Innovative TiO2 Photocatalysts: Advances and Strategies for Enhanced Hydrogen Evolution Efficiency


Authors : Samjeet Singh Thakur

Volume/Issue : Volume 9 - 2024, Issue 10 - October


Google Scholar : https://tinyurl.com/45k8an4f

Scribd : https://tinyurl.com/7ya4khcx

DOI : https://doi.org/10.38124/ijisrt/IJISRT24OCT1548

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : As a photocatalyst, titanium dioxide (TiO2) has attracted a lot of interest because of its remarkable qualities, including stability, affordability, and environmental friendliness. The latest developments in TiO2-based photocatalysts are examined in this thorough overview, along with cutting-edge methods for increasing their effectiveness in a range of photocatalytic applications. The article discusses developments in TiO2 modifications, such as surface functionalization, heterostructure, and doping, to increase charge separation, broaden the range of light absorption, and boost catalytic performance in general. Additionally, new methods for creating TiO2 and how they affect photocatalytic activity are covered. The paper highlights the diverse possibilities of TiO2-based photocatalysts in tackling modern issues by outlining applications ranging from solar fuel production to environmental remediation.

Keywords : Titanium Dioxide, Photocatalyst, Dye, Hydrogen, Efficiency, Reusability.

References :

  1. Hassan, Q.; Sameen, A. Z.; Salman, H. M.; Jaszczur, M.; Al-Jiboory, A. K. Hydrogen Energy Future: Advancements in Storage Technologies and Implications for Sustainability. J.  Energy Storage 202372, 108404. DOI: 10.1016/j.est.2023.108404.
  2. Wu, M. M.; Shen, Y.; Gu, F.; Xie, Y. A.; Zhang, J. C.; Wang, L. J. Preparation and Photoelectric Properties of Mesoporous ZnO Films. J. Sol-Gel Sci. Technol. 200953 (2), 470–474. DOI: 10.1007/s10971-009-2099-7.
  3. Xiong, X.; Wang, Z.; Wu, F.; Li, X.; Guo, H. Preparation of TiO2 from Ilmenite Using Sulfuric Acid Decomposition of the Titania Residue Combined with Separation of Fe3+ with EDTA during Hydrolysis. Adv. Powder Technol. 201324 (1), 60–67. DOI: 10.1016/j.apt.2012.02.002.
  4. El-Hazek, N. M. T.; Lasheen, T.A.; El-Sheikh, R.; Zaki, S. A. Hydrometallurgical Criteria for TiO2 Leaching from Rosetta Ilmenite by Hydrochloric Acid. Hydrometallurgy 200787 (1-2), 45–50. DOI: 10.1016/j.hydromet.2007.01.003.
  5. Fujishima, A.; Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972238 (5358), 37–38. DOI: 10.1038/238037a0.
  6. He, L.; Wang, C.; Yao, X.; Ma, R.; Wang, H.; Chen, P.; Zhang, K. Synthesis of Carbon Nanotube/Mesoporous TiO2 Coaxial Nanocables with Enhanced Lithium-Ion Battery Performance. Carbon 201475, 345–352. DOI: 10.1016/j.carbon.2014.04.013.
  7. Hu, L.; Wang, J.; Zhang, J.; Zhang, Q.; Liu, Z. An N-Doped Anatase/Rutile TiO2 hybrid from Low-Temperature Direct Nitridization: Enhanced Photoactivity under UV-/Visible-Light. RSC Adv. 20144 (1), 420–427. DOI: 10.1039/c3ra44421j.
  8. Lan, X.; Wang, L.; Zhang, B.; Tian, B.; Zhang, J. Preparation of Lanthanum and Boron Co-Doped TiO2 by Modified Sol–Gel Method and Study Their Photocatalytic Activity. Catalysis Today 2014224, 163–170. DOI: 10.1016/j.cattod.2013.10.062.
  9. Liu, G.; Liu, L.; Song, J.; Liang, J.; Luo, Q.; Wang, D. Visible Light Photocatalytic Activity of TiO2 Nanoparticles Hybridized by Conjugated Derivative of Polybutadiene. Superlattices Microstruct. 201469, 164–174. DOI: 10.1016/j.spmi.2014.02.013.
  10. Neubert, S.; Ramakrishnan, A.; Strunk, J.; Shi, H.; Mei, B.; Wang, L.; Bledowski, M.; Guschin, D. A.; Kauer, M.; Wang, Y.; Muhler, M.; Beranek, R. Surface-Modified TiO2 Photocatalysts Prepared by a Photosynthetic Route: Mechanism, Enhancement, and Limits. ChemPlusChem 201379 (1), 163–170. DOI: 10.1002/cplu.201300277.
  11. Reddy, N. S.; U. Bhargav; Kumari, M.; K.K. Cheralathan; Sakar, M. Review on the Interface Engineering in the Carbonaceous Titania for the Improved Photocatalytic Hydrogen Production. Int. J. Hydrog. Energy 202045 (13), 7584–7615. DOI: 10.1016/j.ijhydene.2019.09.041.
  12. Chen, Z.; Xiong, J.; Cheng, G. Recent Advances in Brookite Phase TiO2-Based Photocatalysts toward CO2 Reduction. Fuel 2024357, 129806. DOI: 10.1016/j.fuel.2023.129806.
  13. Zhang, B.; Shan, X.; Yu, J.; Zhang, H.; Tawfik Alali, K.; Liu, Q.; Zhu, J.; Yu, J.; Liu, J.; Li, R.; Wang, J. Facile Synthesis of TiO2-PAN Photocatalytic Membrane with Excellent Photocatalytic Performance for Uranium Extraction from Seawater. Sep. Purif. Technol. 2024328, 125026. DOI: 10.1016/j.seppur.2023.125026.
  14. Sahrin, N. T.; Ardo, F. M.; Suparmaniam, U.; Ramli, A.; Sin, J. C.; Lam, S. M.; Da Oh, W.; Chidi, B. S.; Ng, H.-S.; Shahid, M. K.; Tawfeek, A. M.; Khoo, K. S.; Lim, J. W. Enhanced Microalgal Hydrogen Production Subsisting on Visible Light TiO2 Nanotubes Photocatalyst Pre-Treated Palm Kernel Expeller. Int. J. Hydrog. Energy 202454, 1307–1318. DOI: 10.1016/j.ijhydene.2023.12.099.
  15. Rani, S.; Singh, S.; Pal, B. Core-Shell Structure of Reduced Graphene Oxide@Ag–TiO2 for Photocatalytic H2O Splitting and CH3OH Dehydrogenation under UV Light Irradiation. Int. J. Hydrog. Energy 202449, 910–924. DOI: 10.1016/j.ijhydene.2023.09.214.
  16. Xie, R.; Song, Y.; Wang, F.; Li, J.; Zhang, X.; Zou, H. Detection and Elimination of Tetracycline: Constructing Multi-Mode Carbon Dots for Ultra-Sensitive Visual Assay and CDs/TiO2 for Photocatalytic Degradation. Appl. Surf. Sci. 2024648, 158990. DOI: 10.1016/j.apsusc.2023.158990.
  17. Ikreedeegh, R. R.; Hossen, Md. A.; Tahir, M.; Aziz, A. A. A Comprehensive Review on Anodic TiO2 Nanotube Arrays (TNTAs) and Their Composite Photocatalysts for Environmental and Energy Applications: Fundamentals, Recent Advances and Applications. Coord. Chem. Rev. 2024499, 215495. DOI: 10.1016/j.ccr.2023.215495.
  18. Rychtowski, P.; Paszkiewicz, O.; Markowska-Szczupak, A.; Leniec, G.; Tryba, B. Sulphated TiO2 Reduced by Ammonia and Hydrogen as an Excellent Photocatalyst for Bacteria Inactivation. Materials 202417 (1), 66. DOI: 10.3390/ma17010066.
  19. Huang, Z.; Liu, H. Insights into the Pathways, Intermediates, Influence Factors and Toxicological Properties in the Degradation of Tetracycline by TiO2-Based Photocatalysts. J. Environ. Chem. Eng. 202311 (5), 110587. DOI: 10.1016/j.jece.2023.110587.
  20. Sinha, R.; Ghosal, P. S. A Comprehensive Appraisal on Status and Management of Remediation of DBPs by TiO2 Based-Photocatalysts: Insights of Technology, Performance and Energy Efficiency. J. Environ. Manage. 2023328, 117011. DOI: 10.1016/j.jenvman.2022.117011.
  21. Ma, J.; Zhang, L.; Fan, Z.; Sun, S.; Feng, Z.; Li, W.; Ding, H. Construction of R-TiO2/n- TiO2 Heterophase Photocatalysts for Efficient Degradation of Organic Pollutants. J. Alloys Compd. 2023968, 172127. DOI: 10.1016/j.jallcom.2023.172127.
  22. Yong, S.-S.; Lee, J.-I.; Kang, D.-H. TiO2-Based Photocatalyst Generated Reactive Oxygen Species Cause Cell Membrane Disruption of Staphylococcus Aureus and Escherichia Coli O157:H7. Food Microbiol. 2023109, 104119. DOI: 10.1016/j.fm.2022.104119.
  23. Kumaravel, S.; Thiripuranthagan, S.; Vembuli, T.; Kumaravel, S.; Erusappan, E.; Chicardi, E.; Chinnasamy, S. Detoxification of Harmful Pollutants Using Highly Efficient Visible Light Active Ru/TiO2/PVDF Photocatalytic Membranes. Mater. Res. Bull. 2023167, 112421. DOI: 10.1016/j.materresbull.2023.112421.
  24. Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; Wang, L.; Liu, H.; Liu, Y.; Ruan, R. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020268, 121725. DOI: 10.1016/j.jclepro.2020.121725.
  25. Eidsvåg, H.; Bentouba, S.; Vajeeston, P.; Yohi, S.; Velauthapillai, D. TiO2 as a Photocatalyst for Water Splitting—An Experimental and Theoretical Review. Molecules 202126 (6), 1687. DOI: 10.3390/molecules26061687.
  26. Li, B.; Wu, S.; Gao, X. Theoretical Calculation of a TiO2-Based Photocatalyst in the Field of Water Splitting: A Review. Nanotechnol. Rev. 20209 (1), 1080–1103. DOI: 10.1515/ntrev-2020-0085.
  27. Rafique, M.; Syeda Hajra; Irshad, M.; Usman, M.; Imran, M.; Assiri, M. A.; Waqar Muhammad Ashraf. Hydrogen Production Using TiO2-Based Photocatalysts: A Comprehensive Review. ACS Omega 20238 (29), 25640–25648. DOI: 10.1021/acsomega.3c00963.
  28. Do, H. H.; Nguyen, D. L. T.; Nguyen, X. C.; Le, T.-H.; Nguyen, T. P.; Trinh, Q. T.; Ahn, S. H.; Vo, D.-V. N.; Kim, S. Y.; Le, Q. V. Recent Progress in TiO2-Based Photocatalysts for Hydrogen Evolution Reaction: A Review. Arab. J. Chem. 202013 (2), 3653–3671. DOI: 10.1016/j.arabjc.2019.12.012.
  29. Bakbolat, B.; Daulbayev, C.; Sultanov, F.; Beissenov, R.; Umirzakov, A.; Mereke, A.; Bekbaev, A.; Chuprakov, I. Recent Developments of TiO2-Based Photocatalysis in the Hydrogen Evolution and Photodegradation: A Review. Nanomaterials 202010 (9), 1790. DOI: 10.3390/nano10091790.
  30. Spanu, D.; Minguzzi, A.; Recchia, S.; Shahvardanfard, F.; Tomanec, O.; Zbořil, R.; Schmuki, P.; Ghigna, P.; Altomare, M. An Operando X-Ray Absorption Spectroscopy Study of a NiCu−TiO2 Photocatalyst for H2 Evolution. ACS Catal. 202010 (15), 8293–8302. DOI: 10.1021/acscatal.0c01373.
  31. Hu, X.; Song, J.; Luo, J.; Zhang, H.; Sun, Z.; Li, C.; Zheng, S.; Liu, Q. Single-Atomic Pt Sites Anchored on Defective TiO2 Nanosheets as a Superior Photocatalyst for Hydrogen Evolution. J. Energy Chem. 202162, 1–10. DOI: 10.1016/j.jechem.2021.03.003.
  32. ‌Xia, C.; Hong Chuong Nguyen, T.; Cuong Nguyen, X.; Young Kim, S.; Nguyen, D. L. T.; Raizada, P.; Singh, P.; Nguyen, V.-H.; Chien Nguyen, C.; Chinh Hoang, V.; Van Le, Q. Emerging Cocatalysts in TiO2-Based Photocatalysts for Light-Driven Catalytic Hydrogen Evolution: Progress and Perspectives. Fuel 2022307, 121745. DOI: 10.1016/j.fuel.2021.121745.
  33. Liu, Y.; Li, Y.-H.; Li, X.; Zhang, Q.; Yu, H.; Peng, X.; Peng, F. Regulating Electron–Hole Separation to Promote Photocatalytic H2 Evolution Activity of Nanoconfined Ru/MXene/TiO2 Catalysts. ACS Nano 202014 (10), 14181–14189. DOI: 10.1021/acsnano.0c07089.
  34. ‌Wang, P.; Cao, Y.; Xu, S.; Yu, H. Boosting the H2-Evolution Performance of TiO2/Au Photocatalyst by the Facile Addition of Thiourea Molecules. Appl. Surf. Sci. 2020532, 147420. DOI: 10.1016/j.apsusc.2020.147420.
  35. Zeng, J.; Huang, Y. TiO2@TiOx Homojunction Photocatalyst: Self-Doped Preparation and Superior Photocatalytic Hydrogen Evolution and Dye Degradation. Int. J. Hydrog. Energy 202451, 423–432. DOI: 10.1016/j.ijhydene.2023.10.073.
  36. Bian, R.; An, S.; Wang, X.; Xue, Y.; Tian, J.; Liang, Z.; Song, Z. Ca2+ Doped TiO2 Nano-Sized Polygon Plates with Oxygen Vacancies for Photocatalytic Hydrogen Evolution. Int. J. Hydrog. Energy 202451, 787–795. DOI: 10.1016/j.ijhydene.2023.07.068.
  37. Liang, H.; Rehan, M. A.; Li, J.; Du, S.; Zhai, Y.; Li, G. Kinetic Simulation of Hydrogen Production Reaction Parameters Based on TiO2 Photocatalyst. Appl. Therm. Eng. 2024239, 122134. DOI: 10.1016/j.applthermaleng.2023.122134.
  38. Tuntithavornwat, S.; Saisawang, C.; Ratvijitvech, T.; Watthanaphanit, A.; Hunsom, M.; Kannan, A. M. Recent Development of Black TiO2 Nanoparticles for Photocatalytic H2 Production: An Extensive Review. Int. J. Hydrog. Energy 202455, 1559–1593. DOI: 10.1016/j.ijhydene.2023.12.102.
  39. Cheng, Z.; Zhang, X.; Bo, C.; Sun, Y.; Li, C.; Piao, L. Precise Design of TiO2 Photocatalyst for Efficient Photocatalytic H2 Production from Seawater Splitting. Int. J. Hydrog. Energy 202455, 542–549. DOI: 10.1016/j.ijhydene.2023.11.211.
  40. Liu, W.; Sun, W.; Borthwick, A. G. L.; Ni, J. Comparison on Aggregation and Sedimentation of Titanium Dioxide, Titanate Nanotubes and Titanate Nanotubes-TiO2: Influence of pH, Ionic Strength and Natural Organic Matter. Colloids Surf. A Physicochem. Eng. Asp. 2013434, 319–328. DOI: 10.1016/j.colsurfa.2013.05.010.
  41. Colloids Surf. A Physicochem. Eng. Asp.
  42. Liu, J.; Wang, Z.; Chen, F.; Zhou, G. Self-Assembly, Structure and Catalytic Activity of Ni3 on TiO2: A Triple-Atom Catalyst for Hydrogen Evolution. Appl. Surf. Sci. 2024643, 158719. DOI: 10.1016/j.apsusc.2023.158719.
  43. Sun, L.; Xiong, K.; Zhang, B.; Fang, J.; He, Y.; Wang, M.; Gan, Z.; Du, F.; Sun, Q.; Yu, L.; Dong, L. Synergetic PVA Degradation and H2 Evolution in Photocatalytic Fuel Cells Using Ag@Fe2O3 Cathode. Front. Chem. Sci. Eng. 202318 (1). DOI: 10.1007/s11705-023-2374-0.
  44. Haghshenas, Y.; Wong, W. P.; Gunawan, D.; Khataee, A.; Keyikoğlu, R.; Razmjou, A.; Kumar, P. V.; Toe, C. Y.; Masood, H.; Amal, R.; Sethu, V.; Teoh, W. Y. Predicting the Rates of Photocatalytic Hydrogen Evolution over Cocatalyst-Deposited TiO2 Using Machine Learning with Active Photon Flux as a Unifying Feature. EES Catalysis 2023. DOI: 10.1039/D3EY00246B.
  45. Xue, Z.; Yan, M.; Zhang, Y.; Xu, J.; Gao, X.; Wu, Y. Understanding the Injection Process of Hydrogen on Pt1-TiO2 Surface for Photocatalytic Hydrogen Evolution. Appl. Catal. B 2023, 325, 122303. DOI: 10.1016/j.apcatb.2022.122303.
  46. Huang, W.; Xue, W.; Hu, X.; Fan, J.; Tang, C.; Shi, Y.; Liu, E.; Sun, T. A S-Scheme Heterojunction of Co9S8 Decorated TiO2 for Enhanced Photocatalytic H2 Evolution. J. Alloys Compd. 2023930, 167368. DOI: 10.1016/j.jallcom.2022.167368.
  47. Zhang, G.; He, J.; Wang, Y.; Zhang, H.; Jiang, Y.; Jia, J.; Zhu, L.; Cao, J. Ingenious Design and Construction of Ti3+-TiO2/C Nanofibers with Significantly Enhanced Photocatalytic H2 Evolution. Sep. Purif. Technol. 2023326, 124832–124832. DOI: 10.1016/j.seppur.2023.124832.
  48. Wang, Q.; Wang, G.; Wang, J.; Li, J.; Wang, K.; Zhou, S.; Su, Y. In Situ Hydrothermal Synthesis of ZnS/TiO2 Nanofibers S‐Scheme Heterojunction for Enhanced Photocatalytic H2 Evolution. Adv. Sustain. Syst. 2022, 7(1), 2200027. DOI: 10.1002/adsu.202200027.
  49. Zhou, Y.; Song, P.; Pan, M.; Wang, H.; Liu, Z.; Di, J.; Liu, D.; Low, J.; Yang, R. Super Hydrophilic-Electrons Acceptor Regulated Rutile TiO2 Nanorods for Promoting Photocatalytic H2 Evolution. Appl. Surf. Sci. 2023623, 157098. DOI: 10.1016/j.apsusc.2023.157098.
  50. Ismael, M. Enhanced Photocatalytic Hydrogen Production and Degradation of Organic Pollutants from Fe(III) Doped TiO2 Nanoparticles. J. Environ. Chem. Eng. 20208 (2), 103676. DOI: 10.1016/j.jece.2020.103676.
  51. Fang, W.; Xing, M.; Zhang, J. Modifications on Reduced Titanium Dioxide Photocatalysts: A Review. J. Photochem. Photobiol. 201732, 21–39. DOI: 10.1016/j.jphotochemrev.2017.05.003.
  52. Li, Z.; Wang, S.; Wu, J.; Zhou, W. Recent Progress in Defective TiO2 Photocatalysts for Energy and Environmental Applications. Renew. Sust. Energ. Rev. 2022156, 111980–111980. DOI: 10.1016/j.rser.2021.111980.
  53. Zhou, Q.; Fang, Z.; Li, J.; Wang, M. Applications of TiO2 Nanotube Arrays in Environmental and Energy Fields: A Review. Microporous Mesoporous Mater. 2015202, 22–35. DOI: 10.1016/j.micromeso.2014.09.040.
  54. Goren, A. Y.; Dincer, I.; Khalvati, A. A Comprehensive Review on Environmental and Economic Impacts of Hydrogen Production from Traditional and Cleaner Resources. J. Environ. Chem. Eng. 202311 (6), 111187. DOI: 10.1016/j.jece.2023.111187.
  55. Aravindan, M.; Kumar, P. Hydrogen towards Sustainable Transition: A Review of Production, Economic, Environmental Impact and Scaling Factors. Results Eng. 202320, 101456. DOI: 10.1016/j.rineng.2023.101456.
  56. Thakur, S. S.; Chauhan, G. S. Titania–Gelatin-Based Nanohybrids: A Versatile Material for Removal of Organic Dyes (Congo Red, Malachite Green, Crystal Violet and Methylene Blue) from Aqueous Solution. Mater. Horiz. 2018, 147–176. DOI: 10.1007/978-981-13-2568-7_14.
  57. Tahir, M. B.; Iqbal, T.; Kiran, H.; Hasan, A. Insighting Role of Reduced Graphene Oxide in BiVO4 Nanoparticles for Improved Photocatalytic Hydrogen Evolution and Dyes Degradation. Int. J. Energy Res. 201943 (6), 2410–2417. DOI: 10.1002/er.4443.
  58. Solayman, H. M.; Abd Aziz, A.; Yahya, N. Y.; Leong, K. H.; Sim, L. C.; Hossain, Md. K.; Khan, Md. B.; Zoh, K. D. CQDs Embed G-C3N4 Photocatalyst in Dye Removal and Hydrogen Evolution: An Insight Review. J. Water Process Eng. 202457, 104645. DOI: 10.1016/j.jwpe.2023.104645.
  59. Gui, X.; Zhou, Y.; Liang, Q.; Zhou, M.; Li, X.; Xu, S.; Li, Z. Construction of Porous ZnS/TiO2 S-Scheme Heterostructure Derived from MOF-on-MOF with Boosting Photocatalytic H2-Generation Activity. Int. J. Hydrog. Energy 202348 (97), 38237–38250. DOI: 10.1016/j.ijhydene.2023.06.129.
  60. Hamdy, M. S.; Abd-Rabboh, H. S.; Benaissa, M.; Al-Metwaly, M. G.; Galal, A. H.; Ahmed, M. A. Fabrication of Novel Polyaniline/ZnO Heterojunction for Exceptional Photocatalytic H2 Production and Degradation of Fluorescein Dye through Direct Z- Scheme Mechanism. Opt. Mater. 2021117, 111198. DOI:10.1016/j.optmat.2021.111198
  61. Zhao, S.; Xu, J.; Mao, M.; Li, L.; Li, X. Protonated G-C3N4 Cooperated with Co-MOF Doped with Sm to Construct 2D/2D Heterojunction for Integrated Dye-Sensitized Photocatalytic H2 Evolution. J. Colloid Interface Sci.  2021583, 435–447. DOI: 10.1016/j.jcis.2020.09.063.
  62. Aoudjit, L.; Salazar, H.; Zioui, D.; Sebti, A.; Martins, P. M.; Lanceros-Mendez, S. Reusable Ag@TiO2-Based Photocatalytic Nanocomposite Membranes for Solar Degradation of Contaminants of Emerging Concern. Polymers 202113 (21), 3718. DOI: 10.3390/polym13213718.
  63. Khan, H.; Shah, H. Modification Strategies of TiO2 Based Photocatalysts for Enhanced Visible Light Activity and Energy Storage Ability: A Review. J. Environ. Chem. Eng. 202311 (6), 111532–111532. DOI: 10.1016/j.jece.2023.111532.

As a photocatalyst, titanium dioxide (TiO2) has attracted a lot of interest because of its remarkable qualities, including stability, affordability, and environmental friendliness. The latest developments in TiO2-based photocatalysts are examined in this thorough overview, along with cutting-edge methods for increasing their effectiveness in a range of photocatalytic applications. The article discusses developments in TiO2 modifications, such as surface functionalization, heterostructure, and doping, to increase charge separation, broaden the range of light absorption, and boost catalytic performance in general. Additionally, new methods for creating TiO2 and how they affect photocatalytic activity are covered. The paper highlights the diverse possibilities of TiO2-based photocatalysts in tackling modern issues by outlining applications ranging from solar fuel production to environmental remediation.

Keywords : Titanium Dioxide, Photocatalyst, Dye, Hydrogen, Efficiency, Reusability.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe