Authors :
Obasuyi Grace Eleojo
Volume/Issue :
Volume 10 - 2025, Issue 1 - January
Google Scholar :
https://tinyurl.com/4hw3ueth
Scribd :
https://tinyurl.com/33ez6ewn
DOI :
https://doi.org/10.5281/zenodo.14716990
Abstract :
The COVID-19 pandemic necessitated the rapid development and use of therapeutic drugs to combat the
disease. However, concerns exist regarding the potential adverse effects of these drugs on metabolic processes like glucose
homeostasis, renal function and bilirubin levels. This study aimed to evaluate the impact of chloroquine,
hydroxychloroquine, ivermectin, azith romycin, lopinavir & ritonavir, zinc & selenium, which are recommended COVID-
19 drugs, on glucose metabolism, renal function (urea and creatinine levels) and bilirubin levels in Wistar rat model.
About sixty (60) Wistar rats were randomly assigned to 9 treatment test groups and a control group (a total of 10
groups). The drugs were administered orally at clinically relevant doses for one month. Blood glucose, urea, creatinine and
bilirubin assay was performed to assess glucose metabolism using the oxidase-peroxidase method, bilirubin by Evelyn and
Malloy's method, urea and creatinine levels using urease berthe lot's and alkaline picrate method respectively. Data obtained
was analyzed by the Statistical Package for Social Sciences (SPSS) software. The results showed that the group treated with
hydroxychloroquine + azith romycin + lopinavir/ritonavir + ivermectin + zinc + selenium demonstrated a markedly elevated
mean glucose level of 103.80 mg/dL (P = 0.001) compared to the control (83.83mg/dL), indicating a statistically significant
impact on glucose metabolism. Analysis revealed no significant difference in urea and creatinine levels (p>0.05) among
the different groups as p values were = 0.109 and 0.848 respectively. The hydroxychloroquine + azith romycin +
lopinavir/ritonavir + ivermectin + zinc + selenium group showed markedly elevated glucose levels. The direct bilirubin of
experimental animals across most treated groups was significantly elevated (p<0.05). Results also showed that total
bilirubin was significantly higher (p<0.05) in animals treated with ivermectin (0.93±0.10) and Lopinavir-ritonavir
(0.92±0.06) when compared to control (0.47±0.07) . In conclusion, patients who are being administered this
drug combination (hydroxychloroquine + azith romycin + lopinavir/ritonavir + ivermectin + zinc + selenium) are at
risk of developing diabetes mellitus and also further worsening the condition of diabetic patients. Also administration of
these drugs may induce liver dysfunction, hyperbilirubinemia, drug-induced liver injury, drug-induced hepatitis and
consequently jaundice. It is recommended to avoid the concurrent use of this specific drug combination unless the potential
benefits outweigh the risks of hyperglycemia, the administration of these drugs adversely affected the synthetic and
excretory functions of the liver and regular assessment of liver function parameters necessary.
References :
- Ahmed, S., Karim, M. M., Ross, A. G., Hossain, M. S., Clemens, J. D., Sumiya, M. K., Phru, C. S., Rahman, M., Zaman, K., Somani, J., Yasmin, R., Hasnat, M. A., Kabir, A., Aziz, A. B., and Khan, W. A. (2021). A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. InternationalJournalof Infectious Diseases, 103, 214–216.
- Albani, F., Fusina, F., Giovannini, A., Ferretti, P., Granato, A., Prezioso, C., Divizia, D., Sabaini, A., Marri, M., Mal petti, E., and Natal ini, G. (2020). Impact of Azith romycin and/or Hydroxychloroquine on Hospital Mortality in COVID-19. JournalofClinical Medicine, 9(9), 28-40.
- Al-Karmalawy, A.A., Soltane, R., Elmaaty, A.A., Tantawy, M.A., Antar, S.A., Yahya, G., Chrouda, A., Pashameah, R.A., Mustafa, M. and Mraheil, M.A. Mostafa, A. (2021). Coronavirus disease (COVID-19) control between drug repurposing and vaccination: a comprehensive overview. Vaccines, 9 (11), 1317.
- Almazroo O.A., Miah M.K. and Venkataramanan R. (2017) Drug Metabolism in the Liver. Clinical Liver Disorders.;21(1):1-20.
- Alomar, M. J. (2014). Factors affecting the development of adverse drug reactions. Saudi PharmaceuticalJournal. 22(2): 83-94.
- Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., and Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4): 450-452.
- Andreani, J., Le Bideau, M., Duflot, I., Jardot, P., Rolland, C., Boxberger, M., Wurtz, N., Rolain, J. M., Colson, P., La Scola, B., and Raoult, D. (2020). In vitro testing of combined hydroxychloroquine and azith romycin on SARS-CoV-2 shows synergistic effect. Microbial Pathogenesis, 145,104228.
- Ambrosino P., Tarantino L., Di Minno G., Paternoster M., Graziano V. and Petitto M. (2017) The risk of venous thromboembolism in patients with cirrhosis. A systematic review and meta-analysis. Thrombosis Haemostasis;117:139 – 148.
- Arabi, Y.M., Gordon, A.C., Derde, L.P.G., Nichol, A.D., Brunkhorst, F.M., Kali l, A.C., Alshamsi, F., Angus, D.C., Bajwa, E.K., Bauer, P.R., Belley-Cote, E., Brar, S., Bruzzone, R., Burnham, E.L., Camporota, L., Coopersmith, C.M., den Hollander, J.G., Detry, M.A., Diaz, R., ...Baudouin, S.V. (2020).Azith romycin in hospitalized patients with COVID-19 (COALITION II): A randomized, double-blind, placebo-controlled trial. Lancet Respiratory Medicine, 9(6): 631-639
- Aronson J.K. and Ferner R.E.(2005) Clarification of terminology in drug safety. Drug Safety;28:851 –70.
- Bakheit, A. H., Al-Had iya, B. M., and Abd-Elgalil, A. A. (2014). Azith romycin. Profiles of Drug Substances, Excipients, and Related Methodology, 39, 1-40.
- Bakhsh, H. T. (2020). Hydroxychloroquine toxicity management: A literature review in COVID-19 era. Journalof Microscopy and Ultrastructure, 8(4),136-140.
- Bastard, J. P., Maachi, M., Lagathu, C., Kim, M. J., Caron, M., Vidal, H. and Fève, B. (2006). Recent advances in the relationshipbetween obesity, inflammation, andinsulin resistance. European Cytokine Network, 17(1):4-12.
- Batlle, D., Soler, M.J., Sparks, M.A., Hiremath, S., South, A.M., Welling, P.A.and Swaminathan, S. (2021). COVID-19 and ACE2 in Cardiovascular, Lung, and Kidney Working Group. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. Journal of the American Society of Nephrology, 31(7), 1380-1383.
- Ben-Zvi, I., Kivity, S., Langevitz, P., and Shoenfeld, Y. (2012). Hydroxychloroquine: from malaria to autoimmunity. Clinical Reviews in Alergy & Immunology, 42, 145-153.
- Bourgonje, A. R., Abdulle, A. E., and Timens, W. (2020). Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2, and the pathophysiology of coronavirus disease 2019 (COVID-19). The Journalof Pathology, 251(3), 228–248.
- Brookes, E. M., and Power, D. A. (2022). Elevated serum urea-to-creatinine ratio is associated with adverse inpatient clinical outcomes in non-end-stage chronic kidney disease. Scientific Reports, 12(1), 20827.
- Brown, S. M., Peltan, I., Kumar, N., Leither, L., Webb, B. J., Starr, N., Grissom, C. K., Buckel, W. R., Srivastava, R., Butler, A. M., Groat, D., Haaland, B., Ying, J., Harris, E., Johnson, S., Paine III, R., and Greene, T. (2021). Hydroxychloroquine versus azith romycin for hospitalized patients with COVID-19: Results of a randomized, active comparator trial. Annals of the American Thoracic Society, 18(4), 590-597.
- Bugel, S., Larsen, E. H., Sloth, J. J., Flytlie, K., Overvad, K., Steenberg, L. C., and Moesgaard, S. (2008). Absorption, excretion, and retention of selenium from a high selenium yeast in men with a high intake of selenium. Food and Nutrition Research, 1, 52.
- Budweiser, S., Ba¸s, S., Jörres, R.A., Engelhardt, S., von Delius, S., Lenherr, K., Deerberg-Wittram, J. and Bauer, A. (2021). Patients’ treatment limitations as a predictive factor for mortality in COVID-19: Results from hospitalized patients of a hotspot region for SARS-CoV-2 infections. Respiratory Research, 22, 168.
- Bussaratid, V., Krudsood, S., Silachamroon, U., and Looareesuwan, S. (2005). Tolerability of ivermectin in gnathostomiasis. Southeast Asian Journal ofTropical Medicine and Public Health, 36(3), 644-649.
- Cai Q., Huang D., Ou P., Yu H., Zhu Z. and Xia Z., (2020). COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. Alergy;75(7):1742 – 1752.
- Cai Q., Huang D., Yu H., Zhu Z., Xia Z. and Su Y., (2020) COVID-19: Abnormal liver function tests. Journalof Hepatology;73(3):566 – 574.
- Callaway, E. (2021). Omicron's baroque mutation hierarchy. Nature, 600(7887): 15- 6.
- Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., and Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178: 104787: 1-4.
- Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., and Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 780-787.
- Cantal uppi, V., Guglielmetti, G., Dellepiane, S., Marengo, M., Mehta, R.L. and Ronco, C. (2020). A call to action to evaluate renal functional reserve in patients with COVID-19. American Journal of Physiology-Renal Physiology, 319(5), 792-795.
- Cardoso, C. D., and Bonato, P. S. (2005). Enantioselective analysis of the metabolites of hydroxychloroquine and application to an in vitro metabolic study. Journal of Pharmaceutical and Biomedical Analysis, 37(4), 703-708.
- Carlson, N., Nelveg-Kristensen, K.E., Ballegaard, E., Feldt-Rasmussen, B., Hornum, M., Kamper, A.L., Gislason, G. and Torp-Pedersen, C. (2021). Increased vulnerability to COVID-19 in chronic kidney disease. Journal of Internal Medicine, 290(1), 166-178.
- Cavalcanti, A. B., Zampieri, F. G., Rosa, R. G., Azevedo, L. C. P., Veiga, V. C., Avezum, A., Damiani, L. P., Marcadenti, A., Kawano-Dourado, L., Lisboa, T., Junqueira, D. L. M., de Barros E Silva, P. G. M., Tramujas, L., Abreu- Silva, E. O., Laranjeira, L. N., Soares, A. T., Echenique, L. S., Pereira, A. J., Freitas, F. G. R., Gebara, O. C. E., Dantas, V. C. S., Furtado, R. H. M., Milan, E. P., Gol in, N. A., Cardoso, F. F., Maia, I. S., Hoffmann Filho, C. R., Kormann, A. P. M., Amazonas, R. B., Bocchi de Oliveira, M. F., Serpa- Neto, A., Falavigna, M., Lopes, R. D., Machado, F. R., and Berwanger, O.; Coalition Covid-19 Brazil I Investigators. (2020). Hydroxychloroquine with or without Azith romycin in Mild-to-Moderate Covid-19. New EnglandJournalof Medicine, 383(21), 2041-2052.
- Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., Yuan, Y., Chen, H., Li, H., Huang, H., Tu, S., Gong, F., Liu, Y., Wei, Y., Dong, C., Zhou, F., Gu, X., Xu, J., Liu, Z., Zhang, Y., Li, H., Shang, L., Wang, K., Li, K., Zhou, X., Dong, X., Qu, Z., Lu, S., Hu, X., Ruan, S., Luo, S., Wu, J., Peng, L., Cheng, F., Pan, L., Zou, J., Jia, C., Wang, J., Liu, X., Wang, S., Wu, X., Ge, Q., He, J., Zhan, H., Qiu, F., Guo, L., Huang, C., Jak i, T., Hayden, F. G., Horby, P. W., Zhang, D., and Wang, C. (2020). A Trial of Lopinavir- Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journalof Medicine, 382(19), 1787– 1799.
- Carruthers, S. (2016). Zinc: Deficiency and toxicity. Practical Hydroponics and Greenhouses,1, 42-45.
- Centers for Disease Control and Prevention. (2021a). How COVID-19 Spreads. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covidspreads.html
- Centers for Disease Control and Prevention. (2021b). Symptoms of COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
- Centers for Disease Control and Prevention. (2021c). Coughing and Sneezing. https://www.cdc.gov/healthywater/hygiene/etiquette/coughing_sneezing.htm l
- Centers for Disease Control and Prevention. (2021d). Use Masks to Slow the Spread of COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/prevent- getting-sick/diy-cloth-face coverings.html
- Centers for Disease Control and Prevention. (2021e). Ventilation in Buildings. https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html
- Centers for Disease Control and Prevention. (2021f). COVID-19 Vaccines. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/index.html
- Champney W.S. and Chittum H.S., (1995) Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells. Current Microbiology 30:273 –279
- Chary M., Barbuto A.F. and Izad mehr S. (2020) COVID-19: Therapeutics and Their Toxicities. Journalof MedicalToxicology 16: 284 –294.
- Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu, Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X. and Zhang L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507– 513.
- Chen, H., Guo, J., Wang, C., Luo, F., Yu, X., Zhang, W., Li, J., Zhao, D., Xu, D., Gong, Q., Liao, J., Yang, H., Hou, W. and Zhang Y. (2020). Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet, 395(10226), 809-815.
- Chen, J., Liu, D., Liu, L., Liu, P., Xu, Q., Xia, L., Ling, Y., Huang, D., Song, S., Zhang, D., Qian, Z., Li, T., Shen, Y., and Lu, H. (2020). [A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 49(2), 215-219.
- Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X. and Zhang L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395(10223),507-513.
- Cheng, Y., Luo, R., Wang, X., Wang, K., Zhang, N., Zhang, M., Wang, Z., Dong, L., Li, J., Zeng, R., Yao, Y., Ge, S. and Xu, G. (2020). The Incidence, Risk Factors, and Prognosis of Acute Kidney Injury in Adult Patients with Coronavirus Disease 2019. Clinical Journal ofthe American Society of Nephrology, 15(10), 1394-1402.
- C hey W.Y., Kosay S. and Siplet H. (1971). Observations on hepatic histology and function in alcoholic dogs. Digest Diseases and Sciences 16, 825–838.
- Chi lvers, M., McKean, M., and Rutman, A. (2001). The effects of coronavirus on human nasal ciliated respiratory epithelium. European Respiratory Journal, 18(6), 965–970.
- Chou A.C. and Fitch C.D (1992): Heme polymerase: modulation by chloroquine treatment of rodent malaria. Life Sciences;51(26):2073-8.
- C hoy, K. T., Wong, A. Y. L., Kaewpreedee, P., Sia, S. F., Chen, D., Hui, K. P. Y., Chu, D. K. W., Chan, M. C. W., Cheung, P. P.-H., Huang, X., Peiris, M., and Yen, H.-L. (2020). Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research, 178, 104-116.
- Clinton, J. W., Kiparizoska, S., Aggarwal, S., Woo, S., Davis, W. and Lewis, J. H. (2021). Drug-induced liver injury: highlights and controversies in the recent literature. Drug Safety. 2(1): 1-25.
- Coleman, J. E. (1998). Zinc enzymes. Current Opinion in Chemical Biology, 2(2), 222-234.
- Coronado, L. M., Nadovich, C. T., and Spadafora, C. (2014). Malarial hemozoin: from target to tool. Biochimica et Biophysica Acta, 1840(6), 2032-2041.
- Costanzo, M., De Giglio, M.A.R., and Roviello, G.N. (2020). SARS-CoV-2: Recent reports on antiviral therapies based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and other drugs for the treatment of the new coronavirus. Current Medicinal Chemistry, 27(27), 4536-4541
- Coronado L. M., Nadovich C. T. and Spadafora C. (2014). Malarial hemozoin: from target to tool. Biochimica etbiophysica acta, 1840(6), 2032–2041.
- Cousins R.J., Filer L.J., and Ziegler E.E.(1996) Present Knowledge in Nutrition. 7th ed. Washington DC: International Life Science Institute Nutrition Foundation. 18; 293 –306.
- Cui J., Li F., and Shi Z.L. (2019) Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology 17 181
– 192.
- Crump, A., and Omura, S. (2011). Ivermectin, 'wonder drug' from Japan: the human use perspective. Proceedings ofthe Japan Academy, Series B, 87(2):13-28.
- Cui, J., Li, F., and Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181-192.
- Cummings, M.J., Baldwin, M.R., Abrams, D., Jacobson, S.D., Meyer, B.J., Balough, E.M., Aaron, J.G., Claassen, J., Rabbani, L.E., Hastie, J., Hoch man, B.R., Salazar-Schicchi, J., Yip, N.H., Brodie, D. and O'Donnell, M.R. (2020). Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet, 395(10239), 1763-1770.
- Damle, B., Vourvahis, M., Wang, E., Leaney, J., and Corrigan, B. (2020). Clinical Pharmacology Perspectives on the Antiviral Activity of Azith romycin and Use in COVID-19. Clinical Pharmacology & Therapeutics, 108(2), 201-211.
- Della Porta, A., Bornstein, K., Coye, A., Montrief, T., Long, B., and Parris, M. A. (2020). Acute chloroquine and hydroxychloroquine toxicity: A review for emergency clinicians. The American Journal of Emergency Medicine, 38(10), 2209-2217.
- De Wit, E., van, D.N., Falzarano, D., and Munster, V.J. (2016) SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14(8), 523-534.
- Descotes, J. (2021). Medical Safety of Ivermectin. Expert Review Report. Immunosafe Consultance, 1, 120.
- Devaux, C. A., Rolain, J. M., Colson, P., and Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19. International JournalofAntimicrobialAgents, 55(5), 105938:1-12.
- Dinos G. P., (2017). The macrolide antibiotic renaissance. British journal of pharmacology, 174(18), 2967–2983.
- Diwaker, D., Mishra, K., and Janju, Z. (2013). Potential role of protein disulfide isomerase in viral infections. ActaVirologica, 57(3), 293–304.
- Doyno, C., Sobieraj, D. M., and Baker, W. L. (2021). Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clinical Toxicology(Philadelphia, Pa.), 59(1), 12-23.
- Ducharme J., and Farinotti R., (1996). Clinical p harmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clinical pharmacokinetics, 31(4), 257–274.
- Ducharme W., Zheng J. H., Cook J., Nicol M. R., Joshi, A., Rizk M.L., Sabato P. E. and Savic, R. M., (2020). P harmacokinetics and P harmacological Properties of Chloroquine and Hydroxychloroquine in the Context of COVID-19 Infection. Clinical pharmacology and therapeutics, 108(6),1135– 1149.
- Ducharme, J., and Farinotti, R. (1996). Clinical p harmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clinical Pharmacokinetics, 31(4), 257-274.
- Duran, J. M., and Amsden, G. W. (2020). Azith romycin: indications for the future? Expert Opinion on Drug Delivery, 1, 489– 505.
- Edelstein, C.L., Venkatachalam, M A., Dong, Z. (2020). Autophagy inhibition by chloroquine and hydroxychloroquine could adversely affect acute kidney injury and other organ injury in critically ill patients with COVID- 19. Kidney International,98 (1), 234-235.
- Edwards G., Dingsdale A., Hels by N., Orme M. L. and Breckenridge A. (1988) The relative systemic availability of ivermectin after administration as a capsule, tablet, and oral solution. European Journal of Clinical Pharmacology; 35:681 – 684.
- Edwards I. R. and Aronson J. K. (2000). Adverse drug reactions: definitions, diagnosis, and management. The Lancet, 356(9237), 1255– 1259.
- Elmaaty, A. A., Darwish, K. M., Khattab, M., Elhady, S. S., Salah, M., Hamed, M. I. A., Al-Karmalawy, A. A., and Saleh, M. M. (2021). In a search for potential drug candidates for combating COVID-19: A computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins. Journal of Biomolecular Structure and Dynamics, 39, 1 –28.
- Esson, M. L., and Sch rier, R. W. (2002). Diagnosis and treatment of acute tubular necrosis. Annals of Internal Medicine, 137(9), 744-752.
- Falcão M.B., Pamplona de Góes Cavalcanti L., Filgueiras Filho N.M. and Antunes de Brito C.A., (2020) Case report: Hepatotoxicity associated with the use of hydroxychloroquine in a patient with COVID-19. American JournalofTropical Medicine and Hygiene.;102(6):1214 – 1216.
- Fan Z., Chen L., Li J., Cheng X., Yang J. and Tian C., (2020) Clinical features of COVID-19-related liver functional abnormality. Clinical Gastroenterology Hepatology.;18(7):1561 – 1566.
- Fantini, J., Cha h inian, H., and Yah i, N. (2020). Synergistic antiviral effect of hydroxychloroquine and azith romycin in combination against SARS- CoV-2: What molecular dynamics studies of virus-host interactions reveal. InternationalJournalofAntimicrobialAgents, 56(2), 106-020.
- Fakree, N. K. (2015). Measurement of Serum Trace Elements (Zinc, Copper, Magnesium, and Iron) Concentrations in Pediatric Patients with Otitis Media with Effusion in Iraq. Iraqi Journal of Pharmaceutical Sciences, 24(2), 72-76.
- Faria, N. R., Mellan, T. A., Whittaker, C., Claro, I. M., Candido, D. D. S., Mishra, S., ... and Sabino, E. C. (2021). Genomics and epidemiology of the P. 1 SARS- CoV-2lineage in Manaus, Brazil. Science, 372(6544): 815-821.
- Feh r, A.R., and Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods in Molecular Biology. 1282, 1-23.
- Fevery J. (2008). Bilirubin in clinical practice: a review. Liver international : oficialjournal ofthe InternationalAssociationfor the Study ofthe Liver, 28(5), 592– 605.
- Fohner A. E., Sparreboom A., Altman R. B. and Klein T. E. (2017). P harmGKB summary: Macrolide antibiotic pathway, harmacokinetics/pharmacodynamics. genomics, 27(4), 164– 167.
- Pharmacogenetics and Foucquier, J., & Guedj, M. (2015). Analysis of drug combinations: current methodological landscape. Pharmacology research&perspectives, 3(3).
- Fox R.I. (1993). Mechanism of action of hydroxychloroquine as an antirheumatic drug. Seminars in arthritis andrheumatism, 23; 82 –91.
- Furst D. E. (1996). P harmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus, 5 Supplements 1, S11 –S15.
- Furst, D. E. (1996). P harmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus, 5(Suppl 1), S11-S15.
- Gaisser, S., Kellenberger, L., Kaja, A. L., Weston, A. J., Lill, R. E., Wirtz, G., Kendrew, S. G., Low, L., Sheridan, R. M., Wilkinson, B., Galloway, I. S., Stutzman-Engwall, K., McArthur, H. A., Staunton, J., and Leadlay, P. F. (2003). Direct production of ivermectin-like drugs after domain exchange in the avermectin poly ketide synthase of Streptomyces avermitil is ATCC31272. Organic and Biomolecular Chemistry, 1(16), 2840-2847.
- Gao, J., Tian, Z., and Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treating COVID-19-associated pneumonia in clinical studies. Bioscience Trends, 14(1), 72-73.
- Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doud ier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Tissot Dupont, H., Honoré, S., Colson, P., Cha briè re, E., La Scola, B., Rolain, J. M., Brouqui, P., and Raoult, D. (2020). Hydroxychloroquine and azith romycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. InternationalJournal ofAntimicrobialAgents, 56(1), 1059-1069.
- Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doud ier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Tissot Dupont, H., Honoré, S., Colson, P., Cha briè re, E., La Scola, B., Rolain, J. M., Brouqui, P. and Raoult D. (2020). Hydroxychloroquine and azith romycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Internationaljournalofantimicrobialagents, 56(1), 105949.
- General Office of National Health Commission of the People’s Republic of China. (2020). Diagnosis and treatmentfor novel coronavirus (Version 5). NHC. http://www.nhc.gov.cn/xcs/zhengcwj/202002/3b09b894ac9b4204a79db5b8912d4440.shtml
- Giovanetti, M., Benedetti, F., Campisi, G., Ciccozzi, A., Fabris, S., Ceccarelli, G., Tambone, V., Caruso, A., Angeletti, S., Zella, D., and Ciccozzi, M. (2021). Evolution patterns of SARS-CoV-2: Snapshot on its genome variants. Biochemicaland Biophysical ResearchCommunications. 538, 88-91.
- Gowda, S., Desai, P. B., Kulkarni, S. S., Hull, V. V., Math, A. A., and Vernekar, S. N. (2010). Markers of renal function tests. North American Journal of MedicalSciences, 2(4), 170.
- Goldfine, A. B., Bouche, C., Parker, R. A., Kim, C., Kerridge, D., Soeldner, J. S., ... and Greenfield, M. S. (1972). Insulin andglucagon—their roles in the regulation ofglucose production and utilization in man. Metabolism, 21(8): 643-658.
- Goldman J.D., Lye C.B., Hui D.S., Marks K.M., Bruno R. and Montejano R. (2020) Remdesivir for 5 or 10 days in patients with severe COVID-19. New EnglandJournalof Medicine;383(19):1827 – 1837.
- González Canga, A., Sahagú n Prieto, A. M., Diez Liébana, M. J., Ferná ndez Martínez, N., Sierra Vega, M., and García Vieitez, J. J. (2008). The p harmacokinetics and interactions of ivermectin in humans — a mini-review. The AAPS Journal, 10(1): 42-46
- Greenhalgh, T., Jimenez, J. L., Prather, K. A., Tufe kci, Z., Fisman, D., and Schooley, R. (2021). Ten scientific reasons in support of airborne transmission of SARS-CoV-2. The Lancet, 397(10285): 1603-1605.
- Greenwood, D. (1995). Conflicts of interest: the genesis of synthetic antimalarial agents in peace and war. Journal of Antimicrobial Chemotherapy, 36 (5), 857-872, 1995
- Grein J., Oh magari N, S hin D., Diaz G., Asperges E. and Castagna A. (2022). Compassionate use of Remdesivir for patients with severe Covid-19. New EnglandJournalof Medicine;382(24):2327 –2336.
- Guan W., Ni Z. and Hu Y. (2020) Clinical Characteristics of Coronavirus Disease 2019 in China, The Journalof Emergency Medicine, 58(4), 711–712.
- Guan, W.J., Ni, Z.Y., Hu, Y., Liang, W.H., Ou, C.Q., He, J.X, Liu, L., Shan, H., Lei, C.L., Hui, D.S.C., Du, B., Li, L.J., Zeng, G., Yuen, K.Y., Chen, R.C., Tang, C.L., Wang, T., Chen, P.Y., Xiang, J., Li, S.Y., Wang, J.L., Liang, Z.J., Peng, Y.X., Wei, L., Liu, Y., Hu, Y.H., Peng, P, Wang, J.M., Liu, J.Y., Chen, Z., Li, G., Zheng, Z.J., Qiu, S.Q., Luo, J., Ye, C.J., Zhu, S.Y. and Zhong, N.S. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China.The New EnglandJournalof Medicine, 382(18), 1708-1720.
- Guerin, V., Levy, P., Thomas, J. L., Lardenois, T., Lacrosse, P., Sarrazin, E., Andreis, N. R. and Wonner, M. (2020). Azith romycin and Hydroxychloroquine Accelerate Recovery of Outpatients with Mild/Moderate COVID-19. Asian Journal of Medicine and Health, 18(7),45– 55.
- Gulich, M. P., Yemchenko, N. L., Kaplinenko, V. G., and Kharchenko, O. O. (2023). Trace Elements Zinc and Selenium: Their Significance in the Conditions of the Covid-19 Pandemic. Mikrobiolohichnyi Zhurnal, 85(1),36-45.
- Gupta, S., Coca, S.G., Chan, L., Melamed, M.L., Brenner, S.K., Hayek, S.S., Sutherland, A., Puri, S., Srivastava, A., Leonberg-Yoo, A., She hata, A.M., Flythe, J.E., Rashid i, A., Schenck, E.J., Goyal, N., Hedayati, S.S., Dy, R., Bansal, A., Athavale, A., Nguyen, H.B., Vijayan, A., Charytan, D.M., Schulze, C.E., Joo, M.J., Friedman, A.N., Zhang, J., Sosa, M.A., Judd, E., Velez, J.C.Q., Mallappallil, M., Redfern, R.E., Bansal, A.D., Neyra, J.A., Liu, K.D., Renaghan, A.D., Christov, M., Mol nar, M.Z., Sharma, S., Kamal, O., Boateng, J.O, Short, S.A.P., Admon, A.J., Sise, M.E., Wang, W., Parikh, C.R. and Leaf, D.E. (2021). AKI Treated with Renal Replacement Therapy in Critically Ill Patients with COVID-19. Journalofthe American Society of Nephrology. 32(1), 161-176.
- Guseynova, S. A. (2019). Oxidative metabolism of sodium selenite in isolated human erythrocytes in vitro. Biomedicine, 3(17), 18–23.
- Habibzadeh, P. and Stoneman, E.K. (2020). The novel coronavirus: A bird's eye view. International Journal of Occupational Medicine and Environmental Health. 11, 65-71.
- Hassan, S.A., Sheikh, F.N., Jamal, S., Ezeh, J.K., and Akhtar, A. (2020). Coronavirus (COVID- 19): a review of clinical features, diagnosis, and treatment. Cureus 12, e7355.
- Hasöksüz, M., Kiliç, S. and Saraç, F. (2020) Coronaviruses and SARS-COV-2. TurkishJournalof MedicalSciences, 50, 549-556.
- Hanafy, A. S. and Abd-Elsalam, S. (2020). Challenges in COVID-19 drug treatment in patients with advanced liver diseases: A hepatology perspective. WorldJournalofGastroenterology. 26(46): 7272.
- Hank ins, J. (2006). The role of albumin in fluid and electrolyte balance. Journal of Infusion Nursing. 29(5): 260-265.
- Haroun, A. A., Bashandy, M. A., and Hussein, A. S. (2023). A Novel Study on the Hematological and Physiological Disturbance of Ivermectin-COVID- 19 Treatment Abuse in Male Wistar Rats. Egyptian Academic Journal of BiologicalSciences. C, Physiology and Molecular Biology, 15(2), 1-10.
- Hegazi, A., Abet, R., Thomas, R. A., Brock, P. M., and Rotondo, L. (2021).
- Lopinavir/ritonavir p harmacokinetics in HIV-positive and HIV-negative: A Systematic Review And Meta-Analysis. Pharmaceuticals, 14(5), 441, 20.
- Her M., Lee Y., Jung E., Kim T. and Kim D. (2011) Liver enzyme abnormalities in systemic lupus erythematosus: a focus on toxic hepatitis. Rheumatology International;31(1):79 –84.
- Heuberger J., Schmidt S. and Derendorf H. (2013) When is Protein Binding Important? Journalof Pharmaceutical. Sciences; 102:3458 –3467.
- Heidary, F., and Gharebagh i, R. (2020). Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. The Journal of Antibiotics, 73(9), 593-602.
- Hirsch, J.S., Ng, J.H., Ross, D.W., Sharma, P., Shah, H.H., Barnett, R.L., Hazzan, A.D., Fishbane, S. and J haveri K.D. (2020). Northwell COVID-19 Research Consortium; Northwell Nephrology COVID-19 Research Consortium. Acute kidney injury in patients hospitalized with COVID-19. Kidney International, 98(1), 209-218.
- Hopper, K., Aldrich, J., and Haskins, S. C. (2002). Ivermectin toxicity in 17 collies. JournalofVeterinary Internal Medicine, 16(1), 89-94.
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y. and Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223): 497-506.
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y, Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J. and Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497-506.
- Huang, M., Tang, T., Pang, P., Li, M., Ma, R., Lu, J., Shu, J., You, Y., Chen, B., Liang, J., Hong, Z., Chen, H., Kong, L., Qin, D., Pei, D., Xia, J., Jiang, S., and Shan, H. (2020). Treating COVID-19 with Chloroquine. Journal of Molecular CelBiology, 12(4), 322-325.
- Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y. and Cao B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet(London, England), 395(10223), 497– 506.
- Hur, K. H., Park, K., Jung, H., and Kim, K. W. (2021). Hypoglycemia and potential spontaneous intestinal absorption of remdesivir. Journal of Korean Medical Science, 36(1), 10: 1-4.
- Huseynov, T.M., Gulieva, R.T., and Yakhnyaeva, F.A. (2020). The biological significance of selenium and its place in RNA —viral diseases. Mycoelements in medicine. 21(4), 21—31.
- Imamura, Y., Higashiyama, Y., Tomono, K., Izumikawa, K., Yanagihara, K., Ohno, H., Miyazaki, Y., Hirakata, Y., Mizuta, Y., Kadota, J., Iglewski, B. H., & Koh no, S. (2005). Azith romycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrobialagents andChemotherapy, 49(4), 1377– 1380.
- Jermain, B., Hanafiah, R. M., and Israf, D. A. (2020). Ivermectin targets the protein responsible for SARS-CoV-2 maturation in host cells. Signal Biosciences, P harmaBioRxiv.
- Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L. W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z., and Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289-293.
- Kamal, A. (2014). Estimation of blood urea (BUN) and serum creatinine level in patients of renal disorder. Indian Journal of Fundamental and Applied Life Sciences, 4(4), 199-202.
- Kashani, K., Rosner, M. H., and Ostermann, M. (2020). Creatinine: from physiology to clinical application. European Journal of Internal Medicine, 72, 9-14.
- Kesteloot, H. E., and Joossens, J. V. (1993). Relationship between dietary protein intake and serum urea, uric acid and creatinine, and 24-hour urinary creatinine excretion: the BIRNH Study. Journal ofthe American Colege of Nutrition, 12(1), 42-46.
- Keyaerts, E., Vijgen, L., Maes, P., Neyts, J., and Van Ranst, M. (2004). In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochemical and Biophysical Research Communications, 323(1), 264-268.
- Kiel iszeka, M., and Lipinski, B. (2020). Selenium supplementation in the prevention of coronavirus infection (COVID-19). Medical Hypotheses,143, 109878.
- King, A.M.Q., Adams, M.J., Carstens E.B., and Lefkowitz, E.J. (2012). Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, pp. 770–783.
- Kleinnijenhuis J, Quintin J, Preijers F, Benn, C.S., Joosten, L.A., Jacobs, C., van Loenhout J., Xavier, R.J., Aaby, P., van der Meer, J.W., van Crevel, R., and Netea, M.G. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. Journalof Innate Immunity. 6(2), 152-158.
- K lotz U., Ogbuokiri J. E., Okonkwo P. O. (1990) Ivermectin binds avidly to plasma proteins. European. Journal of Clinical Pharmacology.;39:607 – 608.
- Koyner, J. L. (2012). Assessment and diagnosis of renal dysfunction in the ICU. Chest, 141(6), 1584-1594.
- Kuderer, N. M., Choueiri, T. K., Shah, D. P., Shyr, Y., Rubinstein, S. M., Rivera, D. R., Shete, S., Hsu, C. Y., Desai, A., de Lima Lopes, G. Jr, Grivas, P., Painter, C. A., Peters, S., Thompson, M. A., Bakouny, Z., Batist, G., Bekaii -Saab, T., Bilen, M. A., Bouganim, N., Larroya, M. B., Castellano, D., Del Prete, S. A., Doroshow, D. B., Egan, P. C., Elkrief, A., Farmakiotis, D., Flora, D., Galsky, M. D., Glover, M. J., Griffiths, E. A., Gulati, A. P., Gupta, S., Hafez, N., Halfdanarson, T. R., Hawley, J. E., Hsu, E., Kasi, A., Khaki, A.
- R., Lemmon, C. A., Lewis, C., Logan, B., Masters, T., McKay, R. R., Mesa, R. A., Morgans, A. K., Mulcahy, M. F., Panagiotou, O. A., Peddi, P., Pennell, N. A., Reynolds, K., Rosen, L. R., Rosovsky, R., Salazar, M., Schmidt, A., Shah, S. A., Shaya, J. A., Steinharter, J., Stockerl-Goldstein, K. E., Subbiah, S., Vinh, D. C., Wehbe, F. H., Weissmann, L. B., Wu, J. T., Wulff-Burchfield, E., Xie, Z., Yeh, A., Yu, P. P., Zhou, A. Y., Zub iri, L., Mishra, S., Lyman, G. H., Rini, B. I., and Warner, J. L. and Cancer Consortium. (2020). Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. The Lancet, 395(10241), 1907-1918.
- Kulkarni A.V., Kumar P., Tevethia H.V., Premkumar M., Arab J.P., Candia R.(2020). preview with meta-analysis: liver manifestations and outcomes in COVID-19. AlimentPharmacolTher.;52(4):584 – 599.
- Kwiek, J. J., Haystead, T. A. J., and Rudolph, J. (2004). Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines. Biochemistry, 43, 4538–4547.
- Lam, S., Lombardi, A. and Ouanounou, A. (2020). COVID-19: A review of the proposed pharmacological treatments. European Journal of Pharmacology. 886(1): 173451.
- Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., and Hsueh, P.-R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. InternationalJournalofAntimicrobialAgents, 55, 105924.
- Lalak, N. J., and Morris, D. L. (1993). Azith romycin clinical p harmacokinetics. Clinical Pharmacokinetics, 25, 370–374.
- Lammert C., Einarsson S., Saha C., Niklasson A., Bjornsson E., and Chalasani N. (2008). Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals. Hepatology (Baltimore, Md.), 47(6), 2003–2009.
- Lauer S. A., Grantz K. H., Bi Q., Jones F. K., Zheng Q., Meredith H. R., Azman A. S., Reich N. G., and Lessler J. (2020). The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of internal medicine, 172(9), 577– 582.
- Lefkowitz, E.J., Dempsey, D.M., Hendrickson, R.C., Orton, R.J., Siddell, S.G. and Smith, D.B. (2018). Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Research, 46(1), 708-717.
- Lemke C. T., Titolo S., Von Schwedler U., Goudreau N., Mercier J. F., Ward rop E., Faucher A. M., Coulombe R., Banik S. S., Fader L., Gagnon A., Kawai S. H., Rancourt J., Tremblay M., Yoakim C., Simoneau B., Archambault J., Sundquist W. I., and Mason S. W. (2012). Distinct effects of two HIV-1 capsid assembly inhibitor families that bind the same site within the N-terminal domain of the viral CA protein. Journal of virology, 86(12), 6643– 6655.
- Liao, Z.-M., Zhang, Z.-M., and Liu, Q. (2022). Hydroxychloroquine/chloroquine and the risk of acute kidney injury in COVID-19 patients: A systematic review and meta-analysis. Renal Failure, 44(1), 415-425.
- Li, C.K.F. and Xu, X.N. (2010). Host immune responses to SARS coronavirus in humans. In: Lal SK (Ed.), Molecular Biology of the SARS-Coronavirus. Springer, pp259-278.
- Li, G.D. and de Clercq, E., (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery, 19(3), 149-150.
- Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing Miller, A., Reande lar, M. J., Fasciglione, K., Roumenova, V. and Li, Y. (2020). Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: An epidemiological study. African Journal of Biology and Medical Research, 3(2), 15-19.
- Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K.S.M., Lau, E.H.Y., Wong, J.Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., Tu, W., Chen, C., Jin, L., Yang, R., Wang, Q., Zhou, S., Wang, R., Liu, H., Luo, Y., Liu, Y., Shao, G., Li, H., Tao, Z., Yang, Y., Deng, Z., Liu, B., Ma, Z., Zhang, Y., Shi, G., Lam, T.T.Y., Wu, J.T., Gao, G.F., Cowling, B.J., Yang, B., Leung, G.M., and Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia.The New England Journal of Medicine, 382(13),1199-1207.
- Lontchi-Yachen, E., and Cavayas, Y. A. (2021). Drugs for the treatment of COVID-19: How inflammation could induce glucose disorders. Journal of Diabetes and Metabolic Disorders, 20(1): 701-712.
- Loos, N. H., Beijnen, J. H., and Schinkel, A. H. (2023). The inhibitory and inducing effects of ritonavir on hepatic and intestinal CYP3A and other drug-handling proteins. Biomedicine & Pharmacotherapy, 162, 114-136.
- Majeed, M., Nagabhushanam, K., Arumugam, S., Beede, K., and Ali, F. (2022). Zinc and selenium metabolic regulation and its association with immune modulation in coronavirus disease 2019 (COVID-19)- insights and perspectives. Nutrition Research Reviews: 1-16.
- Mayxay, M., Khanthavong, M., Lindegå rdh, N., Keola, S., Barends, M., Pongvongsa, T., Yapom, R., Annerberg, A., Phompida, S., Phetsouvanh, R., White, N. J., and Newton, P. N. (2004). Randomized comparison of chloroquine plus sulfadoxine-pyrimethamine versus artesunate plus mefloquine versus artemether-lumefantrine in the treatment of uncomplicated falciparum malaria in the Lao People's Democratic Republic. Clinical Infectious Diseases, 39(8), 1139-1147.
- Meece, J. (2020). Caution with Hydroxychloroquine and Hypoglycemia. ADCES in Practice, 8(3), 41-41.
- Meini, S., Pagotto, A., Longo, B., Vend ramin, I., Pecori, D., and Tascini, C. (2020). Role of Lopinavir/Ritonavir in the treatment of Covid-19: a review of current evidence, guideline recommendations, and perspectives. JournalofClinical Medicine, 9(7), 2050.
- Merriman, R. B. and Peters, M. G. (2008). Approach to the patient with jaundice. Principles ofClinicalGastroenterology. 2(1): 422-441.
- Michiels, C., Raes, M., Toussaint, O., and Remacle, J. (1994). Importance of Se -glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radical Biology and Medicine, 17(3), 235-248.
- Miller, A., Reande lar, M.J., Fasciglione, K., Roumenova, V., Li, Y., and Otazu, G. H (2020) Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: An epidemiological study. medRxiv.
- Mohan, B. S. and Vinod, N. (2020). COVID-19: An Insight into SARS-CoV-2 Pandemic Originated at Wuhan City in Hubei Province of China. Journal of Infectious Diseases and Epidemiology, 6(4), 146-154.
- Mota I., Gaspar  ., Benito-Garcia F., Correia M., Chambel M., and Morais- Almeida M. Drug-induced anaphylaxis: seven-year single-center survey. European Annals of Allergy and Clinical Immunology., 2018 Sep;50(5):211-216.
- Munster, V.J., Koopmans, M., van Doremalen, N., van Riel, D. and de Wit E. (2020). A Novel Coronavirus Emerging in China - Key Questions for Impact Assessment. New England Journal of Medicine, 382(8), 692-694.
- Murdaugh HV Jr, Schmidt-Nielsen B, Doyle EM, and O'Dell R. (1958). Renal tubular regulation of urea excretion in man. Journal of Applied Physiology, 13(2), 263-268.
- Nank ivell, B. J. (2001). Creatinine clearance and the assessment of renal function. Australian Prescriber, 24(1).
- Nardo, A. D., Sch neeweiss‐ G leixner, M., Bakail, M., Dixon, E. D., Lax, S. F. and Trauner, M. (2021). Pathophysiological mechanisms of liver injury in COVID‐ 19. Liver International. 41(1): 20-32.
- National Health Commission of the People’s Republic of China. (2020). Interpretation of COVID-19 Treatment Guidelines (6th version). Retrieved from http://www.gov.cn/zhengce/2020- 02/19/content_5480958.htm
- Navarro, M., Camprubí, D., Requena-Mendez, A., Buonf rate, D., Giorli, G., Kamgno, J. and Brito, M. (2020). Safety of high-dose ivermectin: a systematic review and meta-analysis. The Journal of Antimicrobial Chemotherapy, 75(4): 827-834.
- Nitulescu, G. M., Paunescu, H., Moschos, S. A., Petrak is, D., Nitulescu, G., Ion, G. N. D., Spandidos, D. A., Niko louzak is, T. K., Drakoul is, N., and Tsatsak is, A. (2020). Comprehensive analysis of drugs to treat SARS‑ CoV‑2 infection: Mechanistic insights into current COVID‑ 19 therapies (Review). International Journal of Molecular Medicine, 46(2), 467-488.
- Nujić, K., Banjanac, M., Munić, V., Polančec, D., and Eraković Haber, V. (2012). Impairment of lysosomal functions by azith romycin and chloroquine contributes to anti-inflammatory phenotype. Cel Immunology, 279(1), 78-86.
- Nutho, B., Maha lapbutr, P., Hengphasatporn, K., Pattaranggoon, N.C., Simanon, N., Shigeta, Y., Hannongb ua, S., and Rungrotmongkol, T. (2020). Why are Lopinavir and Ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms. Biochemistry, 59, 1769– 1779.
- Ochei, J., and Kolhatkar, A. (2019). Renal Function Tests and Urine Analysis, Medical Laboratory Science: Theory and Practice 7th edition. Tata McGraw-Hil, pp113-121.
- Oldfield, V., and Plosker, G. L. (2006). Lopinavir/ritonavir: A review of its use in the management of HIV infection. Drugs, 66, 1275-1299.
- Ogen, Y. (2020). Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Science of the Total Environment, 726, 138605.
- Ofori-Adjei D., Ericsson O., Lindström B., and Sjöqvist F. (1986). Protein binding of chloroquine enantiomers and desethylchloroquine. British journal of clinicalpharmacology, 22(3), 356–358.
- Okubo Y., Nochioka K., and Testa M.A. (2019) Nationwide Survey of Hospitalization Due to Pediatric Food-Induced Anaphylaxis in the United States. Pediatr Emerg Care. Nov;35(11):769-773.
- Olczak-Pruc, M., Szarpak, Ł ., Navolokina, A., Ch mielewski, J., Panasiuk, L., Juá rez-Vela, R., Pruc, M., Swieczkowski, D., Majer, R., Rafique, Z., and Peacock, F. W. (2022). The effect of zinc supplementation on the course of COVID-19–A systematic review and meta-analysis. Annals of Agriculturaland Environmental Medicine, 29(4), 568-574.
- Oth man, H. M., Oth man, F. M. and Aljali, A. A. (2022). The effect of different dosages on hematological and some biochemical parameters of ivermectin after administration in goats. Libyan Journal of Basic Sciences. 17(1): 35-43.
- Pandya, D., Nagrajappa, A. K., and Ravi, K. S. (2016). Assessment and Correlation of Urea and Creatinine Levels in Saliva and Serum of Patients with Chronic Kidney Disease, Diabetes, and Hypertension- A Research Study. Journal of Clinical and Diagnostic Research, 10(10),ZC58-ZC62.
- Parnham, M. J., Erakovic Haber, V., Giamarellos-Bourboulis, E. J., Perletti, G., Verleden, G. M., and Vos, R. (2014). Azith romycin: mechanisms of action and their relevance for clinical applications. Pharmacology & Therapeutics, 143(2), 225-245.
- Peng, S., Wang, H. Y., Sun, X., Li, P., Ye, Z., Li, Q., Wang, J., Shi, X., Liu, L., Yao, Y., Zeng, R., He, F., Li, J., Ge, S., Ke, X., Zhou, Z., Dong, E., Wang, H., Xu, G., Zhang, L., and Zhao, M. H. (2020). Early versus late acute kidney injury among patients with COVID-19-a multicenter study from Wuhan, China. Nephrology Dialysis Transplantation, 35(12), 2095-2102.
- Planas, D., Veyer, D., Baidaliuk, A., Staropoli, I., Guivel-Benhassine, F., Rajah, M. M. and Bruel, T. (2021). Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 596(7871): 276-280.
- Pollard, C.A., Morran, M.P., and Nestor-Kalinoski, A.L. (2020). The COVID-19 pandemic: a global health crisis. Physiological Genomics. 52(11), 549-557.
- Ponomarev, A. P., Andreeva, O. G., and Uziumov, V. L. (1996). Mechanism of retaining the stability of foot-and-mouth disease virus during manufacturing dried concentrated preparations. Voprosy Virusologii, 41(5), 218-221.
- Portolés, J., Marques, M., Ló pez-Sá nchez, P., de Valdenebro, M., Muñez, E., Serrano, M. L., Malo, R., García, E., and Cuervas, V. (2020). Chronic kidney disease and acute kidney injury in the COVID-19 Spanish outbreak. Nephrology Dialysis Transplantation, 35(8), 1353-1361.
- Poschet, J. F., Perkett, E. A., Timmins, G. S., and Deretic, V. (2020). Azith romycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. Bio-archive[Preprint], 19.
- Prakash, A., B harti, K., and Majeed, A. B. A. (2015). Zinc: Indications in brain disorders. Fundamental& Clinical Pharmacology, 29(2), 131-149.
- Prasad, A. S. (1988). Zinc in growth and development and spectrum of human zinc deficiency. Journal of the American Colege of Nutrition, 7(5), 377–384.
- Prasad, A.S. (2008). Clinical immunological, anti-inflammatory and anti- oxidant roles of zinc. ExperimentalGerontology, 43, 370—377.
- Projean D., Baune B., Farinotti R., Flinois J. P., Beaune P., Taburet A. M., and Ducharme J. (2003). In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N- desethylchloroquine formation. Drug metabolism and disposition: the biologicalfate ofchemicals, 31(6), 748–754.
- Rajter, J. C., Sherman, M. S., Fatteh, N., Vogel, F., Sacks, J., and Rajter, J. J. (2021). Use of ivermectin is associated with lower mortality in hospitalized patients with coronavirus disease 2019: The Ivermectin in COVID Nineteen Study. Chest, 159(1), 85–92.
- Ramírez, A., Van der Wijk, V., Jurado, P., and Arellano, C. (2021). P harmacokinetics and p harmacodynamics of hydroxychloroquine and chloroquine in COVID- 19. A Systematic Review for The Covid-Nma Consortium. Medrxiv.
- Raymond G. D., and Galambos J. T. (1971). Hepatic storage and excretion of bilirubin in man. The American journal of gastroenterology, 55(2), 135– 144.
- Razzaque, M.S. and Taguchi, T, (2003). Pulmonary fibrosis: cellular and molecular events. Pathology International, 53(3), 133-145.
- Rendic, S., and Guengerich, F. P. (2020). Metabolism and interactions of chloroquine and hydroxychloroquine with human cytochrome P450 enzymes and drug transporters. Current Drug Metabolism, 21(14), 1127-1135.
- Rid uan, S. N., and Zhang, Y. (2021). Recent Advances of Zinc-based Antimicrobial Materials. Chemistry–An Asian Journal, 16(18), 2588-2595.
- Robert Dufour (2005) Assessment of Liver Fibrosis: Can Serum Become the Sample of Choice? ClinicalChemistry, 51(10), 1763– 1764.
- Roder, P. V., Wu, B., Liu, Y., and Han, W. (2016). Pancreatic regulation of glucose homeostasis. Experimentaland Molecular Medicine, 48(3), 219.
- Roldan, Q. E., Biasiotto, G., Magro, P., and Zanella, I. (2020). The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacological Research, 158, 104-114.
- Roohani, N., Hurrell, R., Kelishad i, R., and Schul in, R. (2013). Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences: The Oficial Journal of Isfahan University of MedicalSciences, 18(2), 144.
- Roohani N., Hurrell R., Kelishad i R., and Schul in R. (2013). Zinc and its importance for human health: An integrative review. Journal of research in medical sciences:the oficial journal of Isfahan University of Medical Sciences, 18(2), 144– 157.
- Rosenberg, E. S., Dufort, E. M., Udo, T., Wilberschied, L. A., Kumar, J., Tesoriero, J., Weinberg, P., Kirkwood, J., Muse, A., DeHovitz, J., Blog, D. S., Hutton, B., Holtgrave, D. R., and Zucker, H. A. (2020). Association of Treatment With Hydroxychloroquine or Azith romycin With In-Hospital Mortality in Patients With COVID-19 in New York State. Journal of the American MedicalAssociation, 323(24), 2493-2502.
- Rostan, E. F., DeBuys, H. V., Madey, D. L., and Pinnell, S. R. (2002). Evidence supports zinc as an important antioxidant for the skin. International journalofdermatology, 41(9), 606-611.
- Rothe C., Schunk M., Soth mann P., Bretzel G., Froeschl G., Wallrauch C., Zimmer T., Th iel V., Janke C., Guggemos W., Seil maier M., Drosten C., Vollmar P., Zwirgl maier K., Zange S., Wölfel R., and Hoelscher M. (2020). Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. The New Englandjournalofmedicine, 382(10), 970–971.
- Rothe, C., Schunk, M., Soth mann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., Seil maier, M., Drosten, C., Vollmar, P., Zwirgl maier, K., Zange, S., Wölfel, R. and Hoelscher, M.
- (2020). Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. New England Journal of Medicine, 382(10), 970-971.
- Rubino, F., Amiel, S. A., Bakker, S. J. L., Luik, P. T., Riley, W., and da Silva-Xavier, G. (2020). COVID-19, diabetes and metabolic control: Why is glucose control so difficult with COVID-19 and what are the consequences for patients? Endocrinology, Diabetes and Metabolism, 3(4), E00171.
- Russo, E., Esposito, P., Taramasso, L., Magnasco, L., Saio, M., Briano, F., Russo, C., Dettori, S., Vena, A., Di Biagio, A., Garibotto, G., Bassetti, M. and Viazzi, F. (2021). Kidney disease and all-cause mortality in patients with COVID-19 hospitalized in Genoa, Northern Italy. Journal of Nephrology, 34(1), 173-183.
- Salazar, J. H. (2014). Overview of urea and creatinine. Laboratory Medicine, 45(1), e19-e20.
- Salter, A., Fox, R.J., Newsome, S.D., Hal per, J., Li, D.KB., Kanellis, P., Costello, K., Bebo, B., Rammohan, K., Cutter, G.R. and Cross, A H. (2021). Outcomes and Risk Factors Associated With SARS-CoV-2 Infection in a North American Registry of Patients With Multiple Sclerosis. Journalof the American MedicalAssociation Neurology, 78(6), 699-708.
- Satsangi, S., Gupta, N. and Kodan, P. (2021). Current and new drugs for COVID- 19 treatment and its effects on the liver. Journal of Clinical and Translational Hepatology. 9(3): 436.
- Savarino, A., Boelaert, J. R., Cassone, A., Majori, G., and Cauda, R. (2003). Effects of chloroquine on viral infections: an old drug against today's diseases? The Lancet Infectious Diseases, 3(11), 722-727.
- Savarino, A., Di Trani, L., Donatelli, I., Cauda, R., and Cassone, A. (2006). New insights into the antiviral effects of chloroquine. The Lancet Infectious Diseases, 6(2), 67-69.
- Schaer, C. A., Laczko, E., Schoedon, G., Schaer, D. J., and Valle lian, F. (2013). Chloroquine interference with hemoglobin endocytic trafficking suppresses adaptive heme and iron homeostasis in macrophages: the paradox of an antimalarial agent. Oxidative Medicine and Celular Longevity, 2013, 870-878.
- Schrezenmeier, E., and Dörner, T. (2020). Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, 16(3): 155- 166.
- Sha khsi N, M., Namdar, P., Allami, A., Zolg had r, L., Javadi, A., Karampour, A., Varnaseri, M., Bijani, B., Cheraghi, F., Naderi, Y., Amini, F., Karamyan, M., YadYad, M. J., Jamshid ian, R., and G heibi, N. (2021). Ivermectin as an adjunct treatment for hospitalized adult COVID-19 patients: A randomized multi-center clinical trial. Asian Pacific Journal of Tropical Medicine, 14(6), 266-273.
- Shi, N., Guo, L., Liu, B., Bian, Y., Chen, R., Chen, S., Chen, Y., Cong, X., Dong, G., Guo, J., Hu, L., Jiang, J., Leng, L., Li, B., Li, D., Li, H., Li, J., Li, L., Liu, J., Lu, C., Lv, W., Miao, Q., Qi, W., Shi, Z., Shi, J., Shi, H., Tian, Y., Wang, B., Wang, G., Wang, J., Wang, W., Xian, Y., Xie, X., Xiong, Y., Xu, C., Xu, M., Yan, B., Yang, J., Zhang, L., Zhou, Z., and Zhu, H. (2021). Efficacy and safety of Chinese herbal medicine versus Lopinavir-Ritonavir in adult patients with coronavirus disease 2019: A non-randomized controlled trial. Phytomedicine, 81, 153-157.
- Shi, Y., Wang, G., Cai, X.P., Deng, J.W., Zheng, L., Zhu, H.H., Zheng, M., Yang, B., and Chen, Z. (2020). An overview of COVID-19. Journal of Zhejiang University Science B, 21(5),343-360.
- Shiryaev S.A., Mesci P., and PintoA. (2017) Repurposing of the anti-malaria drug chloroquine for Zika Virus treatment and prophylaxis. Sciences Report
, 15771.
- Singh, D., Cho, W. C. and Upadhyay, G. (2016). Drug-induced liver toxicity and prevention by herbal antioxidants: an overview. Frontiers in Physiology. 6(1): 363.
- Singhal, T. (2020). A review of coronavirus disease-2019 (COVID-19). Indian Journalof Pediatrics, 87, 281-286.
- Sinha, N., and Balayla, G. (2020). Hydroxychloroquine and COVID-19. Postgraduate MedicalJournal, 96(1139), 550-555.
- S kal ny, A. V., Rink, L., Ajsuvakova, O. P., Aschner, M., Gritsenko, V. A., A lekseenko, S. I., ...and S kal naya, M. G. (2020). Zinc and respiratory tract infections: Molecular Perspectives for COVID‑ 19 (Review). International journal of medicine, 46(1): 17-26.
- S ku be, S. J., Buchner, A. M., and Pritchard Jr, M. T. (2021). Impact of COVID-19 on metabolic and disease-induced dysphagia and considerations for care. American Journal of Speech Language Pathology, 30(6): 2497- 2514.
- Sohail, M. U., Althani, A., Anwar, H., Rizzi, R., and Castellano, J. M. (2017). Role of the gastrointestinal tract microbiome in the kynurenine pathway: a detailed review. Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry Central Nervous System Agents),17(1): 45-53.
- Soni, S., Chaturvedi, A., and Singh, J. P. (2017). Importance of zinc in human diet. InternationalJournalof HealthScience Research, 7(8), 462-467.
- Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association. (2020). An update on the epidemiological characteristics of novel coronavirus pneumonia (COVID-19). Chinese Journal of Epidemiology, 41(2), 139-144.
- Speth, R., Carrera, E., Jean-Baptiste, M., Joachim, A., and Linares, A. (2014). The concentration-dependent effects of zinc on angiotensin-converting enzyme 2 activity. FASEB Journal, 28(Suppl 1).
- Spinner C.D., Gottlieb R.L., Criner G.J., Arribas Ló pez J.R., Cattelan A.M., Soriano and Viladomiu A. (2020) Effect of Remdesivir vs. standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. The Journal of the American Medical Association.;324(11):1048 – 1057.
- Stegny, M. Y., Stegny, B. T., and Goltsev, A. N. (2015). Ultrastructure and biological properties of avian infectious bronchitis virus following cryopreservation. Problems of Cryobiology and Cryomedicine, 4(25),340–349.
- Sun J., Deng X., Chen X., Huang J., Huang S., and Li Y. (2020). Incidence of adverse drug reactions in COVID-19 patients in China: An active monitoring study by hospital pharmacovigilance system. Clinical Pharmacology Therapy.;108(4):791 –797.
- Szente Fonseca, S. N., de Queiroz Sousa, A., Wolkoff, A. G., Moreira, M. S., Pinto, B. C., Valente Takeda, C. F., Rebouças, E., Vasconcellos Abdon, A. P., Nascimento, A. L. A., and Risch, H. A. (2020). Risk of hospitalization for COVID-19 outpatients treated with various drug regimens in Brazil: Comparative analysis. Travel Medicine and Infectious Disease, 38, 101906.
- Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., ... and deOliveira, T. (2021). Detection of a SARS-CoV-2 variant of concern in South Africa. Nature, 592(7854): 438-443.
- te Velthuis, A. J., van den Worm, S. H., Sims, A. C., Baric, R. S., Snijder, E. J., and van Hemert, M. J. (2010). Zn (2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. Public Library ofScience Pathogens, 6(11), 170-176.
- Touret, F., Gilles, M., Barral, K., Nougairède, A., van Helden, J., Decroly, E., de Lamballerie, X., and Coutard, B. (2020). In vitro, screening of an FDA- approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Scientific Reports, 10(1), 13093.
- Toews, M. L., & Bylund, D. B. (2005). P harmacologic principles for combination therapy. Proceedings ofthe American Thoracic Society, 2(4), 282–291.
- Tsatsak is, A., Petrak is, D., Niko louzak is, T. K., Docea, A. O., Cal ina, D., Vinceti, M., Goumenou, M., Kostoff, R. N., Mamoula k is, C., Aschner, M., and Herná ndez, A. F. (2020). COVID-19, an opportunity to reevaluate the correlation between the long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. FoodandChemical Toxicology, 141, 114-118.
- Tube k S. (2007) Selected zinc metabolism parameters in premenopausal and postmenopausal women with moderate and severe primary arterial hypertension. BiologicalTrace Element Research.;116:249 – 56.
- Tyteca, D., Van Der Smissen, P., Mettlen, M., Van Bambe ke, F., Tulkens, P. M., Mingeot-Leclercq, M. P., and Courtoy, P. J. (2002). Azith romycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages. ExperimentalCelResearch, 281(1), 86-100.
- Uchino, S., Bellomo, R., and Goldsmith, D. (2012). The meaning of the blood urea nitrogen/creatinine ratio in acute kidney injury. Clinical Kidney Journal, 5(2), 187-191.
- Uetrecht J. (2007). Idiosyncratic drug reactions: current understanding. Annual review ofpharmacology andtoxicology, 47, 513– 539.
- Ulrich, H., and Pillat, M. M. (2020). CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azith romycin and Stem Cell Engagement. Stem CelReviews and Reports, 16, 434–440.
- Van Hasselt J. G. C., & Iyengar R. (2019). Systems Pharmacology: Defining the Interactions of Drug Combinations. Annual review of pharmacology and toxicology, 59, 21–40.
- Vincent M.J., Bergeron E. and Benjannet S. (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. VirolJ
, 69.
- Volz, E., Mishra, S., Chand, M., Barrett, J. C., Johnson, R., Geide lberg, L. and Ferguson, N. M. (2021). Assessing transmissibility ofSARS-CoV-2lineage B.1.1.7 in England Nature, 593(7858): 266-269.
- Wagstaff, K.M., Sivakumaran, H., Heaton, S.M., Harrich, D., and Jans, D.A. (2012). Ivermectin is a specific inhibitor of importin a/b-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. BiochemicalJournal, 443(3), 851–856.
- Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., and Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2): 281-292.
- Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X. and Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. The Journal of the American MedicalAssociation, 323(11), 1061-1069.
- Wang, J. (2020). Fast identification of possible drug treatment of Coronavirus Disease -19 (COVID-19) through computational drug repurposing study. JournalofChemical Information and Modeling, 60, 3277–3286.
- Wax, R.S. and Christian, M.D. (2020). Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019- nCoV) patients. Canadian JournalofAnesthesia, 67, 568-576.
- Wessels, J., Maywald, N., and Rink, Z. (2017). Zinc as a gatekeeper of immune function. Nutrients. 9(12), 1286.
- Williamson, E.J., Walker, A.J., B haskaran, K., Bacon, S., Bates, C., Morton, C.E., Curtis, H.J., Mehr kar, A., Evans, D., Inglesby, P., Cockburn, J., McDonald, H.I., MacKenna, B., Tomlinson, L., Douglas, I.J., Rentsch, C.T., Math ur, R., Wong, A.Y.S., Grieve, R., Harrison, D., Forbes, H., Schultze, A., Croker, R., Parry, J., Hester, F., Harper, S., Perera, R., Evans, S.J.W., Smeeth, L. and Goldacre, B. (2020). Factors associated with COVID-19-related death using OpenSAFELY. Nature. 584(7821), 430-436.
- World Health Organization. (2020). Coronavirus disease 2019 (COVID-19). Situation Report-55. World Health Organization. WHO. https://www.who.int/emergencies/diseases/novelcoronavirus-2019/situation-reports
- World Health Organization. (2002). The importance of pharmacovigilance: safety monitoring of medicinal products. World Health Organization
- World Health Organization. (2020). Clinical management of severe acute respiratory infection(SARI) when COVID-19 disease is suspected. https://www.who.int/publications/i/item/clinical-management-of-covid-19
- World Health Organization. (2020a). Timeline: WHO's COVID-19 response. https://www.who.int/emergencies/diseases/novel-coronavirus- 2019/interactive-timeline
- World Health Organization. (2020a). Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions. https://www.who.int/news room/commentaries/detail/transmission-of-sars- cov-2-implications-for- infection prevention-precautions
- World Health Organization. (2020b). Coronavirus disease (COVID-19). https://www.who.int/health-topics/coronavirus#tab=tab_3
- World Health Organization. (2020c). Hand Hygiene for All. https://www.who.int/campaigns/world-hand-hygiene-day/2020
- World Health Organization. (2020d). Coronavirus disease (COVID-19) advice for the public. https://www.who.int/emergencies/diseases/novel-coronavirus- 2019/advice-for-public.
- World Health Organization. (2020e). Cleaning and Disinfection of Environmental Surfaces in the Context of COVID-19. https://www.who.int/publications/i/item/cleaning-and disinfection-of- environmental-surfaces-in the-context-of-covid-19
- World Health Organization. (2020f). Contact Tracing in the Context of COVID- 19. https://www.who.int/publications/i/item/contact-tracing-in-the-context -of- covid-19
- World Health Organization. (2021). Tracking SARS-CoV-2 variants. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
- World Health Organization. (2023). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/
- Xie C.B., Jiang L.X. and Huang G. (2020) Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. InternationalJournalof Infectious Diseases.;93: 264 –267.
- Xu, Z., Shi, L., Wang. Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J. and Wang, F.S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8(4), 420-422.
- Xu X., Chen P., Wang J., Feng J., Zhou H., Li X., Zhong W. and Hao P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China. Life sciences, 63(3), 457–460.
- Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang, C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J. and Wang F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet. Respiratory medicine, 8(4), 420–422.
- Xue, J., Moyer, A., and Peng, B. (2014). Chloroquine is a zinc ionophore. Public Library ofScience One .9(10), 109-180.
- Yang, J. K., Feng, Y., Yuan, M. Y., Yuan, S. Y., Fu, H. J., Wu, B. Y. and Nawab, (2021). Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS- CoV-2 infection. Frontiers in Endocrinology: 12, 355.
- Yarijani, Z. M., and Najaf i, H. (2021). Kidney injury in COVID-19 patients, drug development and their renal complications: Review study. Biomedicine & Pharmacotherapy, 142, 111-116.
- Yuwen P., Chen W., Lv H., Feng C., Li Y., Zhang T., Hu P., Guo J., Tian Y., Liu L., Sun J. and Zhang Y. (2017). Albumin and surgical site infection risk in orthopaedics: a meta-analysis. BMC surgery, 17(1), 7.
- Zak i A. M., Van Boheemen S., Bestebroer T. M., Osterhaus A. D. and Fouch ier, R. A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New Englandjournalofmedicine, 367(19), 1814– 1820.
- Zeng, H.-L., Zhang, B., Wang, X., Yang, Q., and Cheng, L. (2021). Urinary trace elements in association with disease severity and outcome in patients with COVID-19. Environmental Research, 194, 110670.
- Zhang, X., Song, Y., Ci, X., An, N., Ju, Y., Li, H., Wang, X., Han, C., Cui, J., and Deng, X. (2008). Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflammation Research, 57(11), 524-529.
- Zhang, H., Penninger, J., and Li, Y. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. European Heart Journal, 46(4), 586– 590.
- Zheng T., Yang R. and Mei H., (2020) Pregnant women with COVID-19 and risk of adverse birth outcomes and maternal-fetal vertical transmission: a population-based cohort study in Wuhan, China. BMC Medicine 18; 330.
- Zheng, Q.L., Duan, T. and Jin, L.P. (2020). Single-cell RNA expression profiling of ACE2 and AXL in the human maternal-fetal. interface. Reproductive and Developmental Medicine, 4(1), 7-10.
- Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270-273.
- Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F. and Tan, W. (2020). China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New EnglandJournalof Medicine, 382(8):727-733.
- Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J. and Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journalof Medicine, 382(8): 727-733.
- Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., Yu J., Kang M., Song Y., Xia J., Guo Q., Song T., He J., Yen H. L., Peiris M. and Wu J. (2020). SARS- CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. The New Englandjournalofmedicine, 382(12), 1177– 1179.
- Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., Yu, J., Kang, M., Song, Y., Xia, J., Guo, Q., Song, T., He, J., Yen, H.L., Peiris, M. and Wu, J. (2020). SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. New England Journal of Medicine, 382(12), 1177-1179.
- Zuckerman, J. M. (2014). Macrolides and ketolides: azith romycin, clarith romycin, tel ith romycin. Infectious Disease Clinics, 28(3): 539-550.
- Zwerling, A., Behr, M.A., Verma, A., Brewer, T.F., Menzies, D., and Pai, M. (2011). The BCG World Atlas: a database of global BCG vaccination policies and practices. Public Library of Science Medicine, 8(3), e1001-1012.
The COVID-19 pandemic necessitated the rapid development and use of therapeutic drugs to combat the
disease. However, concerns exist regarding the potential adverse effects of these drugs on metabolic processes like glucose
homeostasis, renal function and bilirubin levels. This study aimed to evaluate the impact of chloroquine,
hydroxychloroquine, ivermectin, azith romycin, lopinavir & ritonavir, zinc & selenium, which are recommended COVID-
19 drugs, on glucose metabolism, renal function (urea and creatinine levels) and bilirubin levels in Wistar rat model.
About sixty (60) Wistar rats were randomly assigned to 9 treatment test groups and a control group (a total of 10
groups). The drugs were administered orally at clinically relevant doses for one month. Blood glucose, urea, creatinine and
bilirubin assay was performed to assess glucose metabolism using the oxidase-peroxidase method, bilirubin by Evelyn and
Malloy's method, urea and creatinine levels using urease berthe lot's and alkaline picrate method respectively. Data obtained
was analyzed by the Statistical Package for Social Sciences (SPSS) software. The results showed that the group treated with
hydroxychloroquine + azith romycin + lopinavir/ritonavir + ivermectin + zinc + selenium demonstrated a markedly elevated
mean glucose level of 103.80 mg/dL (P = 0.001) compared to the control (83.83mg/dL), indicating a statistically significant
impact on glucose metabolism. Analysis revealed no significant difference in urea and creatinine levels (p>0.05) among
the different groups as p values were = 0.109 and 0.848 respectively. The hydroxychloroquine + azith romycin +
lopinavir/ritonavir + ivermectin + zinc + selenium group showed markedly elevated glucose levels. The direct bilirubin of
experimental animals across most treated groups was significantly elevated (p<0.05). Results also showed that total
bilirubin was significantly higher (p<0.05) in animals treated with ivermectin (0.93±0.10) and Lopinavir-ritonavir
(0.92±0.06) when compared to control (0.47±0.07) . In conclusion, patients who are being administered this
drug combination (hydroxychloroquine + azith romycin + lopinavir/ritonavir + ivermectin + zinc + selenium) are at
risk of developing diabetes mellitus and also further worsening the condition of diabetic patients. Also administration of
these drugs may induce liver dysfunction, hyperbilirubinemia, drug-induced liver injury, drug-induced hepatitis and
consequently jaundice. It is recommended to avoid the concurrent use of this specific drug combination unless the potential
benefits outweigh the risks of hyperglycemia, the administration of these drugs adversely affected the synthetic and
excretory functions of the liver and regular assessment of liver function parameters necessary.