Enhancing Regression Diagnostics: Automated Residual Analysis Using Computer Vision and Statistical Insights


Authors : Niraj Patel

Volume/Issue : Volume 10 - 2025, Issue 2 - February


Google Scholar : https://tinyurl.com/fsftxcvr

Scribd : https://tinyurl.com/2szuhyjk

DOI : https://doi.org/10.5281/zenodo.14964344


Abstract : Residual analysis plays a pivotal role in validating regression models by identifying potential issues such as heteroscedasticity, non-linearity, and model misspecification. This study introduces a novel automated framework for residual diagnostics, integrating computer vision techniques with statistical inference. The proposed system evaluates residual plots, detects irregularities, and performs hypothesis testing to ensure model robustness. By combining image recog- nition algorithms with a user-friendly Shiny application, the approach eliminates subjective biases inherent in manual plot evaluation. The resulting tool enhances the scalability and reliability of regression diagnostics, offering data scientists a powerful resource forbuilding accurate andinterpretable models.

References :

  1.  A. Zeileis and T. Hothorn, “Diagnostic checking in regression relationships,” R News, vol. 2, no. 3, pp. 7–10, 2002.
  2. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna,
  3. Austria, 2022. [Online]. Available:   https://www.R-project.org/
  4. J. A. Long, jtools: Analysis and Presentation of Social Scientific Data, 2022, r package version 2.2.0. [Online]. Available: https://cran.r-project.org/package=jtools
  5. A. Hebbali, olsrr: Tools for Building OLS Regression Models, 2024, r package version 0.6.0. [Online]. Available: https://CRAN.R-project.org/package=olsrr
  6. P. E. Johnson, rockchalk: Regression Estimation and Presentation, 2022, r   package   version   1.8.157. [Online]. Available:    https://CRAN.R-project.org/package=rockchalk
  7. K. Goode and K. Rey, ggResidpanel: Panels and Interactive Versions of Diagnostic Plots using ’ggplot2’, 2019, r package version 0.3.0. [Online]. Available: https://CRAN.R-project.org/package=ggResidpanel
  8. R. D. Cook and S. Weisberg, Residuals and influence in regres- sion.    New York: Chapman and Hall, 1982.
  9. D. I. Warton, “Global simulation envelopes for diagnostic plots in regression models,” The American Statistician, vol. 77, no. 4, pp. 425–431, 2023.
  10. F. Hartig, DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models, 2022, r package version 0.4.6. [Online]. Available: https://CRAN.R-project.org/package=DHARMa
  11. W. Li, D. Cook, E. Tanaka, and S. VanderPlas, “A plot is worth a thousand tests: Assessing residual diagnostics with the lineup protocol,” Journal of Computational and Graphical Statistics, vol. 33, pp. 1497–1511, 2024.
  12. A. Buja, D. Cook, H. Hofmann, M. Lawrence, E.-K. Lee, D. F. Swayne, and H. Wickham, “Statistical inference for exploratory data analysis and model diagnostics,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 367, no. 1906, pp. 4361–4383, 2009.
  13. H. Wickham, N. R. Chowdhury, D. Cook, and H. Hofmann, nullabor: Tools for Graphical Inference, 2020, r package version 0.3.9. [Online]. Available:  https://CRAN.R-project.org/package=nullabor
  14. A. Loy and H. Hofmann, “Hlmdiag: A suite of diagnostics for hierarchical linear models in r,” Journal of Statistical Software, vol. 56, pp. 1–28, 2014.
  15. A. Reinhart, regressinator: Simulate and Diagnose (Generalized) Linear Models, 2024, r package version 0.2.0. [Online]. Available: https://CRAN.R-project.org/package=regressinator
  16. W. Li, D. Cook, E. Tanaka, S. VanderPlas, and K. Ackermann, “Automated assessment of residual plots with computer vision models,” arXiv preprint arXiv:2411.01001, 2024.
  17.  T. S. Breusch and A. R. Pagan, “A simple test for heteroscedas- ticity and random coefficient variation,” Econometrica: Journal of the Econometric Society, pp. 1287–1294, 1979.
  18. J. B. Ramsey, “Tests for specification errors in classical linear least-squares regression analysis,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 31, no. 2, pp. 350–371, 1969.
  19.  J. J. Balamuta, surreal: Create Datasets with Hidden Images in Residual Plots, 2024, r package version 0.0.1. [Online]. Available: https://CRAN.R-project.org/package=surreal
  20. S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.
  21. W. Li, “bandicoot: Light-weight python-like object-oriented system,” 2024. [Online]. Available: https://CRAN.R-project.org/package=bandicoot A. Clark et al., “Pillow (pil fork) documentation,” readthedocs, 2015.
  22. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al., “Tensor- flow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.
  23.  H. Wickham, ggplot2: Elegant graphics for data analysis. Springer-Verlag   New York, 2016.  [Online].  Available:   https://ggplot2.tidyverse.org
  24.  H. Mason, S. Lee, U. Laa, and D. Cook, cassowaryr: Compute Scagnostics on Pairs of Numeric Variables in a Data Set, 2022, r package version 2.0.0. [Online]. Available: https://CRAN.R-project.org/package=cassowary
  25. K. Ushey, J. Allaire, and Y. Tang, reticulate: Interface to ’Python’, 2024, r package version 1.35.0. [Online]. Available: https://CRAN.R-project.org/package=reticulate
  26. W. Chang, J. Cheng, J. Allaire, C. Sievert, B. Schloerke, Y. Xie, J. Allen, J. McPherson, A. Dipert, and B. Borges, shiny: Web Application Framework for R, 2022, r package version 1.7.3. [Online]. Available: https://CRAN.R-project.org/package=shi ny
  27. W. Chang and B. Borges Ribeiro, shinydashboard: Create Dashboards with ’Shiny’, 2021, r package version 0.7.2. [Online]. Available: https://CRAN.R-project.org/package=shinydashbo ard
  28. J. Cheng, C. Sievert, B. Schloerke, W. Chang, Y. Xie, and J. Allen, htmltools: Tools for HTML, 2024, r package version 0.5.8. [Online]. Available:  https://CRAN.R-project.org/package=htmltools
  29. A. Sali and D. Attali, shinycssloaders: Add Loading Animations to a ’shiny’ Output While It’s Recalculating, 2020, r package version 1.0.0. [Online]. Available: https://CRAN.R-project.org/package=shinycssloaders
  30. K.-W. Moon, webr: Data and Functions for Web-Based Analysis, 2020, r package version 0.1.5. [Online]. Available: https://CRAN.R-project.org/package=webr
  31. B. Rowlingson and P. Diggle, splancs: Spatial and Space-Time Point Pattern Analysis, 2023, r package version 2.01-44. [Online]. Available:    https://CRAN.R-project.org/package=splancs
  32. A. Zakai, “Emscripten: an llvm-to-javascript compiler,” in Proceedings of the ACM international conference companion on Object oriented programming systems languages and applications companion, 2011, pp. 301–312.
  33. L. Gautier, Python interface to the R language (embedded R), 2024, version 3.5.16. [Online]. Available: https://pypi.org/proje ct/rpy2/
  34. D. Attali, shinyjs: Easily Improve the User Experience of Your Shiny Apps in Seconds, 2021, r package version 2.1.0.  [Online]. Available:    https://CRAN.R-project.org/package=shinyjs
  35. R. Davies, S. Locke, and L. D’Agostino McGowan, datasauRus: Datasets from the Datasaurus Dozen, 2022, re package version 0.1.6. [Online]. Available:  https://CRAN.R-project.org/package=datasauRus
  36. J. Allaire, C. Teague, C. Scheidegger, Y. Xie, and C. Dervieux, “Quarto,” Feb. 2024. [Online]. Available: https://github.com/q uarto-dev/quarto-cli
  37. J. MacFarlane, A. Krewinkel, and J. Rosenthal, “Pandoc,” 2024. [Online].  Available: https://github.com/jgm/pandoc
  38.  H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan,R. François, G. Grolemund, A. Hayes, L. Henry,  J.    Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller,J. Ooms, D. Robinson, D. P.  Seidel, V. Spinu, K.   Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani, “Welcome to the tidyverse,” Journal of Open Source Software, vol. 4, no. 43, p. 1686, 2019.
  39.  H. Zhu, kableExtra: Construct complex table with kable and pipe syntax, 2021, r package version 1.3.4. [Online]. Available: https://CRAN.R-project.org/package=kableExtra
  40.  T. L. Pedersen, patchwork: The composer of plots, 2022, rpackage version 1.1.2. [Online]. Available: https://CRAN.R-pro ject.org/package=patchwork
  41.  J.  Nowosad, ’CARTOColors’ palettes, 2018, r package version 1.0. [Online]. Available: https://nowosad.github.io/rcartocolor
  42.  J. Hester and J. Bryan, glue: Interpreted String Literals, 2022, r package version  1.6.2.  [Online].  Available:   https://CRAN.R-project.org/package=glue
  43.  K. Müller, here: A simpler way to find your files, 2020, r package version 1.0.1. [Online]. Available: https://CRAN.R-project.org/package=here
  44.  J. Ooms, magick: Advanced Graphics and Image-Processing in R, 2023, r package version 2.7.4. [Online]. Available: https://CRAN.R-project.org/package=magick
  45.  M. Kuhn, D. Vaughan, and E. Hvitfeldt, yardstick: Tidy Characterizations of Model Performance, 2024, r package version 1.3.1. [Online]. Available:  https://CRAN.R-project.org/package=yardstick

Residual analysis plays a pivotal role in validating regression models by identifying potential issues such as heteroscedasticity, non-linearity, and model misspecification. This study introduces a novel automated framework for residual diagnostics, integrating computer vision techniques with statistical inference. The proposed system evaluates residual plots, detects irregularities, and performs hypothesis testing to ensure model robustness. By combining image recog- nition algorithms with a user-friendly Shiny application, the approach eliminates subjective biases inherent in manual plot evaluation. The resulting tool enhances the scalability and reliability of regression diagnostics, offering data scientists a powerful resource forbuilding accurate andinterpretable models.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe