Groundwater Mapping Through Integration of Resistivity Survey, Remote Sensing, Geographic Information Systems and AHP Techniques in Bwari Area Council, FCT Abuja, Nigeria


Authors : Ado Umar Farouq; Mallam Abu; Abel U. Osagie

Volume/Issue : Volume 10 - 2025, Issue 11 - November


Google Scholar : https://tinyurl.com/edbcv886

Scribd : https://tinyurl.com/3469nmbp

DOI : https://doi.org/10.38124/ijisrt/25nov1069

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : This study presents an integrated, multi-criteria approach to delineating groundwater potential zones in the Bwari Area Council, Federal Capital Territory, Abuja, Nigeria, employing a combination of Vertical Electrical Sounding (VES) resistivity surveys, remote sensing, Geographic Information Systems (GIS), and the Analytic Hierarchy Process (AHP). Using satellite imagery, DEMs, digitized maps, and field observations, thematic layers—rainfall, geology, slope, drainage density, land use/land cover, lineament density, soil type, and topographic wetness index—were generated and validated through GIS and remote sensing techniques. Weights were assigned to each factor using AHP, prioritizing parameters based on their hydrogeological significance. Thematic layers were integrated via weighted overlay analysis in ArcGIS to produce a spatially explicit groundwater potential map. Subsurface information was acquired through VES at 23 locations, with resistivity data interpreted to characterize aquifer properties (resistivity, thickness, depth, and overburden). The results reveal a dual aquifer system, comprising a shallow weathered zone and a deeper fractured basement aquifer, with groundwater occurrence predominantly controlled by secondary porosity features. Moderate-to- high groundwater potential zones were found to constitute over 85% of the study area, with high-potential regions associated with thick, weathered, and fractured lithologies, low drainage density, gentle slopes, and favourable land cover. Comparative analysis between the integrated thematic (RS/GIS/AHP) and aquifer-parameter (VES) models yielded a high correspondence (78.7%), confirming the reliability of the multi-criteria method and underscoring the importance of combining surface and subsurface data. The study advances methodological frameworks for groundwater assessment in crystalline basement terrains and provides a robust scientific basis for sustainable borehole siting, groundwater resource development, and land-use planning. The approach is replicable in similar hydrogeological settings, offering important implications for water resource management in data-scarce, complex geological environments.

Keywords : Groundwater Potential Mapping; Geographic Information Systems (GIS); Vertical Electrical Sounding (VES); Analytical Hierarchy Process (AHP); Basement Complex Aquifer.

References :

  1. Pajock, J., Gunalan, J., Jothimani, M., & Abebe, A. (2023). Assessment of groundwater potential zones using an integration of remote sensing, GIS and 2D electrical resistivity imaging in the Echway watershed, Baro River Basin, Southwest Ethiopia. IOP Conference Series: Materials Science and Engineering, 1282(1), 012012. https://doi.org/10.1088/1757-899x/1282/1/012012
  2. Javed, U., Kumar, P., Hussain, S., Nawaz, T., Fahad, S., Ashraf, S., & Ali, K. (2023). Geospatial analysis of soil resistivity and hydro-parameters for groundwater assessment. Research Square. https://doi.org/10.21203/rs.3.rs-3695292/v1
  3. Araffa, S. A. S., Hamed, H. G., Nayef, A., Sabet, H. S., AbuBakr, M., & Mebed, M. El. (2023). Assessment of groundwater aquifer using geophysical and remote sensing data on the area of Central Sinai, Egypt. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-44737-9
  4. Osumeje, J. O., Eshimiakhe, D., Oniku, A. S., & Lawal, K. M. (2023). Application of remote sensing and geophysical methods for delineating groundwater potential at North Western Nigeria. Research Square. https://doi.org/10.21203/rs.3.rs-3758890/v1
  5. Ajayi, O. G., Nwadialor, I., Odumosu, J. O., Adetunji, O. O., & Abdulwasiu, I. O. (2022). Assessment and delineation of groundwater potential zones using integrated geospatial techniques and analytic hierarchy process. Applied Water Science12(12). https://doi.org/10.1007/s13201-022-01802-4
  6. Falebita, D. E., Olajuyigbe, O., Abeiya, S. S., Christopher, O., & Aderoju, A. (2020). Interpretation of geophysical and GIS-based remote sensing data for sustainable groundwater resource management in the basement of north-eastern Osun State, Nigeria. SN Applied Sciences, 2(9). https://doi.org/10.1007/s42452-020-03366-x
  7. Jhariya, D. C., Khan, R., Mondal, K. C., Kumar, T., K., I., & Singh, V. K. (2021). Assessment of groundwater potential zone using GIS-based multi-influencing factor (MIF), multi-criteria decision analysis (MCDA) and electrical resistivity survey techniques in Raipur city, Chhattisgarh, India.
  8. Mustapha, A. H., Kolawole, L. L., & Afolabi, A. O. (2023). Groundwater potential mapping of Asa–Oyun catchment areas over crystalline basement of southwest Nigeria using integrated approach of remote sensing and analytical hierarchical analysis. Research Square. https://doi.org/10.21203/rs.3.rs-3311797/v1
  9. Jhariya, D. C., Kumar, T., Gobinath, M., Diwan, P., & Kishore, N. (2016). Assessment Of Groundwater Potential Zone Using Remote Sensing, GIS And Multi Criteria Decision Analysis Techniques. Journal Of The Geological Society Of India: 2016; 88 (4): 481-492.
  10. Ajayi, O. G., Nwadialor, I. J., Odumosu, J. O., Adetunji, O. O., & Abdulwasiu, I. O. (2019). Application of Geographic Information System (GIS) and Remote Sensing in Groundwater Exploration: A Case Study of Bosso Local Government Area, Minna, Nigeria.
  11. Osumeje, J. O., Eshimiakhe, D., Oniku, A. S., & Lawal, K. M. (2024). Application of remote sensing and electrical resistivity technique for delineating groundwater potential in Northwestern Nigeria. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-69633-8
  12. Ifediegwu, S. I. Assessment of groundwater potential zones using GIS and AHP techniques: a case study of the Lafia district, Nasarawa State, Nigeria. Applied Water Science. 2022; 12(1):10.
  13. Olugbenga, A. T., & Osiewundo, O. E. Determination of Subsurface Delineation Using Electrical Resistivity Sounding in Zuba and Environs of Gwagwalada Area Council, Abuja, North Central, Nigeria. Physics Journal. 2015; 1(2).
  14. Olugbenga, A. T., & Osiewundo, O. E. Underground water distribution system in Gwagwalada Area Council Abuja, Nigeria, using resistivity geophysical method. International Journal of Scientific Research in Agricultural Sciences. 2015; 2(4): 097-104.
  15. Omeje, M., Husin, W., Noorddin, I., I.A., O., Onwuka, O., Ugwuoke, P. E., & Meludu, O. Geoelectrical investigation of aquifer problems in Gosa area of Abuja, North Central, Nigeria. Internatioanl Journal of Physical Sciences. 2013; 8(13): 549-559.
  16. Olasehinde, P. I., Amadi, A. N., Enwedo, E. O., Dan-Hassan, M. A., & Okunlola, I. A. Assessing the Groundwater Potential in Wuye District, Federal Capital Territory, Abuja, Nigeria. Development Journal of Science and Technology Research (DJOSTER). 2016; 5(1): 67-78.
  17. Jasrotia, A. S., Bhagat, B. D., Kumar, A., & Kumar, R. Remote sensing and GIS approach for delineation of groundwater potential and groundwater quality zones of Western Doon Valley, Uttarakhand, India. Journal of the Indian Society of Remote Sensing. 2013; 41(2): 365-377.
  18. Jasrotia, A. S., Kumar, A., & Singh, R. Integrated remote sensing and GIS approach for delineation of groundwater potential zones using aquifer parameters in Devak and Rui watershed of Jammu and Kashmir, India. Arabian Journal of Geosciences. 2016; 9(4): 304.
  19. Enaworu, O. R., & Amos, N. (2024). Assessment of barriers to the utilization of primary healthcare services in Bwari Area Council, Abuja FCT, Nigeria. Research Square. https://doi.org/10.21203/rs.3.rs-5578578/v1
  20. Akomolafe, E. A., Isioye, O. A., & Awulu, J. U. (2020). Geospatial analysis of impervious surfaces and their effect on land surface temperature in Abuja, Nigeria. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5. https://doi.org/10.5194/isprs-archives-xliv-3-w1-2020-5-2020
  21. Saaty, T. L. The Analytic Hierarchy Process. Agricultural Economics Review. 1980; 70(804): 10-21236.
  22. Burrough, P. A., & McDonnell, R. A. Principles of Geographical Information Systems (Book Review). The Geographical Bulletin. 1999; 41(1): 59.
  23. Fashae OA, Tijani MN, Talabi AO, Adedeji OI. Delineation Of Groundwater Potential Zones in the Crystalline Basement Terrain Of SW-Nigeria: An Integrated GIS And Remote Sensing Approach. Applied Water Science. 2014 Mar;4(1):19-38.
  24. Berhanu, K. G., & Hatiye, S. D. Identification of Groundwater Potential Zones Using Proxy Data: Case Study of Megech Watershed, Ethiopia. Journal Of Hydrology: Regional Studies. 2020; 28: 100676.
  25. Tabassum, A., Sajjad, A., Sajid, G. H., Ahmad, M., I. M., & Khan, A. H. Assessing Recharge Zones for Groundwater Potential in Dera Ismail Khan (Pakistan): A GIS-Based Analytical Hierarchy Process Approach. Water. 2025; 17(11): 1586.
  26. Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. Mapping Groundwater Recharge Potential Zone Using a Gis Approach in Hualian River, Taiwan. Sustainable Environment Research. 2016; 26(1): 33-43.
  27. Horton, R. E. Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology. Geological Society of America Bulletin, 1945; 56(3): 275-370.
  28. Pinto, D., Shrestha, S., Babel, M. S., & Ninsawat, S. Delineation of Groundwater Potential Zones in the Comoro Watershed, Timor Leste Using GIS, Remote Sensing and Analytic Hierarchy Process (AHP) Technique. Applied Water Science. 2017; 7: 503-519.
  29. Raj, S., Rawat, K. S., Singh, S. K., & Mishra, A. K. Groundwater Potential Zones Identification and Validation in Peninsular India. Geology, Ecology, And Landscapes. 2024; 8(1): 86-100.
  30. Al-Shabeeb, A. R. (2018). The selection of groundwater recharge sites in the arid region of northern Badia, Jordan, using GIS-based multicriteria decision analysis. Indonesian Journal on Geoscience, 5(3), 199-209.
  31. Boothroyd, R. J., Williams, R. D., Hoey, T. B., MacDonell, C., Tolentino, P. L., Quick, L., & ... & David, C. P. National-Scale Geodatabase of Catchment Characteristics in the Philippines for River Management Applications. Plos One. 2023; 18(3): E0281933.
  32. Kandekar, V. U., Gavit, B. K., A. A., Bansod, R. B., & Nimbalkar, C. A. Morphometric Analysis of Agadgaon Watershed Using Remote Sensing and Geographic Information System. Journal Of Pharmacognosy and Phytochemistry. 2021; 10(2): 450-460.
  33. Arulbalaji, P., & Gurugnanam, B. Geospatial Tool-Based Morphometric Analysis Using SRTM Data in Sarabanga Watershed, Cauvery River, Salem District, Tamil Nadu, India. Applied Water Science. 2017; 7(7): 3875-3883.
  34. Kotb, A., Taha, A. I., Elnazer, A. A., & Basheer, A. A. Global Insights on Flood Risk Mitigation in Arid Regions Using Geomorphological and Geophysical Modeling from A Local Case Study. Scientific Reports. 2024; 14(1): 19975.
  35. Rios-Sanchez, M., Gierke, J. S., & Muñoz-Martínez, T. Hydrogeological Characterization of the Plateaus Region of The Quito Aquifer System Using Remote Sensing, Digital Geomorphology, And Geophysics. In World Environmental and Water Resources Congress: Crossing Boundaries. 2012; 85-97.
  36. Mohamed L. Structural Controls on The Distribution of Groundwater in Southern Sinai, Egypt: Constraints from Geophysical and Remote Sensing Observations.  [Ph.D. thesis]. Western Michigan University; 2015.
  37. O'Leary, D. W., Friednan, J. D., & Pohn, H. A. (1976). Lineament, linear, lineation: some proposed new standards for old terms. Geological Society of America Bulletin87(10), 1463-1469.
  38. Salih, A. O., & Al-Manmi, D. A. Adjustment of Original DRASTIC model by means of Lineament Density to Map Groundwater Vulnerability: Case Study in Rania Basin, Kurdistan Region, Iraq. Research Square. 2021; 1-22.
  39. Gupta, M., & Srivastava, P. K. Integrating GIS And Remote Sensing for Identification of Groundwater Potential Zones in the Hilly Terrain of Pavagarh, Gujarat, India. Water International. 2010; 35(2): 233-245.
  40. Abdullateef L, Tijani MN, Nuru NA, John S, Mustapha A. Assessment of groundwater recharge potential in a typical geological transition zone in Bauchi, NE-Nigeria using remote sensing/GIS and MCDA approaches. Heliyon. 2021 Apr 1;7(4).
  41. Ahmed, J. B., & Pradhan, B. (2019). Spatial assessment of termite’s interaction with groundwater potential conditioning parameters in Keffi, Nigeria. Journal of Hydrology578, 124012. https://doi.org/10.1016/j.jhydrol.2019.124012
  42. Sörensen, R., Zinko, U., & Seibert, J. On The Calculation of The Topographic Wetness Index: Evaluation of Different Methods Based on Field Observations. Hydrology and Earth System Sciences, 2006; 10(1): 101-112.
  43. Winzeler HE, Owens PR, Read QD, Libohova Z, Ashworth A, Sauer T. Topographic wetness index as a proxy for soil moisture in a hillslope catena: flow algorithms and map generalization. Land. 2022 Nov 11;11(11):2018.
  44. Bartels SF, Caners RT, Ogilvie J, White B, Macdonald SE. Relating Bryophyte Assemblages to A Remotely Sensed Depth-To-Water Index in Boreal Forests. Frontiers In Plant Science. 2018 Jun 25; 9:858.
  45. Persson, A., Hasan, A., Tang, J., & Pilesjö, P. Modelling Flow Routing in Permafrost Landscapes With TWI: An Evaluation Against Site‐Specific Wetness Measurements. Transactions In GIS. 2012; 16(5): 701-713.
  46. Li, M., Foster, E. J., Le, P. V., Yan, Q., Stumpf, A., Hou, T., & ... Filley, T. A New Dynamic Wetness Index (DWI) Predicts Soil Moisture Persistence and Correlates with Key Indicators of Surface Soil Geochemistry. Geoderma. 2020; 368: 114239.
  47. Ågren, A. M., Larson, J., Paul, S. S., Laudon, H., & Lidberg, W. Use of Multiple LIDAR-Derived Digital Terrain Indices and Machine Learning for High-Resolution National-Scale Soil Moisture Mapping of the Swedish Forest Landscape. Geoderma, 2021; 404: 11.
  48. Ndhlovu, G. Z., & Woyessa, Y. E. Integrated Assessment of Groundwater Potential Using Geospatial Techniques in Southern Africa: A Case Study in the Zambezi River Basin. Water. 2021; 13(19): 2610.
  49. Berhanu, B., & Bisrat, E. Identification of Surface Water Storing Sites Using Topographic Wetness Index (TWI) And Normalized Difference Vegetation Index (NDVI). JNRD-Journal of Natural Resources and Development. 2018; 8: 91-100.
  50. Grabs, T., Seibert, J., Bishop, K., & Laudon, H. Modeling Spatial Patterns of Saturated Areas: A Comparison of The Topographic Wetness Index and A Dynamic Distributed Model. Journal Of Hydrology. 2009; 373(1-2): 15-23.
  51. Rodríguez-Moreno, V. M., & Gunter, K. T. Parsimonious Model of Groundwater Recharge Potential as Seen Related with Two Topographic Indices and the Leaf Area Index. Hydrology. 2025; 12(6): 127.
  52. Khatal, S. A., Ali, S., Hasan, M., Singh, D. K., Mishra, A. K., & Iquebal, M. A. Assessment of Groundwater Recharge in A Small Ravine Watershed in Semi-Arid Region of India. Int J Cur Microbio Appl Sci. 2018; 7(2): 2552-2565.
  53. Tsypin, M., Cacace, M., Guse, B., Güntner, A., & S.-W. M. Modeling the Influence of Climate on Groundwater Flow and Heat Regime in Brandenburg (Germany). Frontiers In Water. 2024; 6: 1353394.
  54. Berghuijs WR, Luijendijk E, Moeck C, van der Velde Y, Allen ST. Global recharge data set indicates strengthened groundwater connection to surface fluxes. Geophysical Research Letters. 2022 Dec 16;49(23): e2022GL099010.
  55. Ali, J., Islam, F., Bibi, T., Islam, I., Mughal, M. R., Sabir, M., & ... Ismail, E. Quantifying the Impact of Climate Change and Urbanization on Groundwater Resources Using Geospatial Modeling. Frontiers In Earth Science. 2024; 12:1377367.
  56. Pitt, R., Clark, S., & Field, R. Groundwater Contamination Potential from Stormwater Infiltration Practices. Urban Water. 1999; 1(3): 217-236.
  57. Wang, H., Gao, J., Li, X., W. H., & Zhang, Y. Effects of Soil and Water Conservation Measures on Groundwater Levels and Recharge. Water. 2014; 6(12): 3783-3806.
  58. Rane, N. L., Achari, A., Choudhary, S. P., & Giduturi, M. Effectiveness and Capability of Remote Sensing (RS) And Geographic Information Systems (GIS): A Powerful Tool for Land Use and Land Cover (LULC) Change and Accuracy Assessment. International Journal of Innovative Science and Research Technology. 2023; 8(4): 4375-4392.
  59. Elubid, B. A., Huang, T., Peng, D. P., Ahmed, E. H., & Babiker, M. M. Delineation of Groundwater Potential Zones Using Integrated Remote Sensing, GIS And Multi-Criteria Decision Making (MCDM). Desalination And Water Treatment. 2020; 192: 248-258.
  60. Ejepu, J. Regional Assessment of Groundwater Potential Zone Using Remote Sensing, GIS And Multi Criteria Decision Analysis Techniques. Nigerian Annals of Pure and Applied Sciences. 2020; 3(3b): 99-111.
  61. Luchi, M. G. L. de, Dopico, C. I. M., Cutts, K., Schulz, B., Siegesmund, S., Wemmer, K., & Montenegro, T. (2020). The Conlara Metamorphic Complex: Lithology, provenance, metamorphic constraints on the metabasic rocks, and chime monazite dating. Journal of South American Earth Sciences106, 103065. https://doi.org/10.1016/j.jsames.2020.103065
  62. Ejepu, J. S., Olasehinde, P., Okhimamhe, A. A., & Okunlola, I. Investigation of Hydrogeological Structures of Paiko Region, North-Central Nigeria Using Integrated Geophysical and Remote Sensing Techniques. Geosciences. 2017; 7(4): 122.
  63. WRB. World Reference Base for Soil Resources, International Soil Classification System, World Soil Reference Report 106. Rome, Italy: FAO. 2014; Retrieved from www.fao.org
  64. Saaty TL. Decision making with the analytic hierarchy process. International journal of services sciences. 2008;1(1):83-98.
  65. Olayinka, A. I., & Olorunfemi, M. O. (1992). Determination of geoelectrical characteristics in Okene area and implications for borehole siting. Journal of Mining and Geology, 28(2), 403–412.
  66. Rao, N. S., & Chaudhary, M. (2019). Hydrogeochemical processes regulating the spatial distribution of groundwater contamination, using pollution index of groundwater (PIG) and hierarchical cluster analysis (HCA): a case study. Groundwater for sustainable development9, 100238.
  67. Singhal, B.B.S., & Gupta, R.P. (2010). Applied Hydrogeology of Fractured Rocks (2nd ed.). Springer. https://doi.org/10.1007/978-90-481-8799-7Opens a new window
  68. Gupta, V., Tiwari, R.K., & Sharma, S.P. (2020). Geoelectrical exploration for groundwater in hard rock terrains: A review of case studies from India. Journal of Earth System Science, 129, 241. https://doi.org/10.1007/s12040-020-01486-8Opens a new window
  69. Akankpo, A.O., & Igboekwe, M.U. (2011). Geoelectric investigation of groundwater potential of Uyo, Akwa Ibom State, Nigeria. International Journal of Water Resources and Environmental Engineering, 3(7), 144-150.
  70. Olayinka, A.I., Yaramanci, U., & Appel, E. (2012). Integrated geophysical investigation for groundwater exploration in the crystalline basement terrain of southwestern Nigeria. Hydrogeology Journal, 20, 339–350. https://doi.org/10.1007/s10040-011-0804-0Opens a new window
  71. Adepelumi, A.A., Ako, B.D., & Ajayi, T.R. (2008). Groundwater contamination in the basement complex area of Ile-Ife, southwestern Nigeria: A case study using the electrical resistivity and hydrochemical methods. Hydrogeology Journal, 16, 593–603. https://doi.org/10.1007/s10040-007-0246-9Opens a new window
  72. Olorunfemi, M.O., & Okhue, E.T. (1992). Hydrogeological and geoelectric study of part of the central basement terrain of Nigeria (Nasarawa State). Journal of African Earth Sciences, 14(3), 425-434.
  73. Ako, B. D., & Olorunfemi, M. O. (1989). Geoelectric survey for groundwater in the new federal capital territory, Abuja. Journal of Mining and Geology, 25(1-2), 247–250.
  74. Adiat, K. A. N., Olayinka, A. I., & Ako, B. D. (2009). Geoelectric and hydrogeological parameters of aquifers in southwestern Nigeria. Asian Journal of Earth Sciences, 2(2), 51–62.
  75. Tijani, M. N., Nton, M. E., & Bassey, C. E. (2016). Basement aquifers of Nigeria: Hydrogeological, hydrochemical and vulnerability characteristics. Environmental Earth Sciences, 75, 1–20.
  76. Omosuyi, G. O. (2010). Geoelectric assessment of groundwater prospect and vulnerability of overburden aquifers in Akure, southwestern Nigeria. International Journal of Physical Sciences, 5(2), 104–112.
  77. Okoye, N.O., Chukwu, A., & Nwachukwu, C. (2016). Hydrogeological investigation and groundwater potential assessment in parts of Abuja, North Central Nigeria. Journal of African Earth Sciences, 121, 240-250.
  78. Olaojo, A. A., Olorunfemi, M. O., & Ojo, J. S. (2021). Structural controls on groundwater occurrence in basement complex terrain: insights from geophysical and hydrogeological investigations. Environmental Earth Sciences, 80, 1–17.
  79. Edet, A. E., & Okereke, C. S. (2001). A regional study of aquifer characteristics and groundwater potential in the basement complex of Nigeria. Journal of African Earth Sciences, 33(4), 595–605.
  80. Olayinka, A. I., Afolayan, J. F., & Olorunfemi, M. O. (1999). "Comprehensive geoelectric study of the structural controls on groundwater in a crystalline basement terrain, southwestern Nigeria." Water Resources, 10(1), 1-9.
  81. Oladapo, M. I., Olorunfemi, M. O., & Oyedele, K. F. (2004). Hydrogeophysical evaluation of the groundwater potential of Akure metropolis, southwestern Nigeria. Journal of Mining and Geology, 40(1), 41–48.
  82. Oke, S. A., Olasehinde, P. I., & Afolayan, J. O. (2023). Hydrogeological characterization of dual aquifers in basement complex terrains of southwestern Nigeria. Hydrogeology Journal, 31(2), 455–470. https://doi.org/10.1007/s10040-022-02531-7Opens a new window
  83. Agyekum, W. A., Asante, E. A., & Yidana, S. M. (2022). Characterizing the dual aquifer system in the crystalline basement complex of West Africa. Environmental Earth Sciences, 81(3), 112. https://doi.org/10.1007/s12665-022-10352-z
  84. Adeniji, A., Obiora, D. N., Omonona, O. V., & Ayuba, R. (2013). Geoelectrical evaluation of groundwater potentials of Bwari basement area, Central Nigeria. International Journal of the Physical Sciences, 8(25), 1350. https://doi.org/10.5897/ijps2013.3951
  85. Adagunodo, T. A., Ojoawo, A. I., Anie, N. O., & Edukugho, P. O. (2023). Application of frequency selection and geoelectrical sounding methods for mapping of leachate’s pathways in an active dumpsite. SN Applied Sciences, 5(12). https://doi.org/10.1007/s42452-023-05557-8
  86. Shankar, K., Kulkarni, H., & Krishnamurthy, N. S. (2011). "Hydrogeology of hard rock aquifers: Understanding groundwater occurrence and movement for sustainable development." Journal of Geological Society of India, 77(1), 11-25.
  87. Leduc, C., Favreau, G., & Schroeter, P. (2001). "Long-term rise in a Sahelian water table: The Continental Terminal in south-west Niger." Journal of Hydrology, 243(1-2), 43-54.
  88. MacDonald, A. M., Bonsor, H. C., Dochartaigh, B. É. Ó., & Taylor, R. G. (2012). "Quantitative maps of groundwater resources in Africa." Environmental Research Letters, 7(2), 024009.
  89. Bala, A.E., Olorunfemi, M.O., & Alao, D.A. (2000). Evaluation of groundwater potential of the Basement Complex terrain in southwestern Nigeria. Hydrogeology Journal, 8(3), 474-482.
  90. Bala, A. E., & Ike, E. C. (2001). The aquifer of the crystalline basement rocks in Gusau area, northwestern Nigeria. Journal of Mining and Geology, 37(2), 177–184.
  91. Bayewu, O. O., Oladunjoye, M. A., & Olorunfemi, M. O. (2011). Geoelectric mapping of groundwater potential in the basement complex terrain, southwestern Nigeria. Journal of Geology and Mining Research, 3(12), 325–340.
  92. Akinlalu, A. A., Adewumi, T. J., & Oladapo, M. I. (2017). Comparative assessment of groundwater potential mapping using analytical hierarchy process and frequency ratio models in Ado-Ekiti, Nigeria. Journal of African Earth Sciences, 134, 1-13.
  93. Oke, A. O., Olabode, O. I., & Okeke, H. C. (2021). Evaluation of groundwater potential using integrated geophysical and GIS-based multi-criteria analysis. Environmental Monitoring and Assessment, 193, 1-13.
  94. Chidumayo, E. N., Nyambe, I. A., & Banda, L. (2019). Assessment of groundwater potential using GIS and remote sensing in Lusaka, Zambia. Groundwater for Sustainable Development, 9, 100218.
  95. Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2007). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, GIS and multi-criteria decision analysis. Hydrogeology Journal, 15(7), 1197-1210.
  96. Oloruntola, M. O., Oladunjoye, M. A., & Oyeyemi, K. D. (2020). GIS-based groundwater potential mapping using AHP and FR models: a case study of southwestern Nigeria. Groundwater for Sustainable Development, 10, 100346.
  97. Das, S., & Pardeshi, S. D. (2020). Integration of geospatial and multi-criteria decision analysis techniques for groundwater potential mapping. Environmental Earth Sciences, 79(15), 1-19.
  98. Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2), 189-196.

This study presents an integrated, multi-criteria approach to delineating groundwater potential zones in the Bwari Area Council, Federal Capital Territory, Abuja, Nigeria, employing a combination of Vertical Electrical Sounding (VES) resistivity surveys, remote sensing, Geographic Information Systems (GIS), and the Analytic Hierarchy Process (AHP). Using satellite imagery, DEMs, digitized maps, and field observations, thematic layers—rainfall, geology, slope, drainage density, land use/land cover, lineament density, soil type, and topographic wetness index—were generated and validated through GIS and remote sensing techniques. Weights were assigned to each factor using AHP, prioritizing parameters based on their hydrogeological significance. Thematic layers were integrated via weighted overlay analysis in ArcGIS to produce a spatially explicit groundwater potential map. Subsurface information was acquired through VES at 23 locations, with resistivity data interpreted to characterize aquifer properties (resistivity, thickness, depth, and overburden). The results reveal a dual aquifer system, comprising a shallow weathered zone and a deeper fractured basement aquifer, with groundwater occurrence predominantly controlled by secondary porosity features. Moderate-to- high groundwater potential zones were found to constitute over 85% of the study area, with high-potential regions associated with thick, weathered, and fractured lithologies, low drainage density, gentle slopes, and favourable land cover. Comparative analysis between the integrated thematic (RS/GIS/AHP) and aquifer-parameter (VES) models yielded a high correspondence (78.7%), confirming the reliability of the multi-criteria method and underscoring the importance of combining surface and subsurface data. The study advances methodological frameworks for groundwater assessment in crystalline basement terrains and provides a robust scientific basis for sustainable borehole siting, groundwater resource development, and land-use planning. The approach is replicable in similar hydrogeological settings, offering important implications for water resource management in data-scarce, complex geological environments.

Keywords : Groundwater Potential Mapping; Geographic Information Systems (GIS); Vertical Electrical Sounding (VES); Analytical Hierarchy Process (AHP); Basement Complex Aquifer.

CALL FOR PAPERS


Paper Submission Last Date
30 - November - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe