Exploring Microbial Diversity in Air and Water and their Role in Enhancing Agricultural Resilience and Urban Ecosystem Health


Authors : Iledare Akinyemi Michael; Adebola Daisy Olade; David Oche Idoko; Vincent Yiga; David Galadima; Edmond Kwekutsu

Volume/Issue : Volume 10 - 2025, Issue 1 - January


Google Scholar : https://tinyurl.com/3x9dkwvy

Scribd : https://tinyurl.com/e32emhab

DOI : https://doi.org/10.5281/zenodo.14651198


Abstract : Microbial communities in air and water play a pivotal role in maintaining environmental balance, influencing public health, and supporting ecosystem resilience. This review explores the diversity of airborne and waterborne microbes, focusing on their interactions with urban ecosystems and agricultural systems. In urban settings, airborne microbiomes impact air quality, human health, and climate regulation, while in agricultural systems, waterborne microbes contribute to crop productivity and resilience against environmental stressors. The study highlights the potential of microbiome-based approaches for mitigating challenges such as air pollution, water contamination, and soil degradation. Emphasis is placed on the integration of microbial monitoring and environmental management strategies to foster sustainable urban development and agricultural practices. By synthesizing recent advancements in microbiome research, this paper emphasizes the critical need for interdisciplinary efforts to harness microbial diversity for improved environmental health and resilience in the face of global environmental challenges.

References :

  1. Aborode, A. T., Onifade, I. A., Olorunshola, M. M., Adenikinju, G. O., Aruorivwooghene, I. J., Femi, A. C., ... & Iorkula, T. H. (2024). Biochemical mechanisms and molecular interactions of vitamins in cancer therapy. Cancer Pathogenesis and Therapy, 2, E01-E49.
  2. Aborode, A. T., Ottoho, E., Ogbonna, R. A., Ayobami, O. I., Kabirat, O. O., Hassan, A. T., ... & Ogbonna, A. in Africa, Journal of Medicine, Surgery, and Public Health,(2024).
  3. Aborode, A. T., Ottoho, E., Ogbonna, R. A., Onifade, I. A., Kabirat, O. O., Hassan, A. T., & Ahmed, F. A. (2024). Tackling sickle cell disease in Africa. Journal of Medicine, Surgery, and Public Health, 2, 100054.
  4. Ahmed, T., Zounemat-Kermani, M., & Scholz, M. (2020). Climate change, water quality and water-related challenges: a review with focus on Pakistan. International journal of environmental research and public health, 17(22), 8518.
  5. Astapati, A. D., & Nath, S. (2023). The complex interplay between plant-microbe and virus interactions in sustainable agriculture: Harnessing phytomicrobiomes for enhanced soil health, designer plants, resource use efficiency, and food security. Crop Design, 2(1), 100028.
  6. Ayobami, O. I., Sunbare-Funto, O. J., Mbah, C. E., Ajibade, O. A., Oyawoye, O. M., Aborode, A. T., ... & Adesola, R. O. (2024). Faecal microbial transplant. Advances in Biomarker Sciences and Technology.
  7. Bagnall, D. K., Rieke, E. L., Morgan, C. L., Liptzin, D. L., Cappellazzi, S. B., & Honeycutt, C. W. (2023). A minimum suite of soil health indicators for North American agriculture. Soil Security, 10, 100084.
  8. Barea, J. M., Pozo, M. J., Azcon, R., & Azcon-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of experimental botany, 56(417), 1761-1778.
  9. Bayode, M., Ogundana, I., Ogundare, O., Awodire, E., Abbah, P., Onifade, I., ... & Elabiyi, M. (2024). A review of metabolic calorimetric applications in plant stress, waste management, and diagnostics. Academia Biology, 2(3).
  10. Bent, S. J., & Forney, L. J. (2008). The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. The ISME journal, 2(7), 689-695.
  11. Bichai, F., & Ashbolt, N. (2017). Public health and water quality management in low-exposure stormwater schemes: A critical review of regulatory frameworks and path forward. Sustainable Cities and Society, 28, 453-465.
  12. Bissett, A., Brown, M. V., Siciliano, S. D., & Thrall, P. H. (2013). Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecology letters, 16, 128-139.
  13. Blumenthal, U. J., Mara, D. D., Peasey, A., Ruiz-Palacios, G., & Stott, R. (2000). Guidelines for the microbiological quality of treated wastewater used in agriculture: recommendations for revising WHO guidelines. Bulletin of the World Health Organization, 78, 1104-1116.
  14. Brągoszewska, E., & Biedroń, I. (2018). Indoor air quality and potential health risk impacts of exposure to antibiotic resistant bacteria in an office rooms in Southern Poland. International Journal of Environmental Research and Public Health, 15(11), 2604.
  15. Brągoszewska, E., & Biedroń, I. (2018). Indoor air quality and potential health risk impacts of exposure to antibiotic resistant bacteria in an office rooms in Southern Poland. International Journal of Environmental Research and Public Health, 15(11), 2604.
  16. Carvalho, L., Mackay, E. B., Cardoso, A. C., Baattrup-Pedersen, A., Birk, S., Blackstock, K. L., ... & Solheim, A. L. (2019). Protecting and restoring Europe's waters: An analysis of the future development needs of the Water Framework Directive. Science of the Total Environment, 658, 1228-1238.
  17. Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., ... & Webster, N. S. (2019). Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 17(9), 569-586.
  18. Chaudhary, P., Xu, M., Ahamad, L., Chaudhary, A., Kumar, G., Adeleke, B. S., ... & Abou Fayssal, S. (2023). Application of synthetic consortia for improvement of soil fertility, pollution remediation, and agricultural productivity: a review. Agronomy, 13(3), 643.
  19. Chen, J., Jia, Y., Sun, Y., Liu, K., Zhou, C., Liu, C., ... & Fan, G. (2024). Global marine microbial diversity and its potential in bioprospecting. Nature, 633(8029), 371-379.
  20. Corre, M. H., Delafont, V., Legrand, A., Berjeaud, J. M., & Verdon, J. (2019). Exploiting the richness of environmental waterborne bacterial species to find natural Legionella pneumophila competitors. Frontiers in Microbiology, 9, 3360.
  21. Cotner, J. B., & Biddanda, B. A. (2002). Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems, 5, 105-121.
  22. Dommergue, A., Amato, P., Tignat-Perrier, R., Magand, O., Thollot, A., Joly, M., ... & Larose, C. (2019). Methods to investigate the global atmospheric microbiome. Frontiers in Microbiology, 10, 243.
  23. Fujiyoshi, S., Tanaka, D., & Maruyama, F. (2017). Transmission of airborne bacteria across built environments and its measurement standards: a review. Frontiers in microbiology, 8, 2336.
  24. Gandolfi, I., Bertolini, V., Bestetti, G., Ambrosini, R., Innocente, E., Rampazzo, G., ... & Franzetti, A. (2015). Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Applied microbiology and biotechnology, 99, 4867-4877.
  25. Gupta, A., Singh, U. B., Sahu, P. K., Paul, S., Kumar, A., Malviya, D., ... & Saxena, A. K. (2022). Linking soil microbial diversity to modern agriculture practices: a review. International Journal of Environmental Research and Public Health, 19(5), 3141.
  26. Haferburg, G., & Kothe, E. (2007). Microbes and metals: interactions in the environment. Journal of basic microbiology, 47(6), 453-467.
  27. Hawksworth, D. L., & Colwell, R. R. (1992). Microbial diversity 21: biodiversity amongst microorganisms and its relevance. Biodiversity & Conservation, 1, 221-226.
  28. Huang, J., Wang, D., Zhu, Y., Yang, Z., Yao, M., Shi, X., ... & Li, H. (2024). An overview for monitoring and prediction of pathogenic microorganisms in the atmosphere. Fundamental research, 4(3), 430-441.
  29. Jin, D., Kong, X., Cui, B., Jin, S., Xie, Y., Wang, X., & Deng, Y. (2018). Bacterial communities and potential waterborne pathogens within the typical urban surface waters. Scientific reports, 8(1), 1-9.
  30. Joshi, P., Pande, V., & Joshi, P. (2016). Microbial diversity of aquatic ecosystem and its industrial potential. J. Bacteriol. Mycol. Open Access, 3, 177-179.
  31. Khan, N., Ali, S., Tariq, H., Latif, S., Yasmin, H., Mehmood, A., & Shahid, M. A. (2020). Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy, 10(11), 1683.
  32. Kumar, P., Kausar, M. A., Singh, A. B., & Singh, R. (2021). Biological contaminants in the indoor air environment and their impacts on human health. Air Quality, Atmosphere & Health, 14(11), 1723-1736.
  33. Kumar, P., Kausar, M. A., Singh, A. B., & Singh, R. (2021). Biological contaminants in the indoor air environment and their impacts on human health. Air Quality, Atmosphere & Health, 14(11), 1723-1736.
  34. Leung, M. H., Tong, X., & Lee, P. K. (2019). Indoor microbiome and airborne pathogens. Comprehensive Biotechnology, 96.
  35. Liu, H., Zhang, X., Zhang, H., Yao, X., Zhou, M., Wang, J., ... & Hu, B. (2018). Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environmental pollution, 233, 483-493.
  36. Lymperopoulou, D. S., Adams, R. I., & Lindow, S. E. (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and environmental microbiology, 82(13), 3822-3833.
  37. Mai, H., Nguyen, D. T., Nguyen, T. H., Dao, T. D., & Nguyen, N. T. Seasonal Microplastics and Meiofauna Distributions in Estuarine Sedimentary of Van Uc River, Viet Nam. Viet Nam.
  38. Maki, T., Kakikawa, M., Kobayashi, F., Yamada, M., Matsuki, A., Hasegawa, H., & Iwasaka, Y. (2013). Assessment of composition and origin of airborne bacteria in the free troposphere over Japan. Atmospheric Environment, 74, 73-82.
  39. Malaterre, C. (2013). Microbial diversity and the “lower-limit” problem of biodiversity. Biology & Philosophy, 28, 219-239.
  40. Malaterre, C. (2013). Microbial diversity and the “lower-limit” problem of biodiversity. Biology & Philosophy, 28, 219-239.
  41. Martin Hartmann. (2022). Soil microbiomes; a nature-based solution for sustainable agriculture. Department of Environmental Systems Science.
  42. Meena, R. S., & Lal, R. (2018). Legumes and sustainable use of soils. Legumes for soil health and sustainable management, 1-31.
  43. Moore, J. L., Caprioli, R. M., & Skaar, E. P. (2014). Advanced mass spectrometry technologies for the study of microbial pathogenesis. Current opinion in microbiology, 19, 45-51.
  44. Morcillo, R. J., & Manzanera, M. (2021). The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites, 11(6), 337.
  45. Nadarajah, K., & Abdul Rahman, N. S. N. (2023). The Microbial Connection to Sustainable Agriculture. Plants, 12(12), 2307.
  46. Nwankwo, E. I., Emeihe, E. V., Ajegbile, M. D., Olaboye, J. A., & Maha, C. C. (2024). Artificial Intelligence in predictive analytics for epidemic outbreaks in rural populations. International Journal of Life Science Research Archive, 7(1), 078-094.
  47. Odiyo, J. O., & Makungo, R. (2012). Water quality problems and management in rural areas of Limpopo Province, South Africa. WIT Transactions on Ecology and the Environment, 164, 135-146.
  48. Online Biology. (2018) .Microbial ecology and Role of microorganism in ecosystem.
  49. Prussin, A. J., & Marr, L. C. (2015). Sources of airborne microorganisms in the built environment. Microbiome, 3, 1-10.
  50. Prussin, A. J., & Marr, L. C. (2015). Sources of airborne microorganisms in the built environment. Microbiome, 3, 1-10.
  51. Prussin, A. J., & Marr, L. C. (2015). Sources of airborne microorganisms in the built environment. Microbiome, 3, 1-10.
  52. Russo, C., Lavorgna, M., Česen, M., Kosjek, T., Heath, E., & Isidori, M. (2018). Evaluation of acute and chronic ecotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and UV treated samples. Environmental Pollution, 233, 356-363.
  53. Šantl-Temkiv, T., Amato, P., Casamayor, E. O., Lee, P. K., & Pointing, S. B. (2022). Microbial ecology of the atmosphere. FEMS Microbiology Reviews, 46(4), fuac009.
  54. Satyanarayana, T. (2005). Microbial diversity: current perspectives and potential applications.
  55. Scholarly Community. (2022). Air Pollution on Human Microbial Community.
  56. Schowanek, D., Carr, R., David, H., Douben, P., Hall, J., Kirchmann, H., ... & Webb, S. (2004). A risk-based methodology for deriving quality standards for organic contaminants in sewage sludge for use in agriculture—conceptual framework. Regulatory Toxicology and Pharmacology, 40(3), 227-251.
  57. Senadheera, U. E., Jayasanka, J., Udayanga, D., Hewawasam, C., Amila, B., Takimoto, Y., ... & Tadachika, N. (2024). Beyond Composting Basics: A Sustainable Development Goals—Oriented Strategic Guidance to IoT Integration for Composting in Modern Urban Ecosystems. Sustainability, 16(23), 10332.
  58. Senadheera, U. E., Jayasanka, J., Udayanga, D., Hewawasam, C., Amila, B., Takimoto, Y., ... & Tadachika, N. (2024). Beyond Composting Basics: A Sustainable Development Goals—Oriented Strategic Guidance to IoT Integration for Composting in Modern Urban Ecosystems. Sustainability, 16(23), 10332.
  59. Shi, Y., Wang, G., Lau, H. C. H., & Yu, J. (2022). Metagenomic sequencing for microbial DNA in human samples: emerging technological advances. International journal of molecular sciences, 23(4), 2181.
  60. Studocu. (2024).Transmission of  AirborneInfectious Microbes
  61. Tapia, C., Randall, L., Wang, S., & Borges, L. A. (2021). Monitoring the contribution of urban agriculture to urban sustainability: an indicator-based framework. Sustainable Cities and Society, 74, 103130.
  62. Tapia, C., Randall, L., Wang, S., & Borges, L. A. (2021). Monitoring the contribution of urban agriculture to urban sustainability: an indicator-based framework. Sustainable Cities and Society, 74, 103130.
  63. Tesson, S. V., Skjøth, C. A., Šantl-Temkiv, T., & Löndahl, J. (2016). Airborne microalgae: insights, opportunities, and challenges. Applied and Environmental Microbiology, 82(7), 1978-1991.
  64. Theron, J., & Cloete, T. E. (2002). Emerging waterborne infections: contributing factors, agents, and detection tools. Critical Reviews in Microbiology, 28(1), 1-26.
  65. Tignat-Perrier, R., Dommergue, A., Thollot, A., Keuschnig, C., Magand, O., Vogel, T. M., & Larose, C. (2019). Global airborne microbial communities controlled by surrounding landscapes and wind conditions. Scientific Reports, 9(1), 14441.
  66. Toor, M. D., Ur Rehman, M., Abid, J., Nath, D., Ullah, I., Basit, A., ... & Mohamed, H. I. (2024). Microbial Ecosystems as Guardians of Food Security and Water Resources in the Era of Climate Change. Water, Air, & Soil Pollution, 235(11), 741.
  67. Trinh, T. N. D., & Lee, N. Y. (2022). Advances in nucleic acid amplification-based microfluidic devices for clinical microbial detection. Chemosensors, 10(4), 123.
  68. Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., ... & Soyer, O. S. (2016). Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME journal, 10(11), 2557-2568.
  69. Zhai, Y., Li, X., Wang, T., Wang, B., Li, C., & Zeng, G. (2018). A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environment International, 113, 74-90.
  70. Zhang, J., Wang, L., & Xu, F. (2024). Conserving microbial diversity to tackle environmental challenges. *Nature Reviews Microbiology*, 22(1), 5–18.
  71. Zhang, W. (2024). Strategic Engineering of Synthetic Microbial Communities (SynComs) for Optimizing Plant Health and Yield in Agriculture. Molecular Microbiology Research, 14.
  72. Zhen, Q., Deng, Y., Wang, Y., Wang, X., Zhang, H., Sun, X., & Ouyang, Z. (2017). Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 601, 703-712.

Microbial communities in air and water play a pivotal role in maintaining environmental balance, influencing public health, and supporting ecosystem resilience. This review explores the diversity of airborne and waterborne microbes, focusing on their interactions with urban ecosystems and agricultural systems. In urban settings, airborne microbiomes impact air quality, human health, and climate regulation, while in agricultural systems, waterborne microbes contribute to crop productivity and resilience against environmental stressors. The study highlights the potential of microbiome-based approaches for mitigating challenges such as air pollution, water contamination, and soil degradation. Emphasis is placed on the integration of microbial monitoring and environmental management strategies to foster sustainable urban development and agricultural practices. By synthesizing recent advancements in microbiome research, this paper emphasizes the critical need for interdisciplinary efforts to harness microbial diversity for improved environmental health and resilience in the face of global environmental challenges.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe