impedance Myography. Current neurology and neuroscience reports, 17(11),86. https://doi.org/10.1007/s11910-017-0793-3
- Nagy, J. A., DiDonato, C. J., Rutkove, S. B., & Sanchez, B. (2019). Permittivity of ex vivo healthy and diseased murine skeletal muscle from 10 kHz to 1 MHz. Scientific data, 6(1), 37. https://doi.org/10.1038/s41597-019-0045-2
- Rutkove, S. B., Kapur, K., Zaidman, C. M., Wu, J. S., Pasternak, A., Madabusi, L., Yim, S., Pacheck, A., Szelag, H., Harrington, T., & Darras, B. T. (2017). Electrical impedance myography for assessment of Duchenne muscular dystrophy. Annals of neurology, 81(5), 622–632. https://doi.org/10.1002/ana.24874
- Pizzato, T. M., Baptista, C. R., Souza, M. A., Benedicto, M. M., Martinez, E. Z., &Mattiello-Sverzut, A. C. (2014). Longitudinal assessment of grip strength using bulb dynamometer in Duchenne Muscular Dystrophy. Brazilian journal of physical therapy, 18(3), 245–251. https://doi.org/10.1590/bjpt-rbf.2014.0031
- Gotthelf, M., Townsend, D. and Durfee, W. (2021) ‘A video game-based hand grip system for measuring muscle force in children’, Journal of NeuroEngineering and Rehabilitation, 18(1). doi:10.1186/s12984-021-00908-1.
- Kato, T., Miyamoto, K., & Shimizu, K. (2004). Postural reaction during maximum grasping maneuvers using a hand dynamometer in healthy subjects. Gait & posture, 20(2), 189–195. https://doi.org/10.1016/j.gaitpost.2003.09.003
- McGorry, R. W., Dempsey, P. G., & Casey, J. S. (2004). The effect of force distribution and magnitude at the hand-tool interface on the accuracy of grip force estimates. Journal of occupational rehabilitation, 14(4), 255–266. https://doi.org/10.1023/b:joor.0000047428.92313.a7
- Amaral, J. F., Mancini, M., & Novo Júnior, J. M. (2012). Comparison of three hand dynamometers in relation to the accuracy and precision of the measurements. Revistabrasileira de fisioterapia (Sao Carlos (Sao Paulo, Brazil)), 16(3), 216–224. https://doi.org/10.1590/s1413-35552012000300007
- Mafi, P., Mafi, R., Hindocha, S., Griffin, M., & Khan, W. (2012). A systematic review of dynamometry and its role in hand trauma assessment. The open orthopaedics journal, 6, 95–102. https://doi.org/10.2174/1874325001206010095
- Lerario, A., Bonfiglio, S., Sormani, M., Tettamanti, A., Marktel, S., Napolitano, S., Previtali, S., Scarlato, M., Natali-Sora, M., Mercuri, E., Bresolin, N., Mongini, T., Comi, G., Gatti, R., Ciceri, F., Cossu, G., & Torrente, Y. (2012). Quantitative muscle strength assessment in duchenne muscular dystrophy: longitudinal study and correlation with functional measures. BMC neurology, 12, 91. https://doi.org/10.1186/1471-2377-12-91
- Gaeta, M., Messina, S., Mileto, A., Vita, G. L., Ascenti, G., Vinci, S., Bottari, A., Vita, G., Settineri, N., Bruschetta, D., Racchiusa, S., &Minutoli, F. (2012). Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience. Skeletal radiology, 41(8), 955–961. https://doi.org/10.1007/s00256-011-1301-5
- Akima, H., Lott, D., Senesac, C., Deol, J., Germain, S., Arpan, I., Bendixen, R., Lee Sweeney, H., Walter, G., &Vandenborne, K. (2012). Relationships of thigh muscle contractile and non-contractile tissue with function, strength, and age in boys with Duchenne muscular dystrophy. Neuromuscular disorders : NMD, 22(1), 16–25. https://doi.org/10.1016/j.nmd.2011.06.750
- Ropars, J., Gravot, F., Ben Salem, D., Rousseau, F., Brochard, S., & Pons, C. (2019). Muscle MRI. Neurology, 94(3),117–133. https://doi.org/10.1212/wnl.0000000000008811
- Godi, C., Ambrosi, A., Nicastro, F., Previtali, S. C., Santarosa, C., Napolitano, S., Iadanza, A., Scarlato, M., Natali Sora, M. G., Tettamanti, A., Gerevini, S., Cicalese, M. P., Sitzia, C., Venturini, M., Falini, A., Gatti, R., Ciceri, F., Cossu, G., Torrente, Y., &Politi, L. S. (2016). Longitudinal MRI quantification of muscle degeneration in Duchenne muscular dystrophy. Annals of clinical and translational neurology, 3(8), 607–622. https://doi.org/10.1002/acn3.319
- Garrood, P., Hollingsworth, K. G., Eagle, M., Aribisala, B. S., Birchall, D., Bushby, K., & Straub, V. (2009). MR imaging in Duchenne muscular dystrophy: quantification of T1-weighted signal, contrast uptake, and the effects of exercise. Journal of magnetic resonance imaging : JMRI, 30(5), 1130–1138. https://doi.org/10.1002/jmri.21941
- Bonati, U., Hafner, P., Schädelin, S., Schmid, M., NaduvilekootDevasia, A., Schroeder, J., Zuesli, S., Pohlman, U., Neuhaus, C., Klein, A., Sinnreich, M., Haas, T., Gloor, M., Bieri, O., Fischmann, A., & Fischer, D. (2015). Quantitative muscle MRI: A powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscular disorders : NMD, 25(9),679–685. https://doi.org/10.1016/j.nmd.2015.05.006
- De Souza, M. A., Martinez, E. Z., da Silva Lizzi, E. A., Cezarani, A., de Queiroz Davoli, G. B., Bená, M. I., da Rosa Sobreira, C. F., &Mattiello-Sverzut, A. C. (2022). Alternative instrument for the evaluation of Handgrip strength in Duchenne Muscular Dystrophy. BMC Pediatrics, 22(1). https://doi.org/10.1186/s12887-022-03388-x
- Clarke, M., Ni Mhuircheartaigh, D., Walsh, G., Walsh, J., & Meldrum, D. (2011). Intra-tester and inter-tester reliability of the microfet 3 hand-held dynamometer. Physiotherapy Practice and Research, 32(1), 13–18. https://doi.org/10.3233/ppr-2011-32103
- Beenakker, E. A., van der Hoeven, J. H., Fock, J. M., &Maurits, N. M. (2001). Reference values of maximum isometric muscle force obtained in 270 children aged 4-16 years by hand-held dynamometry. Neuromuscular disorders : NMD, 11(5),441–446.https://doi.org/10.1016/s0960-8966(01) 00193-6
Mutations in the encoding Dystrophin gene
lead to lethal, genetic muscular dystrophies such as
Duchenne Muscular Dystrophy (DMD), and Becker
Muscular Dystrophy (BMD) which have a slower
progression than DMD and an intermediate form.
Dystrophin gene mutations abolish the production of
Dystrophin in body muscles such as skeletal, cardiac,
and smooth muscles. The progressive degeneration of
muscle tissues and functions will occur. Most often
respiratory, orthopaedic, and cardiac-related
complications have led to death. These neuromuscular
disorders occur at a frequency of about 1 in 5000
newborn males. The objective of this review was to
identify and understand the available measures used for
assessing muscular dystrophies in DMD and BMD.
Review of studies identified from searching medical
bibliographic sources relevant to assessing methods and
techniques of DMD and BMD between the years of 2002
and 2022. The studies showed measures used to assess
the muscles in DMD patients apart from clinical
assessments to quantify the pathological changes
involved in the muscles as objective parameters. The
measures can be categorized into invasive and non-
invasive methods. This study has resulted in manual
muscle testing methods and methods of assessing the
functional ability of the muscles such as muscle biopsies,
Ultrasound scans (USS), and Magnetic Resonance
Images (MRI) etc. It concludes that the most widely
used effective and reliable investigation method has
been identified as MRI scans due to various purposes
and methods of assessing muscular dystrophies.
Keywords :
Becker Muscular Dystrophy, Duchene Muscular Dystrophy, Dystrophin, Genetic, Measures, Mutations, Tests.