Authors :
Akinmuda Olusegun Benard; Idoko Peter Idoko; Alfred Tokowa; Chinelo Nwaamaka Onwusi
Volume/Issue :
Volume 9 - 2024, Issue 12 - December
Google Scholar :
https://tinyurl.com/2685jam3
Scribd :
https://tinyurl.com/2fuvnr8m
DOI :
https://doi.org/10.5281/zenodo.14356352
Abstract :
Accurate reservoir characterization is critical
for optimizing hydrocarbon exploration and production.
This study explores the integration of seismic inversion
and geostatistical modeling, leveraging seismic attributes
and well-log data to enhance lithofacies estimation and
reservoir property prediction. The research addresses the
challenges of combining multiple data sources to improve
the spatial resolution and accuracy of reservoir models.
The workflow begins with the acquisition and
preprocessing of seismic and well-log data, followed by
seismic inversion to derive high-resolution subsurface
properties. Geostatistical modeling is then employed to
integrate seismic attributes with well-log data, providing
a robust framework for predicting lithofacies distribution
and reservoir properties.
The study evaluates the effectiveness of this integrated
approach through a detailed analysis of seismic attribute
interpretation, lithofacies classification, and reservoir
property distribution. Validation of the models against
existing methods demonstrates significant improvements
in accuracy and resolution, highlighting the potential of
this approach for complex reservoir environments. Key
findings reveal that the integration of seismic attributes
with well-log data not only enhances the reliability of
lithofacies models but also provides a more detailed
understanding of reservoir heterogeneity.
This research contributes to the advancement of reservoir
characterization techniques by offering a practical and
scalable solution for improved hydrocarbon recovery. The
study concludes with recommendations for applying this
approach to diverse geological settings and identifies
avenues for future research in the integration of advanced
geostatistical methods and machine learning techniques.
Keywords :
Reservoir Characterization, Seismic Inversion, Geostatistical Modeling, Seismic Attributes, Well-Log Data, Lithofacies, Reservoir Properties.
References :
- Aborode, A. T., Abass, O. A., Nasiru, S., Eigbobo, U., Nefishatu, S., Idowu, A., Tiamiyu, Z., Awaji, A. A., Idowu, N., Busayo, B. R., Mehmood, Q., Onifade, I. A., Fakorede, S., & Akintola, A. A. (2024). RNA binding proteins (RBPs) on genetic stability and diseases. Global Medical Genetics, Elsevier, 100032.
- Aborode, A. T., Adesola, R. O., Idris, I., Adio, W. S., Scott, G. Y., Chakoma, M., Oluwaseun, A. A., Onifade, I. A., Adeoye, A. F., Aluko, B. A., & Abok, J. I. (2024). Troponin C gene mutations on cardiac muscle cell and skeletal regulation: A comprehensive review. Gene, Elsevier, 148651.
- Aborode, A. T., Badri, R., Ottoho, E., Fakorede, S., Etinosa, P., Mangdow, M., Oginni, O., Opia, F. N., Adebiyi, A. A., Williams, T., Adelakun, I., Aluko, B. A., Onifade, I. A., Hemmeda, L., & Dawood, I. (2024). Effects of migration on Sudanese women and children: A public health concern. Medicine, Conflict and Survival, 1–9. Routledge.
- Aborode, A. T., Kumar, N., Olowosoke, C., Ibisamni, T. A., Ayoade, I., Umar, H. I., Jamiu, A. T., Bolarinwa, B., Olapade, Z., Idowu, A. R., Adelakun, I. O., Onifade, I., Akangbe, B., Abacheng, M., Ikhimiuokor, O. O., Awaji, A. A. A., & Adesola, R. O. (2024). Predictive identification and design of potent inhibitors targeting resistance-inducing candidate genes from E. coli whole genome sequences. Frontiers in Bioinformatics, 4, 1411935.
- Aborode, A. T., Oluwajoba, A. S., Ibrahim, A. M., Ahmad, S., Mehta, A., Osayave, O. J., Oyebode, D., Akinosla, O., Osinuga, A., Onifade, I. A., Adelakun, I. O., Adesola, R. O., Abidola, T. B., Ogunyemi, A. D., Ogundijo, O. A., Banwo, O. G., & Obiechefu, C. H. (2024). Nanomedicine in cancer therapy: Advancing precision treatments. Advances in Biomarker Sciences and Technology. Elsevier.
- Aborode, A. T., Onifade, I. A., Olorunshola, M. M., Adenikinju, G. O., Aruoriwooghene, I. J., Femi, A. C., Jude-Kelly, O. O., Osinuga, A., Omojowolo, E. A., Adeoye, A. F., Olapade, S., Adelakun, I. O., Moyinoluwa, O. D., Adeyemo, O. M., Scott, G. Y., Ogbonna, R. A., Fajemisin, E. A., Ehtasham, O., Toluwalashe, S., ... Iorkula, T. H. (2024). Biochemical mechanisms and molecular interactions of vitamins in cancer therapy. Cancer Pathogenesis and Therapy, 2, E01–E49. Chinese Medical Association Publishing House Co., Ltd.
- Aborode, A. T., Ottoho, E., Ogbonna, R. A., Onifade, I. A., Kabirat, O. O., Hassan, A. T., & Ahmed, F. A. (2024). Tackling sickle cell disease in Africa. Journal of Medicine, Surgery, and Public Health, 2, 100054. Elsevier.
- Aborode, A. T., Ottoho, E., Ogbonna, R. A., Onifade, I. A., Kabirat, O. O., Hassan, A. T., & Ahmed, F. A. (2024). Tackling sickle cell in Africa. Journal of Medicine, Surgery, and Public Health. https://doi.org/10.1016/j.glmedi.2024.100054
- Avseth, P., Mukerji, T., & Mavko, G. (2010). Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press.
- Awaji, A. A., Maigoro, A. Y., Aborode, A. T., Akintola, A. A., Fatoba, D. O., Idris, E. B., Jafri, S., Shoaib, E., Onifade, I. A., Olapade, Z., Oladayo, M., Ihemegbulem, I. A., Ipede, O., Idowu, A. R., Alabi, F. V., Aruoriwooghene, I. J., Enaworu, O. R., Jamiu, A., Bakre, A. A., ... Adesola, O. (2024). Identification of key molecular pathways and genes in BRCA1 and BRCA2-mutant ovarian cancer: Evidence from bioinformatics analysis. Genome Instability & Disease, 5(4), 164–182. Springer Nature Singapore.
- Brown, A. R. (2011). Interpretation of Three-Dimensional Seismic Data. SEG Books.
- Chiles, J. P., & Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty. Wiley.
- Chopra, S., & Marfurt, K. J. (2005). Seismic attributes – A historical perspective. Geophysics, 70(5), 3SO-28SO. https://doi.org/10.1190/1.2098670
- Chopra, S., & Marfurt, K. J. (2007). Seismic attributes for prospect identification and reservoir characterization. SEG Distinguished Instructor Series, 11, 221-249. https://doi.org/10.1190/1.9781560801900
- Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press.
- Dubois, M. K., Bohling, G., & Chakrabarti, S. (2007). Improving reservoir characterization using integrated seismic, well-log, and production data. AAPG Bulletin, 91(11), 1477-1501. https://doi.org/10.1306/07160705132
- Ekundayo, F. O., Orisadipe, D. B., & Onifade, I. A. (2020). Degradative ability of silver particles synthesized by Gram-negative bacteria of some crops rhizosphere on crude oil polluted soil. Asian Plant Research Journal, 4(4), 25–33. Sciencedomain International.
- Elabiyi, M., Bayode, M., Ogundana, I., Ogundare, O., Awodire, E., Abbah, P., Onifade, I., Adeyolanu, A., Okunade, S., & Ogboye, S. (2024). A review of metabolic calorimetric applications in plant stress, waste management, and diagnostics. Academia Biology, 2(3), 12.
- Fomel, S., & Claerbout, J. F. (2003). Multidimensional seismic data interpolation with plane-wave destructors. Geophysics, 68(2), 578-588. https://doi.org/10.1190/1.1567215
- Forood, A. M. K. (2024). Mechanisms of telomere dysfunction in cancer from genomic instability to therapy.
- Forood, A. M. K., Osifuwa, A. D., Idoko, J. E., Oni, O., Ajaelu, C. S., & Idoko, F. A. (2024). Advancements in health information technology and their role in enhancing cancer care: Innovations in early detection, treatment, and data privacy. GSC Advanced Research and Reviews, 21(1), 228-241.
- Idoko, I. P., Ayodele, T. R., Abolarin, S. M., & Ewim, D. R. E. (2023). Maximizing the cost effectiveness of electric power generation through the integration of distributed generators: Wind, hydro, and solar power. Bulletin of the National Research Centre, 47(1), 166.
- Idoko, I. P., David-Olusa, A., Badu, S. G., Okereke, E. K., Agaba, J. A., & Bashiru, O. (2024). The dual impact of AI and renewable energy in enhancing medicine for better diagnostics, drug discovery, and public health. Magna Scientia Advanced Biology and Pharmacy, 12(2), 099-127.
- Idoko, I. P., Igbede, M. A., Manuel, H. N. N., Ijiga, A. C., Akpa, F. A., & Ukaegbu, C. (2024). Assessing the impact of wheat varieties and processing methods on diabetes risk: A systematic review. World Journal of Biology Pharmacy and Health Sciences, 18(2), 260-277.
- Idoko, I. P., Ijiga, O. M., Agbo, D. O., Abutu, E. P., Ezebuka, C. I., & Umama, E. E. (2024). Comparative analysis of Internet of Things (IoT) implementation: A case study of Ghana and the USA-vision, architectural elements, and future directions. World Journal of Advanced Engineering Technology and Sciences, 11(1), 180-199.
- Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power generation: The vital role of power electronics in California's renewable energy transformation. World Journal of Advanced Engineering Technology and Sciences, 11(1), 274-293.
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. Global Journal of Engineering and Technology Advances, 19(01), 006-036.
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the potential of Elon Musk's proposed quantum AI: A comprehensive analysis and implications. Global Journal of Engineering and Technology Advances, 18(3), 048-065.
- Ijiga, A. C., Aboi, E. J., Idoko, I. P., Enyejo, L. A., & Odeyemi, M. O. (2024). Collaborative innovations in Artificial Intelligence (AI): Partnering with leading US tech firms to combat human trafficking. Global Journal of Engineering and Technology Advances, 18(3), 106-123.
- Ijiga, A. C., Peace, A. E., Idoko, I. P., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Ukatu, I. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 7(01), 048-063.
- Ijiga, A. C., Peace, A. E., Idoko, I. P., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 11(1), 535-551.
- Journel, A. G., & Huijbregts, C. J. (1978). Mining Geostatistics. Academic Press.
- Onifade, I. A., Orisadipe, D. B., Nkor, N. D., Ekundayo, F. O., & Arogunjo, A. O. (2021). Degradation of crude oil by bacteria isolated from various soil plantation at Idanre, Nigeria. AJB2T.
- Onifade, I. A., Sunbare-Funto, O. J., Mbah, C. E., Ajibade, O. A., Oyawoye, O. M., Aborode, A. T., Ogunleye, S. C., Jamiu, A., Bolarinwa, B., Abanikanda, M. F., Tiamiyu, Z., Idowu, A. R., Ige, O., Kelechi, O. J., Abok, J. I., Lawal, E. A., Aruoriwooghene, I. J., Adeoye, A. F., Roqeebah, O., Ojewole, E. A., & Adesola, R. O. (2024). Faecal microbial transplant. Advances in Biomarker Sciences and Technology. Elsevier.
- Onifade, I., & Dey, B. K. (2024). Gene expression analysis of muscle stem cells before and after transplantation into young niche. Presented at the World Orthopedics Conference.
- Onifade, I. Jr., Umar, H., Aborode, A., Awaji, A., Jegede, I., Adeleye, B., & Fatoba, D. (2024). In silico study of selected alkaloids as dual inhibitors of β and γ-secretases for Alzheimer’s disease. bioRxiv. https://doi.org/10.612359
- Pendrel, J. (2001). Seismic inversion—the best tool for reservoir characterization. CSEG Recorder, 26(10), 10-19.
- Russell, B. H. (2014). Introduction to seismic inversion methods. The Leading Edge, 33(6), 572-577. https://doi.org/10.1190/tle33060572.1
- Scott, G. Y., Aborode, A. T., Adesola, R. O., Elebesunu, E. E., Agyapong, J., Ibrahim, A. M., Andigema, A. S., Kwarteng, S., Onifade, I. A., Adeoye, A. F., Aluko, B. A., Fatai, L. O., Osayave, O. J.-K., Oladayo, M., Osinuga, A., Olapade, Z., Osu, A. I., & Obidi, P. O. (2024). Transforming early microbial detection: Investigating innovative biosensors for emerging infectious diseases. Advances in Biomarker Sciences and Technology. Elsevier.
- Simm, R., & Bacon, M. (2014). Seismic Amplitude: An Interpreter's Handbook. Cambridge University Press.
- Victoria, A. G., Hassan, J. T., Toyin, Y. M., Oyetunji, O. A., Aborode, A. T., & Onifade, I. (2023). In-vivo therapeutic evaluation of the wound healing: Potential of ethanolic extract of Trichilia heudelotii leaves in Wistar rats. bioRxiv. https://doi.org/10.571768
- Zhang, R., Chen, X., & Zhao, W. (2013). Integrating seismic inversion and geostatistics for improved reservoir characterization: A case study from the South China Sea. Geophysics, 78(5), B235-B246. https://doi.org/10.1190/geo2013-0047.1
Accurate reservoir characterization is critical
for optimizing hydrocarbon exploration and production.
This study explores the integration of seismic inversion
and geostatistical modeling, leveraging seismic attributes
and well-log data to enhance lithofacies estimation and
reservoir property prediction. The research addresses the
challenges of combining multiple data sources to improve
the spatial resolution and accuracy of reservoir models.
The workflow begins with the acquisition and
preprocessing of seismic and well-log data, followed by
seismic inversion to derive high-resolution subsurface
properties. Geostatistical modeling is then employed to
integrate seismic attributes with well-log data, providing
a robust framework for predicting lithofacies distribution
and reservoir properties.
The study evaluates the effectiveness of this integrated
approach through a detailed analysis of seismic attribute
interpretation, lithofacies classification, and reservoir
property distribution. Validation of the models against
existing methods demonstrates significant improvements
in accuracy and resolution, highlighting the potential of
this approach for complex reservoir environments. Key
findings reveal that the integration of seismic attributes
with well-log data not only enhances the reliability of
lithofacies models but also provides a more detailed
understanding of reservoir heterogeneity.
This research contributes to the advancement of reservoir
characterization techniques by offering a practical and
scalable solution for improved hydrocarbon recovery. The
study concludes with recommendations for applying this
approach to diverse geological settings and identifies
avenues for future research in the integration of advanced
geostatistical methods and machine learning techniques.
Keywords :
Reservoir Characterization, Seismic Inversion, Geostatistical Modeling, Seismic Attributes, Well-Log Data, Lithofacies, Reservoir Properties.