From Pandemic to Persistence: Obesity, Immunity, and Next-Gen COVID-19 Vaccines


Authors : Kallol Kanti Mondal; Md Shihab Uddin; Tanvir Mahmud

Volume/Issue : Volume 10 - 2025, Issue 8 - August


Google Scholar : https://tinyurl.com/3jxt8k6c

Scribd : https://tinyurl.com/47xzn3ws

DOI : https://doi.org/10.38124/ijisrt/25aug1400

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : The COVID-19 pandemic, though no longer classified as a global emergency, persists as a major public health challenge in 2025 due to the continued emergence of SARS-CoV-2 variants with enhanced transmissibility and immune evasion. This paper reviews the evolving epidemiology of COVID-19, the critical interplay between obesity and disease severity, and advances in precision vaccination and therapeutics. Epidemiological and meta-analytic evidence highlights obesity as a significant independent risk factor for infection, hospitalization, ICU admission, mechanical ventilation, and mortality, underpinned by mechanisms such as immune dysfunction, chronic low-grade inflammation, and obesity-related comorbidities. Moreover, obesity is shown to impair vaccine-induced immune responses, complicating long-term protection. In parallel, updated mRNA and protein-subunit vaccines, alongside emerging monoclonal antibody and antiviral strategies, reflect the shift toward precision medicine tailored to vulnerable populations, particularly the immunocompromised. While monoclonal antibody efficacy has been undermined by viral evolution, novel agents such as pemivibart and vilobelimab demonstrate promise in targeted settings. Collectively, the findings underscore the importance of sustained surveillance, equitable vaccine distribution, integrated obesity prevention, and personalized medical interventions. As SARS-CoV-2 continues to adapt, long-term mitigation will require scientific innovation, public health vigilance, and commitment to global health equity.

Keywords : COVID-19, SARS-CoV-2 Variants, Obesity and COVID-19, Precision Vaccination, Immune Dysfunction, Chronic Inflammation, Personalized Medicine, Public Health Surveillance.

References :

  1. Lundberg, A. L., Wu, S. A., Soetikno, A. G., Hawkins, C., Murphy, R. L., Havey, R. J., ... & Post, L. A. (2024). Updated surveillance metrics and history of the COVID-19 pandemic (2020-2023) in Europe: longitudinal trend analysis. JMIR public health and surveillance, 10(1), e53551.
  2. Cohen, L. E., Fagre, A. C., Chen, B., Carlson, C. J., & Becker, D. J. (2023). Coronavirus sampling and surveillance in bats from 1996–2019: a systematic review and meta-analysis. Nature Microbiology, 8(6), 1176–1186. https://doi.org/10.1038/s41564-023-01375-1
  3. International Conference on Emerging Infectious Diseases 2022 Poster and Oral Presentation Abstracts. (2022). Emerging Infectious Diseases, 28(9), eNN2809. https://doi.org/10.3201/eid2809.NN2809
  4. Cobar, O., & Cobar, S. (2024). Omicron Variants World Prevalence, 169 WHO COVID-19 Epidemiological Update, ECDC Communicable Disease Threat Report, and CDC COVID Data Tracker Review.
  5. Grassly, N. C., Shaw, A. G., & Owusu, M. (2024). Global wastewater surveillance for pathogens with pandemic potential: opportunities and challenges. The Lancet Microbe.
  6. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature medicine, 26(4), 450–452. https://doi.org/10.1038/s41591-020-0820-9
  7. Boni, M. F., Lemey, P., Jiang, X., Lam, T. T., Perry, B. W., Castoe, T. A., Rambaut, A., & Robertson, D. L. (2020). Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nature microbiology, 5(11), 1408–1417. https://doi.org/10.1038/s41564-020-0771-4
  8. Yang, J., Ma, Z., & Lei, Y. (2020). A meta-analysis of the association between obesity and COVID-19. Epidemiology and infection, 149, e11. https://doi.org/10.1017/S0950268820003027
  9. Sharma, A., Garg, A., Rout, A., & Lavie, C. J. (2020). Association of Obesity With More Critical Illness in COVID-19. Mayo Clinic proceedings, 95(9), 2040–2042. https://doi.org/10.1016/j.mayocp.2020.06.046
  10. Cho, H., Park, Y., & Myung, S. K. (2024). Obesity and mortality in patients with COVID-19: A meta-analysis of prospective studies. Asia Pacific journal of clinical nutrition, 33(1), 56–65. https://doi.org/10.6133/apjcn.202403_33(1).0007
  11. Haber, R., Ghezzawi, M., Puzantian, H., Haber, M., Saad, S., Ghandour, Y., El Bachour, J., Yazbeck, A., Hassanieh, G., Mehdi, C., Ismail, D., Abi-Kharma, E., El-Zein, O., Khamis, A., Chakhtoura, M., & Mantzoros, C. (2024). Mortality risk in patients with obesity and COVID-19 infection: a systematic review and meta-analysis. Metabolism: clinical and experimental, 155, 155812. https://doi.org/10.1016/j.metabol.2024.155812
  12. Rossi, A. P., Gottin, L., Donadello, K., Schweiger, V., Nocini, R., Taiana, M., Zamboni, M., & Polati, E. (2021). Obesity as a risk factor for unfavourable outcomes in critically ill patients affected by Covid 19. Nutrition, metabolism, and cardiovascular diseases : NMCD, 31(3), 762–768. https://doi.org/10.1016/j.numecd.2020.11.012
  13. Sanchis-Gomar, F., Lavie, C. J., Mehra, M. R., Henry, B. M., & Lippi, G. (2020). Obesity and Outcomes in COVID-19: When an Epidemic and Pandemic Collide. Mayo Clinic proceedings, 95(7), 1445–1453. https://doi.org/10.1016/j.mayocp.2020.05.006
  14. Sanchis-Gomar, F., Lavie, C. J., Neeland, I. J., & Lippi, G. (2021). Does abdominal obesity influence immunological response to SARS-CoV-2 infection?. Expert review of endocrinology & metabolism, 16(6), 271–272. https://doi.org/10.1080/17446651.2021.1979392
  15. Tong, M. Z., Sng, J. D., Carney, M., Cooper, L., Brown, S., Lineburg, K. E., Chew, K. Y., Collins, N., Ignacio, K., Airey, M., Burr, L., Joyce, B. A., Jayasinghe, D., McMillan, C. L., Muller, D. A., Adhikari, A., Gallo, L. A., Dorey, E. S., Barrett, H. L., Gras, S., … Short, K. R. (2023). Elevated BMI reduces the humoral response to SARS-CoV-2 infection. Clinical & translational immunology, 12(12), e1476. https://doi.org/10.1002/cti2.1476
  16. Madruga, M. P., Grun, L. K., Santos, L. S. M. D., Friedrich, F. O., Antunes, D. B., Rocha, M. E. F., Silva, P. L., Dorneles, G. P., Teixeira, P. C., Oliveira, T. F., Romão, P. R. T., Santos, L., Moreira, J. C. F., Michaelsen, V. S., Cypel, M., Antunes, M. O. B., Jones, M. H., Barbé-Tuana, F. M., & Bauer, M. E. (2024). Excess of body weight is associated with accelerated T-cell senescence in hospitalized COVID-19 patients. Immunity & ageing : I & A, 21(1), 17. https://doi.org/10.1186/s12979-024-00423-6
  17. van der Klaauw, A. A., Horner, E. C., Pereyra-Gerber, P., Agrawal, U., Foster, W. S., Spencer, S., Vergese, B., Smith, M., Henning, E., Ramsay, I. D., Smith, J. A., Guillaume, S. M., Sharpe, H. J., Hay, I. M., Thompson, S., Innocentin, S., Booth, L. H., Robertson, C., McCowan, C., & Kerr, S. (2023). Accelerated waning of the humoral response to COVID-19 vaccines in obesity. Nature Medicine, 1–9. https://doi.org/10.1038/s41591-023-02343-2
  18. Jang, S., Hong, W., & Moon, Y. (2024). Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Frontiers in immunology, 15, 1433531. https://doi.org/10.3389/fimmu.2024.1433531
  19. Zhao, N., Di, B., & Xu, L. L. (2021). The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine & growth factor reviews, 61, 2–15. https://doi.org/10.1016/j.cytogfr.2021.06.002
  20. Lilov, A., Palaveev, K., & Mitev, V. (2024). High Doses of Colchicine Act As "Silver Bullets" Against Severe COVID-19. Cureus, 16(2), e54441. https://doi.org/10.7759/cureus.54441
  21. Mondeshki T, Mitev V. High-Dose Colchicine: Key Factor in the Treatment of Morbidly Obese COVID-19 Patients. Cureus. 2024 Apr 13;16(4):e58164. doi: 10.7759/cureus.58164. PMID: 38741862; PMCID: PMC11089341.
  22. Mitev V. (2024). Colchicine-The Divine Medicine against COVID-19. Journal of personalized medicine, 14(7), 756. https://doi.org/10.3390/jpm14070756
  23. Khanna, D., Khanna, S., Khanna, P., Kahar, P., & Patel, B. M. (2022). Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus, 14(2), e22711. https://doi.org/10.7759/cureus.22711
  24. Lippi, G., & Plebani, M. (2020). Cytokine "storm", cytokine "breeze", or both in COVID-19?. Clinical chemistry and laboratory medicine, 59(4), 637–639. https://doi.org/10.1515/cclm-2020-1761
  25. Saccon, T. D., Mousovich-Neto, F., Ludwig, R. G., Carregari, V. C., Dos Anjos Souza, A. B., Dos Passos, A. S. C., Martini, M. C., Barbosa, P. P., de Souza, G. F., Muraro, S. P., Forato, J., Amorim, M. R., Marques, R. E., Veras, F. P., Barreto, E., Gonçalves, T. T., Paiva, I. M., Fazolini, N. P. B., Onodera, C. M. K., Martins Junior, R. B., … Mori, M. A. (2022). SARS-CoV-2 infects adipose tissue in a fat depot- and viral lineage-dependent manner. Nature communications, 13(1), 5722. https://doi.org/10.1038/s41467-022-33218-8
  26. Fessler, S.N., Liu, L., Chang, Y., & Johnston, C.S. (2024). Body Mass Index Is Associated with Post-Acute Elevations in Biomarkers of Platelet Activation and Inflammation in Unvaccinated Adults Diagnosed with COVID-19 in the Previous 8 Weeks. Obesity Facts, 17, 652 - 657.
  27. Reiterer, M., Rajan, M., Gómez-Banoy, N., Lau, J. D., Gomez-Escobar, L. G., Ma, L., Gilani, A., Alvarez-Mulett, S., Sholle, E. T., Chandar, V., Bram, Y., Hoffman, K., Bhardwaj, P., Piloco, P., Rubio-Navarro, A., Uhl, S., Carrau, L., Houhgton, S., Redmond, D., Shukla, A. P., … Lo, J. C. (2021). Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell metabolism, 33(11), 2174–2188.e5.
  28. Maurya, R., Sebastian, P., Namdeo, M., Devender, M., & Gertler, A. (2021). COVID-19 Severity in Obesity: Leptin and Inflammatory Cytokine Interplay in the Link Between High Morbidity and Mortality. Frontiers in immunology, 12, 649359.
  29. Pighi, L., Lippi, G., & Mattiuzzi, C. (2024). The incremental impact of comorbidities in COVID-19-related deaths compared to patients dying from cancer or cardiovascular disease. The Egyptian Journal of Internal Medicine, 36(1). https://doi.org/10.1186/s43162-024-00348-y
  30. Zhang, X., Ha, S., Lau, H. C., & Yu, J. (2023). Excess body weight: Novel insights into its roles in obesity comorbidities. Seminars in cancer biology, 92, 16–27. https://doi.org/10.1016/j.semcancer.2023.03.008
  31. Xie, Y., Choi, T., & Al-Aly, Z. (2024). Postacute Sequelae of SARS-CoV-2 Infection in the Pre-Delta, Delta, and Omicron Eras. The New England journal of medicine, 391(6), 515–525.
  32. Bhimraj, A., Falck-Ytter, Y., Kim, A. Y., Li, J. Z., Baden, L. R., Johnson, S., Shafer, R. W., Shoham, S., Tebas, P., Bedimo, R., Cheng, V. C., Chew, K. W., Chiotos, K., Daar, E. S., Dzierba, A. L., Glidden, D. V., Hardy, E. J., Martin, G. S., MacBrayne, C., Nadig, N., … Gandhi, R. T. (2024). 2024 Clinical Practice Guideline Update by the Infectious Diseases Society of America on the Management of COVID-19: Anti-SARS-CoV-2 Neutralizing Antibody Pemivibart for Pre-exposure Prophylaxis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, ciae435. Advance online publication. https://doi.org/10.1093/cid/ciae435
  33. Fiorillo, B., Marchianò, S., Moraca, F., Sepe, V., Carino, A., Rapacciuolo, P., Biagioli, M., Limongelli, V., Zampella, A., Catalanotti, B., & Fiorucci, S. (2022). Discovery of Bile Acid Derivatives as Potent ACE2 Activators by Virtual Screening and Essential Dynamics. Journal of chemical information and modeling, 62(1), 196–209. https://doi.org/10.1021/acs.jcim.1c01126
  34. Fiorucci, S., Urbani, G., & Distrutti, E. (2023). Bile Acids and SARS-CoV-2: Ursodeoxycholic Acid as a Potential Treatment of COVID-19. Recent advances in inflammation & allergy drug discovery, 17(1), 2–6.
  35. Fiorucci, S., Urbani, G., Biagioli, M., Sepe, V., Distrutti, E., & Zampella, A. (2024). Bile acids and bile acid activated receptors in the treatment of Covid-19. Biochemical pharmacology, 228, 115983.
  36. Fiorucci, S., & Urbani, G. (2022). Role of mRAGEs and ACE2 in SARS-CoV-2-Related Inflammation. Recent advances in inflammation & allergy drug discovery, 16(1), 2–4.
  37. Vukovikj, M., Melidou, A., Nannapaneni, P., Normark, T., Kraus, A., & Broberg, E. K. (2025). Impact of SARS-CoV-2 variant mutations on susceptibility to monoclonal antibodies and antiviral drugs: a non-systematic review, April 2022 to October 2024. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 30(10), 2400252.
  38. Vlaar, A. P. J., Witzenrath, M., van Paassen, P., Heunks, L. M. A., Mourvillier, B., de Bruin, S., Lim, E. H. T., Brouwer, M. C., Tuinman, P. R., Saraiva, J. F. K., Marx, G., Lobo, S. M., Boldo, R., Simon-Campos, J. A., Cornet, A. D., Grebenyuk, A., Engelbrecht, J. M., Mukansi, M., Jorens, P. G., Zerbib, R., … PANAMO study group (2022). Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet. Respiratory medicine, 10(12), 1137–1146.
  39. Gulick, R. M., Pau, A. K., Daar, E., Evans, L., Gandhi, R. T., Tebas, P., Ridzon, R., Masur, H., Lane, H. C., NIH COVID-19 Treatment Guidelines Panel, Adimora, A. A., Baker, J., Kreuziger, L. B., Bedimo, R., Belperio, P., Bhalla, A., Burgess, T., Campbell, D., Cantrill, S., Chew, K., … Aberg, J. (2024). National Institutes of Health COVID-19 Treatment Guidelines Panel: Perspectives and Lessons Learned. Annals of internal medicine, 177(11), 1547–1557. https://doi.org/10.7326/ANNALS-24-00464
  40. RECOVERY Collaborative Group, Horby, P., Lim, W. S., Emberson, J. R., Mafham, M., Bell, J. L., Linsell, L., Staplin, N., Brightling, C., Ustianowski, A., Elmahi, E., Prudon, B., Green, C., Felton, T., Chadwick, D., Rege, K., Fegan, C., Chappell, L. C., Faust, S. N., Jaki, T., … Landray, M. J. (2021). Dexamethasone in Hospitalized Patients with Covid-19. The New England journal of medicine, 384(8), 693–704. https://doi.org/10.1056/NEJMoa2021436
  41. RECOVERY Collaborative Group. Electronic address: [email protected], & RECOVERY Collaborative Group (2023). Higher dose corticosteroids in patients admitted to hospital with COVID-19 who are hypoxic but not requiring ventilatory support (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet (London, England), 401(10387), 1499–1507.
  42. Podder, P., Khamparia, A., Mondal, M. R. H., Rahman, M. A., & Bharati, S. (2021). Forecasting the Spread of COVID-19 and ICU Requirements. iJOE, 17(05), 81.
  43. Maniruzzaman, M., Uddin, M. S., Hossain, M. B., & Hoque, K. (2023). Understanding COVID-19 Through Tweets using Machine Learning: A Visualization of Trends and Conversations. European Journal of Advances in Engineering and Technology, 10(5), 108-114.

The COVID-19 pandemic, though no longer classified as a global emergency, persists as a major public health challenge in 2025 due to the continued emergence of SARS-CoV-2 variants with enhanced transmissibility and immune evasion. This paper reviews the evolving epidemiology of COVID-19, the critical interplay between obesity and disease severity, and advances in precision vaccination and therapeutics. Epidemiological and meta-analytic evidence highlights obesity as a significant independent risk factor for infection, hospitalization, ICU admission, mechanical ventilation, and mortality, underpinned by mechanisms such as immune dysfunction, chronic low-grade inflammation, and obesity-related comorbidities. Moreover, obesity is shown to impair vaccine-induced immune responses, complicating long-term protection. In parallel, updated mRNA and protein-subunit vaccines, alongside emerging monoclonal antibody and antiviral strategies, reflect the shift toward precision medicine tailored to vulnerable populations, particularly the immunocompromised. While monoclonal antibody efficacy has been undermined by viral evolution, novel agents such as pemivibart and vilobelimab demonstrate promise in targeted settings. Collectively, the findings underscore the importance of sustained surveillance, equitable vaccine distribution, integrated obesity prevention, and personalized medical interventions. As SARS-CoV-2 continues to adapt, long-term mitigation will require scientific innovation, public health vigilance, and commitment to global health equity.

Keywords : COVID-19, SARS-CoV-2 Variants, Obesity and COVID-19, Precision Vaccination, Immune Dysfunction, Chronic Inflammation, Personalized Medicine, Public Health Surveillance.

CALL FOR PAPERS


Paper Submission Last Date
30 - November - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe