Authors :
Tondapu Pavithra Reddy; U S S S Chakravarthy; Sampath Priya Baandhavi; T.Harshitha
Volume/Issue :
Volume 10 - 2025, Issue 7 - July
Google Scholar :
https://tinyurl.com/mvcat4hy
Scribd :
https://tinyurl.com/mv8a8z8c
DOI :
https://doi.org/10.38124/ijisrt/25jul1107
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Glycopeptide antibiotics are a family of antimicrobials that function primarily by sharing a similar
macromolecular structure. The second commercially available glycopeptide antibiotic is tecoplanin, a ristocetin-type
lipoglycopeptide molecule originally discovered in 1978 from the Actinoplanes teichomyceticus. Outside the cell membrane,
peptidoglycan, or murein, provides structural support for the bacterial cell wall. Polypeptide and disaccharide units are
connected on a sugar backbone by glycosidic bonds in peptidoglycan monomers, which allow for the formation of long chains
by transglycosylation. Three novel lipoglycopeptides are now undergoing clinical trials: oritavancin, dalbavancin, and
telavancin. Vancomycin is effective against a wide variety of streptococci, including those with viridian, anaerobic, or
microaerophilic characteristics, and against penicillin-sensitive or -resistant pneumococci.
Keywords :
Glycopeptide Antibiotic, Teicoplanin, Vancomycin, Methicillin-Resistant Staphylococcus Aureus, Teicoplanin.
References :
- Park, O.-K., Choi, H.-Y., Kim, G.-W., & Kim, W.-G. (2016). Generation of new complestatin analogues by heterologous expression of the complestatin biosynthetic gene cluster from Streptomyces chartreusis AN1542. Chembiochem: A European Journal of Chemical Biology, 17(18), 1725–1731.
- Lawson, M. C., Hoth, K. C., DeForest, C. A., Bowman, C. N., & Anseth, K. S. (2010). Inhibition of Staphylococcus epidermidis biofilms using polymerizable vancomycin derivatives. Clinical Orthopaedics and Related Research, 468(8), 2081–2091.
- Xu, F., Wu, Y., Zhang, C., Davis, K. M., Moon, K., Bushin, L. B., & Seyedsayamdost, M. R. (2019). A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nature Chemical Biology, 15(2), 161–168.
- Varisco, M., Khanna, N., Brunetto, P. S., & Fromm, K. M. (2014). New antimicrobial and biocompatible implant coating with synergic silver–vancomycin conjugate action. ChemMedChem, 9(6), 1221–1230.
- Sahm, D. F., Benton, B. M., & Cohen, M. A. (2006). Telavancin demonstrates low potential for in vitro selection of resistance among key target gram-positive species. Interscience Conference on Antimicrobial Agents and Chemotherapy.
- Antonoplis, A., Zang, X., Wegner, T., Wender, P. A., & Cegelski, L. (2019). Vancomycin–arginine conjugate inhibits growth of carbapenem-resistant E. coli and targets cell-wall synthesis. ACS Chemical Biology, 14(9), 2065–2070.
- Sader, H. S., Rhomberg, P. R., Farrell, D. J., Flamm, R. K., & Jones, R. N. (2010). Antimicrobial activity of TD-1607 tested against contemporary. In -2012) methicillin-resistant Staphylococcus aureus (MRSA) strains in 54th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) 2014, Poster F-970.
- Jeong, H., Sim, Y. M., Kim, H. J., Lee, D.-W., Lim, S.-K., & Lee, S. J. (2013). Genome Sequence of the Vancomycin-Producing Amycolatopsis orientalis subsp. orientalis Strain KCTC 9412 T. Genome Announcements, 1(3).
- Sarkar, P., & Haldar, J. (2019). Glycopeptide antibiotics: Mechanism of action and recent developments. In Antibiotic Drug Resistance (pp. 73–95). Wiley.
- Antimicrobial therapies for Gram-positive infections. (2017). Clinical Pharmacist.
- Gardete, S., & Tomasz, A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. The Journal of Clinical Investigation, 124(7), 2836–2840.
- Zeng, D., Debabov, D., Hartsell, T. L., Cano, R. J., Adams, S., Schuyler, J. A., McMillan, R., & Pace, J. L. (2016). Approved glycopeptide antibacterial drugs: Mechanism of action and resistance. Cold Spring Harbor Perspectives in Medicine, 6(12), a026989.
- Allen, N. E., & Nicas, T. I. (2003). Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiology Reviews, 26(5), 511–532.
- Anderson, J. S., Matsuhashi, M., Haskin, M. A., & Strominger, J. L. (1965). Lipid-phosphoacetylmuramyl-pentapeptide and lipid-phosphodisaccharide-pentapeptide: Presumed membrane transport intermediates in cell wall synthesis. Proceedings of the National Academy of Sciences of the United States of America, 53(4), 881–889.
- Yarlagadda, V., Sarkar, P., Manjunath, G. B., & Haldar, J. (2015). Lipophilic vancomycin aglycon dimer with high activity against vancomycin-resistant bacteria. Bioorganic & Medicinal Chemistry Letters, 25(23), 5477–5480.
- Jain, R. K., Trias, J., & Ellman, J. A. (2003). D-Ala-d-lac binding is not required for the high activity of vancomycin dimers against vancomycin resistant enterococci. Journal of the American Chemical Society, 125(29), 8740–8741.
- Rao, J., Lahiri, J., Isaacs, L., Weis, R. M., & Whitesides, G. M. (1998). A trivalent system from vancomycin· d -Ala- d -Ala with higher affinity than avidin·biotin. Science (New York, N.Y.), 280(5364), 708–711.
- Hiramatsu, K. (1997). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. The Journal of Antimicrobial Chemotherapy, 40(1), 135–136.
- Greule, A., Izoré, T., Iftime, D., Tailhades, J., Schoppet, M., Zhao, Y., Peschke, M., Ahmed, I., Kulik, A., Adamek, M., Goode, R. J. A., Schittenhelm, R. B., Kaczmarski, J. A., Jackson, C. J., Ziemert, N., Krenske, E. H., De Voss, J. J., Stegmann, E., & Cryle, M. J. (2019). Kistamicin biosynthesis reveals the biosynthetic requirements for production of highly crosslinked glycopeptide antibiotics. Nature Communications, 10(1).
- Haslinger, K., Maximowitsch, E., Brieke, C., Koch, A., & Cryle, M. J. (2014). Cytochrome P450 OxyBtei catalyzes the first phenolic coupling step in teicoplanin biosynthesis. Chembiochem: A European Journal of Chemical Biology, 15(18), 2719–2728.
- Walsh, C. T., O’Brien, R. V., & Khosla, C. (2013). Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angewandte Chemie (International Ed. in English), 52(28), 7098–7124.
- Cooper, M. A., & Williams, D. H. (1999). Binding of glycopeptide antibiotics to a model of a vancomycin-resistant bacterium. Chemistry & Biology, 6(12), 891–899.
- Kittilä, T., Kittel, C., Tailhades, J., Butz, D., Schoppet, M., Büttner, A., Goode, R. J. A., Schittenhelm, R. B., van Pee, K.-H., Süssmuth, R. D., Wohlleben, W., Cryle, M. J., & Stegmann, E. (2017). Halogenation of glycopeptide antibiotics occurs at the amino acid level during non-ribosomal peptide synthesis. Chemical Science (Royal Society of Chemistry: 2010), 8(9), 5992–6004.
- Brieke, C., Kratzig, V., Haslinger, K., Winkler, A., & Cryle, M. J. (2015). Rapid access to glycopeptide antibiotic precursor peptides coupled with cytochrome P450-mediated catalysis: towards a biomimetic synthesis of glycopeptide antibiotics. Organic & Biomolecular Chemistry, 13(7), 2012–2021.
- Barna, J., Williams, D. H., & Williamson, M. I. (1985). Structural features that affect the binding of teicoplanin, ristocetin A, and their derivatives to the bacterial cell wall model n-acetyl-d-alaynyl-d-alanine. J Chem Soc Chem Commun, 5, 254–256.
Glycopeptide antibiotics are a family of antimicrobials that function primarily by sharing a similar
macromolecular structure. The second commercially available glycopeptide antibiotic is tecoplanin, a ristocetin-type
lipoglycopeptide molecule originally discovered in 1978 from the Actinoplanes teichomyceticus. Outside the cell membrane,
peptidoglycan, or murein, provides structural support for the bacterial cell wall. Polypeptide and disaccharide units are
connected on a sugar backbone by glycosidic bonds in peptidoglycan monomers, which allow for the formation of long chains
by transglycosylation. Three novel lipoglycopeptides are now undergoing clinical trials: oritavancin, dalbavancin, and
telavancin. Vancomycin is effective against a wide variety of streptococci, including those with viridian, anaerobic, or
microaerophilic characteristics, and against penicillin-sensitive or -resistant pneumococci.
Keywords :
Glycopeptide Antibiotic, Teicoplanin, Vancomycin, Methicillin-Resistant Staphylococcus Aureus, Teicoplanin.