Enhancing Reservoir Characterization using Seismic Inversion and Geostatistical Modeling by Integrating Seismic Attributes with Well-Log Data for Improved Lithofacies and Reservoir Property Estimation.


Authors : Akinmuda Olusegun Benard; Idoko Peter Idoko; Alfred Tokowa; Chinelo Nwaamaka Onwusi

Volume/Issue : Volume 9 - 2024, Issue 12 - December

Google Scholar : https://tinyurl.com/2685jam3

Scribd : https://tinyurl.com/2fuvnr8m

DOI : https://doi.org/10.5281/zenodo.14356352

Abstract : Accurate reservoir characterization is critical for optimizing hydrocarbon exploration and production. This study explores the integration of seismic inversion and geostatistical modeling, leveraging seismic attributes and well-log data to enhance lithofacies estimation and reservoir property prediction. The research addresses the challenges of combining multiple data sources to improve the spatial resolution and accuracy of reservoir models. The workflow begins with the acquisition and preprocessing of seismic and well-log data, followed by seismic inversion to derive high-resolution subsurface properties. Geostatistical modeling is then employed to integrate seismic attributes with well-log data, providing a robust framework for predicting lithofacies distribution and reservoir properties. The study evaluates the effectiveness of this integrated approach through a detailed analysis of seismic attribute interpretation, lithofacies classification, and reservoir property distribution. Validation of the models against existing methods demonstrates significant improvements in accuracy and resolution, highlighting the potential of this approach for complex reservoir environments. Key findings reveal that the integration of seismic attributes with well-log data not only enhances the reliability of lithofacies models but also provides a more detailed understanding of reservoir heterogeneity. This research contributes to the advancement of reservoir characterization techniques by offering a practical and scalable solution for improved hydrocarbon recovery. The study concludes with recommendations for applying this approach to diverse geological settings and identifies avenues for future research in the integration of advanced geostatistical methods and machine learning techniques.

Keywords : Reservoir Characterization, Seismic Inversion, Geostatistical Modeling, Seismic Attributes, Well-Log Data, Lithofacies, Reservoir Properties.

References :

  1. Aborode, A. T., Abass, O. A., Nasiru, S., Eigbobo, U., Nefishatu, S., Idowu, A., Tiamiyu, Z., Awaji, A. A., Idowu, N., Busayo, B. R., Mehmood, Q., Onifade, I. A., Fakorede, S., & Akintola, A. A. (2024). RNA binding proteins (RBPs) on genetic stability and diseases. Global Medical Genetics, Elsevier, 100032.
  2. Aborode, A. T., Adesola, R. O., Idris, I., Adio, W. S., Scott, G. Y., Chakoma, M., Oluwaseun, A. A., Onifade, I. A., Adeoye, A. F., Aluko, B. A., & Abok, J. I. (2024). Troponin C gene mutations on cardiac muscle cell and skeletal regulation: A comprehensive review. Gene, Elsevier, 148651.
  3. Aborode, A. T., Badri, R., Ottoho, E., Fakorede, S., Etinosa, P., Mangdow, M., Oginni, O., Opia, F. N., Adebiyi, A. A., Williams, T., Adelakun, I., Aluko, B. A., Onifade, I. A., Hemmeda, L., & Dawood, I. (2024). Effects of migration on Sudanese women and children: A public health concern. Medicine, Conflict and Survival, 1–9. Routledge.
  4. Aborode, A. T., Kumar, N., Olowosoke, C., Ibisamni, T. A., Ayoade, I., Umar, H. I., Jamiu, A. T., Bolarinwa, B., Olapade, Z., Idowu, A. R., Adelakun, I. O., Onifade, I., Akangbe, B., Abacheng, M., Ikhimiuokor, O. O., Awaji, A. A. A., & Adesola, R. O. (2024). Predictive identification and design of potent inhibitors targeting resistance-inducing candidate genes from E. coli whole genome sequences. Frontiers in Bioinformatics, 4, 1411935.
  5. Aborode, A. T., Oluwajoba, A. S., Ibrahim, A. M., Ahmad, S., Mehta, A., Osayave, O. J., Oyebode, D., Akinosla, O., Osinuga, A., Onifade, I. A., Adelakun, I. O., Adesola, R. O., Abidola, T. B., Ogunyemi, A. D., Ogundijo, O. A., Banwo, O. G., & Obiechefu, C. H. (2024). Nanomedicine in cancer therapy: Advancing precision treatments. Advances in Biomarker Sciences and Technology. Elsevier.
  6. Aborode, A. T., Onifade, I. A., Olorunshola, M. M., Adenikinju, G. O., Aruoriwooghene, I. J., Femi, A. C., Jude-Kelly, O. O., Osinuga, A., Omojowolo, E. A., Adeoye, A. F., Olapade, S., Adelakun, I. O., Moyinoluwa, O. D., Adeyemo, O. M., Scott, G. Y., Ogbonna, R. A., Fajemisin, E. A., Ehtasham, O., Toluwalashe, S., ... Iorkula, T. H. (2024). Biochemical mechanisms and molecular interactions of vitamins in cancer therapy. Cancer Pathogenesis and Therapy, 2, E01–E49. Chinese Medical Association Publishing House Co., Ltd.
  7. Aborode, A. T., Ottoho, E., Ogbonna, R. A., Onifade, I. A., Kabirat, O. O., Hassan, A. T., & Ahmed, F. A. (2024). Tackling sickle cell disease in Africa. Journal of Medicine, Surgery, and Public Health, 2, 100054. Elsevier.
  8. Aborode, A. T., Ottoho, E., Ogbonna, R. A., Onifade, I. A., Kabirat, O. O., Hassan, A. T., & Ahmed, F. A. (2024). Tackling sickle cell in Africa. Journal of Medicine, Surgery, and Public Health. https://doi.org/10.1016/j.glmedi.2024.100054
  9. Avseth, P., Mukerji, T., & Mavko, G. (2010). Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press.
  10. Awaji, A. A., Maigoro, A. Y., Aborode, A. T., Akintola, A. A., Fatoba, D. O., Idris, E. B., Jafri, S., Shoaib, E., Onifade, I. A., Olapade, Z., Oladayo, M., Ihemegbulem, I. A., Ipede, O., Idowu, A. R., Alabi, F. V., Aruoriwooghene, I. J., Enaworu, O. R., Jamiu, A., Bakre, A. A., ... Adesola, O. (2024). Identification of key molecular pathways and genes in BRCA1 and BRCA2-mutant ovarian cancer: Evidence from bioinformatics analysis. Genome Instability & Disease, 5(4), 164–182. Springer Nature Singapore.
  11. Brown, A. R. (2011). Interpretation of Three-Dimensional Seismic Data. SEG Books. 
  12. Chiles, J. P., & Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty. Wiley. 
  13. Chopra, S., & Marfurt, K. J. (2005). Seismic attributes – A historical perspective. Geophysics, 70(5), 3SO-28SO. https://doi.org/10.1190/1.2098670 
  14. Chopra, S., & Marfurt, K. J. (2007). Seismic attributes for prospect identification and reservoir characterization. SEG Distinguished Instructor Series, 11, 221-249. https://doi.org/10.1190/1.9781560801900 
  15. Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press. 
  16. Dubois, M. K., Bohling, G., & Chakrabarti, S. (2007). Improving reservoir characterization using integrated seismic, well-log, and production data. AAPG Bulletin, 91(11), 1477-1501. https://doi.org/10.1306/07160705132 
  17. Ekundayo, F. O., Orisadipe, D. B., & Onifade, I. A. (2020). Degradative ability of silver particles synthesized by Gram-negative bacteria of some crops rhizosphere on crude oil polluted soil. Asian Plant Research Journal, 4(4), 25–33. Sciencedomain International.
  18. Elabiyi, M., Bayode, M., Ogundana, I., Ogundare, O., Awodire, E., Abbah, P., Onifade, I., Adeyolanu, A., Okunade, S., & Ogboye, S. (2024). A review of metabolic calorimetric applications in plant stress, waste management, and diagnostics. Academia Biology, 2(3), 12.
  19. Fomel, S., & Claerbout, J. F. (2003). Multidimensional seismic data interpolation with plane-wave destructors. Geophysics, 68(2), 578-588. https://doi.org/10.1190/1.1567215 
  20. Forood, A. M. K. (2024). Mechanisms of telomere dysfunction in cancer from genomic instability to therapy. 
  21. Forood, A. M. K., Osifuwa, A. D., Idoko, J. E., Oni, O., Ajaelu, C. S., & Idoko, F. A. (2024). Advancements in health information technology and their role in enhancing cancer care: Innovations in early detection, treatment, and data privacy. GSC Advanced Research and Reviews, 21(1), 228-241. 
  22. Idoko, I. P., Ayodele, T. R., Abolarin, S. M., & Ewim, D. R. E. (2023). Maximizing the cost effectiveness of electric power generation through the integration of distributed generators: Wind, hydro, and solar power. Bulletin of the National Research Centre, 47(1), 166. 
  23. Idoko, I. P., David-Olusa, A., Badu, S. G., Okereke, E. K., Agaba, J. A., & Bashiru, O. (2024). The dual impact of AI and renewable energy in enhancing medicine for better diagnostics, drug discovery, and public health. Magna Scientia Advanced Biology and Pharmacy, 12(2), 099-127. 
  24. Idoko, I. P., Igbede, M. A., Manuel, H. N. N., Ijiga, A. C., Akpa, F. A., & Ukaegbu, C. (2024). Assessing the impact of wheat varieties and processing methods on diabetes risk: A systematic review. World Journal of Biology Pharmacy and Health Sciences, 18(2), 260-277. 
  25. Idoko, I. P., Ijiga, O. M., Agbo, D. O., Abutu, E. P., Ezebuka, C. I., & Umama, E. E. (2024). Comparative analysis of Internet of Things (IoT) implementation: A case study of Ghana and the USA-vision, architectural elements, and future directions. World Journal of Advanced Engineering Technology and Sciences, 11(1), 180-199. 
  26. Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power generation: The vital role of power electronics in California's renewable energy transformation. World Journal of Advanced Engineering Technology and Sciences, 11(1), 274-293. 
  27. Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. Global Journal of Engineering and Technology Advances, 19(01), 006-036. 
  28. Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the potential of Elon Musk's proposed quantum AI: A comprehensive analysis and implications. Global Journal of Engineering and Technology Advances, 18(3), 048-065. 
  29. Ijiga, A. C., Aboi, E. J., Idoko, I. P., Enyejo, L. A., & Odeyemi, M. O. (2024). Collaborative innovations in Artificial Intelligence (AI): Partnering with leading US tech firms to combat human trafficking. Global Journal of Engineering and Technology Advances, 18(3), 106-123. 
  30. Ijiga, A. C., Peace, A. E., Idoko, I. P., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Ukatu, I. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 7(01), 048-063.
  31. Ijiga, A. C., Peace, A. E., Idoko, I. P., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 11(1), 535-551. 
  32. Journel, A. G., & Huijbregts, C. J. (1978). Mining Geostatistics. Academic Press. 
  33. Onifade, I. A., Orisadipe, D. B., Nkor, N. D., Ekundayo, F. O., & Arogunjo, A. O. (2021). Degradation of crude oil by bacteria isolated from various soil plantation at Idanre, Nigeria. AJB2T.
  34. Onifade, I. A., Sunbare-Funto, O. J., Mbah, C. E., Ajibade, O. A., Oyawoye, O. M., Aborode, A. T., Ogunleye, S. C., Jamiu, A., Bolarinwa, B., Abanikanda, M. F., Tiamiyu, Z., Idowu, A. R., Ige, O., Kelechi, O. J., Abok, J. I., Lawal, E. A., Aruoriwooghene, I. J., Adeoye, A. F., Roqeebah, O., Ojewole, E. A., & Adesola, R. O. (2024). Faecal microbial transplant. Advances in Biomarker Sciences and Technology. Elsevier.
  35. Onifade, I., & Dey, B. K. (2024). Gene expression analysis of muscle stem cells before and after transplantation into young niche. Presented at the World Orthopedics Conference.
  36. Onifade, I. Jr., Umar, H., Aborode, A., Awaji, A., Jegede, I., Adeleye, B., & Fatoba, D. (2024). In silico study of selected alkaloids as dual inhibitors of β and γ-secretases for Alzheimer’s disease. bioRxiv. https://doi.org/10.612359
  37. Pendrel, J. (2001). Seismic inversion—the best tool for reservoir characterization. CSEG Recorder, 26(10), 10-19. 
  38. Russell, B. H. (2014). Introduction to seismic inversion methods. The Leading Edge, 33(6), 572-577. https://doi.org/10.1190/tle33060572.1
  39. Scott, G. Y., Aborode, A. T., Adesola, R. O., Elebesunu, E. E., Agyapong, J., Ibrahim, A. M., Andigema, A. S., Kwarteng, S., Onifade, I. A., Adeoye, A. F., Aluko, B. A., Fatai, L. O., Osayave, O. J.-K., Oladayo, M., Osinuga, A., Olapade, Z., Osu, A. I., & Obidi, P. O. (2024). Transforming early microbial detection: Investigating innovative biosensors for emerging infectious diseases. Advances in Biomarker Sciences and Technology. Elsevier.
  40. Simm, R., & Bacon, M. (2014). Seismic Amplitude: An Interpreter's Handbook. Cambridge University Press.
  41. Victoria, A. G., Hassan, J. T., Toyin, Y. M., Oyetunji, O. A., Aborode, A. T., & Onifade, I. (2023). In-vivo therapeutic evaluation of the wound healing: Potential of ethanolic extract of Trichilia heudelotii leaves in Wistar rats. bioRxiv. https://doi.org/10.571768
  42. Zhang, R., Chen, X., & Zhao, W. (2013). Integrating seismic inversion and geostatistics for improved reservoir characterization: A case study from the South China Sea. Geophysics, 78(5), B235-B246. https://doi.org/10.1190/geo2013-0047.1 

Accurate reservoir characterization is critical for optimizing hydrocarbon exploration and production. This study explores the integration of seismic inversion and geostatistical modeling, leveraging seismic attributes and well-log data to enhance lithofacies estimation and reservoir property prediction. The research addresses the challenges of combining multiple data sources to improve the spatial resolution and accuracy of reservoir models. The workflow begins with the acquisition and preprocessing of seismic and well-log data, followed by seismic inversion to derive high-resolution subsurface properties. Geostatistical modeling is then employed to integrate seismic attributes with well-log data, providing a robust framework for predicting lithofacies distribution and reservoir properties. The study evaluates the effectiveness of this integrated approach through a detailed analysis of seismic attribute interpretation, lithofacies classification, and reservoir property distribution. Validation of the models against existing methods demonstrates significant improvements in accuracy and resolution, highlighting the potential of this approach for complex reservoir environments. Key findings reveal that the integration of seismic attributes with well-log data not only enhances the reliability of lithofacies models but also provides a more detailed understanding of reservoir heterogeneity. This research contributes to the advancement of reservoir characterization techniques by offering a practical and scalable solution for improved hydrocarbon recovery. The study concludes with recommendations for applying this approach to diverse geological settings and identifies avenues for future research in the integration of advanced geostatistical methods and machine learning techniques.

Keywords : Reservoir Characterization, Seismic Inversion, Geostatistical Modeling, Seismic Attributes, Well-Log Data, Lithofacies, Reservoir Properties.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe