Integrating Quantum Algorithms with Gravitational-Wave Metrology for Enhanced Signal Detection


Authors : Vaidik A Sharma

Volume/Issue : Volume 9 - 2024, Issue 5 - May

Google Scholar : https://tinyurl.com/49va2vfc

Scribd : https://tinyurl.com/bdhbx87x

DOI : https://doi.org/10.38124/ijisrt/IJISRT24MAY1808

Abstract : This study explores the integration of quantum algorithms, specifically Grover's algorithm, with quantum metrology to enhance the efficiency and sensitivity of gravitational-wave detection. By combining quantum matched filtering with precise parameter estimation techniques, the research aims to optimize sensor networks for the identification of gravitational waves. This integrated approach leverages the strengths of quantum superposition and entanglement to improve signal detection, reduce noise, and strategically place sensors. The findings demonstrate significant improvements in the sensitivity and accuracy of gravitational wave measurements, highlighting the potential of quantum technologies to revolutionize observational astronomy and enhance our understanding of the universe.

Keywords : Quantum Algorithms, Gravitational-Wave Detection, LIGO/Virgo Data Analysis, Matched Filtering, Quantum Metrology, Parameter Estimation.

References :

  1. Lloyd, S. (1996). Universal quantum simulators. Science, 273(5278).
  2.  Giovannetti, V., Lloyd, S., Maccone, L. (2004). Quantumenhanced measurements: Beating the standard quantum limit. Science, 306(5700).
  3. Paris, M. G., Rehacek, J. (2004). Quantum state estimation. Lecture Notes in Physics, 649.
  4. Childs, A. M., Kothari, R., Somma, R. D. (2018). Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing, 47(5).
  5.  Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, K., Zoller, P. (2021). Quantum variational optimization of Ramsey interferometry and atomic clocks. Physical review X, 11(4), 041045.
  6.  A. Montanaro, Quantum pattern matching fast on average, Algorithmica 77, 16 (2017).
  7. B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt et al., Searches for continuous gravitational waves from 15 supernova remnants and Fomalhaut b with Advanced LIGO, Astrophys. J. 875, 122 (2019).
  8. M. S. Anis, H. Abraham, R. A. AduOffei, G. Agliardi, M. Aharoni, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, M. Amy, S. Anagolum et al., Qiskit: An open-source framework for quantum computing, Zenodo Version: 0.7.2 (2019), doi:10.5281/zenodo.2562111.
  9. M. Mosca, Counting by quantum eigenvalue estimation, Theor. Comput. Sci. 264, 139 (2001).
  10. J. Veitch, V. Raymond, B. Farr, W. Farr, P. Graff, S. Vitale, B. Aylott, K. Blackburn, N. Christensen, M. Coughlin, W. Del Pozzo, F. Feroz, J. Gair, C. J. Haster, V. Kalogera, T. Littenberg, I. Mandel, R. O'Shaughnessy, M. Pitkin, C. Rodriguez, C. Röver, T. Sidery, R. Smith, M. Van Der Sluys, A. Vecchio, W. Vousden, and L. Wade, Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library, Phys. Rev. D 91, 042003 (2015).
  11. G. Ashton, M. Hübner, P. D. Lasky, C. Talbot, K. Ackley, S. Biscoveanu, Q. Chu, A. Divarkala, P. J. Easter, B. Goncharov et al., BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy, Astrophys. J. Suppl. 241, 27 (2019).
  12. T. Dal Canton and I. W. Harry, Designing a template bank to observe compact binary coalescences in Advanced LIGO's second observing run, arXiv:1705.01845 (2017).
  13. S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans,
  14. M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, "Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light," Opt. Express 21, 19047-19060 (2013).
  15.  Chou, Chen-Kuan Chen, Wei Fwu, Peter Lin, Sung-Jan Lee, Hsuan-Shu Dong, Chen-Yuan. (2008). Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation. Journal of biomedical optics. 13. 014005. 10.1117/1.2824379.

This study explores the integration of quantum algorithms, specifically Grover's algorithm, with quantum metrology to enhance the efficiency and sensitivity of gravitational-wave detection. By combining quantum matched filtering with precise parameter estimation techniques, the research aims to optimize sensor networks for the identification of gravitational waves. This integrated approach leverages the strengths of quantum superposition and entanglement to improve signal detection, reduce noise, and strategically place sensors. The findings demonstrate significant improvements in the sensitivity and accuracy of gravitational wave measurements, highlighting the potential of quantum technologies to revolutionize observational astronomy and enhance our understanding of the universe.

Keywords : Quantum Algorithms, Gravitational-Wave Detection, LIGO/Virgo Data Analysis, Matched Filtering, Quantum Metrology, Parameter Estimation.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe