Authors :
Avantika Bharti; Ramesh Mishra; Parimal Tiwari; Shambhavi Mudra Shukla; Vipin Sharma; Lalit Kumar Dwivedi; Sandeep Kumar Nigam
Volume/Issue :
Volume 10 - 2025, Issue 7 - July
Google Scholar :
https://tinyurl.com/yp234hf9
DOI :
https://doi.org/10.38124/ijisrt/25jul098
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
This study delivers a comprehensive computational analysis of a Surface Plasmon Resonance (SPR) sensor
engineered in the Kretschmann configuration. The design integrates a calcium fluoride (CaF2) prism, a thin copper (Cu)
film, a silicon carbide (SiC) layer, and an active sensing interface. Optical characterization was carried out via the Transfer
Matrix Method (TMM) combined with angular interrogation at a 633 nm excitation wavelength. The optimized sensor
exhibits an angular sensitivity of 194 deg./RIU, a detection accuracy of 1.38 deg−1, a quality factor of 269.44 RIU−1 and a limit
of detection of 5.1 × 10−6 RIU over a refractive index window of 1.330–1.350. To assess analytical performance and selectivity,
metrics such as detection accuracy, quality factor, figure of merit (FOM) and dip-based FOM (DOFOM) were evaluated.
The results underscore the device’s significant potential for next-generation biomedical diagnostics and contribute valuable
insights to materials science and plasmonic sensor technology.
Keywords :
Silicon Carbide, Kretschmann Configuration, Angle Interrogation, Black Phosphorus.
References :
- Homola J. , ‘Surface plasmon resonance sensors for detection of chemical and biological species’, Feb. 2008. https://doi.org/: 10.1021/cr068107d.
- Homola J. and Piliarik M., ‘Surface Plasmon Resonance (SPR) Sensors’, 2006, pp. 45–67. https://doi.org/10.1007/5346_014.
- Otto A., ‘Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection’, Zeitschrift für Physik A Hadrons and nuclei, vol. 216, no. 4, pp. 398–410, Aug. 1968, https://doi.org/10.1007/BF01391532
- Kretschmann E., ‘Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen’, Zeitschrift für Physik A Hadrons and nuclei, vol. 241, no. 4, pp. 313–324, Aug. 1971, https://doi.org/10.1007/BF01395428.
- Pandey S., Singh S., S. Agarwal, A. K. Sharma, P. Lohia, and D. K. Dwivedi, ‘Simulation study to improve the sensitivity of surface plasmon resonance sensor by using ferric oxide, nickel and antimonene nanomaterials’, Optik (Stuttg), vol. 267, p. 169757, Oct. 2022, https://doi.org/10.1016/j.ijleo.2022.169757.
- Uniyal A., Pal A., G. Ansari, and B. Chauhan, ‘Numerical Simulation of InP and MXene-Based SPR Sensor for Different Cancerous Cells Detection’, Cell Biochem Biophys, Feb. 2025, https://doi.org/ 10.1007/s12013-025-01675-9.
- Sharma V, Dwivedi Lalit K., and Susheel K. Singh, ‘Graphene - Coated Surface Plasmon Resonance(SPR) Sensor for Detection of Preservatives in Milk : A Theoretical Investigation’, Int J Sci Res Sci Technol, pp. 256–266, Sep. 2023, https://doi.org/ 10.32628/ijsrst52310540.
- Karki B., Uniyal A., T. Sharma, A. Pal, and V. Srivastava, ‘Indium phosphide and black phosphorus employed surface plasmon resonance sensor for formalin detection: numerical analysis’, Optical Engineering, vol. 61, no. 01, Jan. 2022, https://doi.org/ 10.1117/1.oe.61.1.017101.
- Sharma V., L. K. Dwivedi, S. Singh, and G. R. Mishra, ‘Numerical study of surface plasmon resonance sensor for early-stage pregnancy detection by urine samples’, Journal of Optics, Jan. 2025, https://doi.org/ 10.1007/s12596-025-02447-7.
- Almawgani A. H. M., S. A. Taya, M. G. Daher, I. Colak, F. Wu, and S. K. Patel, ‘Detection of glucose concentration using a surface plasmon resonance biosensor based on barium titanate layers and molybdenum disulphide sheets’, Phys Scr, vol. 97, no. 6, p. 065501, Jun. 2022, https://doi.org/ 10.1088/1402-4896/ac68ad.
- Yesudasu V., Pradhan H. S., and R. J. Pandya, ‘Recent progress in surface plasmon resonance-based sensors: A comprehensive review’, Mar. 01, 2021, Elsevier Ltd. https://doi.org/ 10.1016/j.heliyon.2021e06321.
- Vasimalla Y., Pradhan H. S., and R. J. Pandya, ‘Sensitivity enhancement of the SPR biosensor for Pseudomonas bacterial detection employing a silicon-barium titanate structure’, Appl Opt, vol. 60, no. 19, p. 5588, Jul. 2021, https://doi.org/ 10.1364/AO.427499.
- Pandey, Sushant, Sachin Singh, Surbhi Agarwal, Anuj K. Sharma, Pooja Lohia, and D. K. Dwivedi. "Simulation study to improve the sensitivity of surface plasmon resonance sensor by using ferric oxide, nickel and antimonene nanomaterials." Optik 267 (2022): 169757. https://doi.org/10.1016/j.ijleo.2022.169757
- Singh, Sachin, Pravin Kumar Singh, Ahmad Umar, Pooja Lohia, Hasan Albargi, L. Castañeda, and D. K. Dwivedi. "2D nanomaterial-based surface plasmon resonance sensors for biosensing applications." Micromachines 11, no. 8 (2020): 779. https://doi.org/10.3390/mi11080779
- Srivastava, Swati, Sachin Singh, Adarsh Chandra Mishra, Pooja Lohia, and D. K. Dwivedi. "Numerical study of titanium dioxide and MXene nanomaterial-based surface plasmon resonance biosensor for virus sars-cov-2 detection." Plasmonics (2023): 1-12. https://doi.org/10.1007/s11468-023-01874-1
- Bijalwan, A., Singh, B.K. & Rastogi, V. Surface Plasmon Resonance-Based Sensors Using Nano-Ribbons of Graphene and WSe2. Plasmonics 15, 1015–1023 (2020). https://doi.org/10.1007/s11468-020-01122-w
- Karki, B., Uniyal, A., Sharma, T., Pal, A., & Srivastava, V. “Indium phosphide and black phosphorus employed surface plasmon resonance sensor for formalin detection: numerical analysis”. Optical Engineering, 61(01) (2022). https://doi.org/10.1117/1.oe.61.1.017101
- Singh, Sachin, Anuj K. Sharma, Pooja Lohia, and D. K. Dwivedi. "Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements." Micro and Nanostructures 163 (2022): 107126. https://doi.org/10.1016/j.spmi.2021.107126
- Sharma V., Dwivedi L. K., S. Singh, and G. Mishra, ‘Glucose level monitoring in human blood samples by surface plasmon resonance sensor using cerium oxide and black phosphorus nanomaterials’, Journal of Optics (India), vol. 53, no. 4, 2024, https://doi.org/ 10.1007/s12596-023-01597-w.
- Shakya, A. K., Ramola, A., Singh, S. & Vidyarthi, A. (2024). Optimized design of plasmonic biosensor for cancer detection: Core configuration and noble material coating innovation. Plasmonics, pp. 1–22, https://doi.org/10.1007/s11468-024-02400-7.
- Wu, L., Guo, J., Wang, Q., Lu, S., Dai, X., Xiang, Y., & Fan, D., “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor”. Sensors and Actuators, B: Chemical, 249, 542–548(2017).. https://doi.org/10.1016/j.snb.2017.04.110
- Rafi, S.A., Emon, W., Rafsan, A.A. et al. Optical-Based Surface Plasmon Resonance Sensor for the Detection of Various Kind of Cancerous Cell. Cell Biochem Biophys 83, 689–715 (2025). https://doi.org/10.1007/s12013-024-01503-6
- Pandaram, M., Santhanakumar, S., Veeran, R., Balasundaram, R. K., Jha, R., & Jaroszewicz, Z. “Platinum Layers Sandwiched Between Black Phosphorus and Graphene for Enhanced SPR Sensor Performance”. Plasmonics, 17(1), 213–222(2022). https://doi.org/10.1007/s11468-021-01507-5
- Jia, Y., Li, Z., Wang, H., Saeed, M., & Cai, H., “Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide”. Sensors (Switzerland), 20(1) (2020). https://doi.org/10.3390/s20010131
- Sharma, V., Dwivedi, L.K., Singh, S. et al. Analytical Study on Effect of Perovskite Halides-Based Surface Plasmon Resonance Sensor for Detection of Sugar Content in Soft Drinks. Sens Imaging 26, 65 (2025). https://doi.org/10.1007/s11220-025-00593-7
- Karki, B., Uniyal, A., Sharma, T., Pal, A., & Srivastava, V., “Indium phosphide and black phosphorus employed surface plasmon resonance sensor for formalin detection: numerical analysis”. Optical Engineering, 61(01) (2022). https://doi.org/10.1117/1.oe.61.1.017101
- Singh, Sachin, Anuj K. Sharma, Pooja Lohia, and D. K. Dwivedi. "Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements." Micro and Nanostructures 163 (2022): 107126. https://doi.org/10.1016/j.spmi.2021.107126
- Singh S., Mishra S. K., and B. D. Gupta, ‘Sensitivity enhancement of a surface plasmon resonance-based fibre optic refractive index sensor utilizing an additional layer of oxides’, Sens Actuators A Phys, vol. 193, pp. 136–140, 2013,https://doi.org/ 10.1016/j.sna.2013.01.012.
- Singh S, Piotrowicz JR, Van Uitert LG, Wemple SH (1971) Nonlinear optical properties of hexagonal silicon carbide. Appl Phys Lett 19:53–56. https:// doi.org/ 10.1063/1.16538 19.
- Sassi IA, El Hadj B, Rhouma M, Daher MG (2023) Highly sensitive refractive index gas sensor using two-dimensional silicon carbide grating based on surface plasmon resonance. Opt Quantum Electron 55:402. https:// doi. org/ 10.1007/s11082-023-04682-3.
- Malitson, L.H.; A redetermination of some optical properties of Calcium Fluoride. Appl. Opt.. 1963 2, 1103-1107
- Kumar R, Pal S, Prajapati YK et al (2022) Sensitivity improvement of an MXene-immobilized SPR sensor with Ga-doped-ZnO for biomolecules detection. IEEE Sens J 22:6536 6543. https://1.doi. org/ 10.1109/JSEN. 2022.3154099.
- Almawgani A. H. M., Daher M. G., S. A. Taya, M. M. Olaimat, A. R. H. Alhawari, and I. Colak, ‘Detection of Blood Plasma Concentration Theoretically Using SPR-Based Biosensor Employing Black Phosphor Layers and Different Metals’, Plasmonics, vol. 17, no. 4, pp. 1751–1764, Aug. 2022, https://doi.org/ 10.1007/s11468-022-01662-3.
- Kumar A., A. K. Yadav, A. S. Kushwaha, and S. K. Srivastava, ‘A comparative study among WS2, MoS2 and graphene-based surface plasmon resonance (SPR) sensor’, Sensors and Actuators Reports, vol. 2, no. 1, p. 100015, Nov. 2020, https://doi.org/ 10.1016/j.snr.2020.100015.
- Xu Y., Ang Y. S., L. Wu, and L. K. Ang, ‘High Sensitivity Surface Plasmon Resonance Sensor Based on Two-Dimensional MXene and Transition Metal Dichalcogenide: A Theoretical Study’, Nanomaterials, vol. 9, no. 2, p. 165, Jan. 2019, https://doi.org/ 10.3390/nano9020165.
This study delivers a comprehensive computational analysis of a Surface Plasmon Resonance (SPR) sensor
engineered in the Kretschmann configuration. The design integrates a calcium fluoride (CaF2) prism, a thin copper (Cu)
film, a silicon carbide (SiC) layer, and an active sensing interface. Optical characterization was carried out via the Transfer
Matrix Method (TMM) combined with angular interrogation at a 633 nm excitation wavelength. The optimized sensor
exhibits an angular sensitivity of 194 deg./RIU, a detection accuracy of 1.38 deg−1, a quality factor of 269.44 RIU−1 and a limit
of detection of 5.1 × 10−6 RIU over a refractive index window of 1.330–1.350. To assess analytical performance and selectivity,
metrics such as detection accuracy, quality factor, figure of merit (FOM) and dip-based FOM (DOFOM) were evaluated.
The results underscore the device’s significant potential for next-generation biomedical diagnostics and contribute valuable
insights to materials science and plasmonic sensor technology.
Keywords :
Silicon Carbide, Kretschmann Configuration, Angle Interrogation, Black Phosphorus.