Isolation and Screening of Rhizosphere Bacteria from Sugarcane Roots for Plant Growth Promoting Traits: IAA Production and Phosphate Solubilization


Authors : Ann Irene. D; Grace Prabhakar

Volume/Issue : Volume 10 - 2025, Issue 8 - August


Google Scholar : https://tinyurl.com/ynb76p9j

Scribd : https://tinyurl.com/4chhwste

DOI : https://doi.org/10.38124/ijisrt/25aug1422

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : This study aimed to isolate, characterize, and identify indole-3-acetic acid (IAA)-producing bacteria from the sugarcane (Saccharum officinarum) rhizosphere, as bacterial IAA is a key trait that facilitates plant growth promotion. The level of auxin production was characterized by calorimetric estimation of IAA and the ability to solubilized calcium phosphate was evaluated by a qualitative analysis of phosphate solubilization in NBRIP Agar assay. Bacterial strains designated A, B, C, D, E, H, J, L, M, N, O, R, and S were isolated from the rhizosphere soil of sugarcane and were pure cultured. These strains produced IAA at detectable levels and out of these strain "C" produced the maximum amount of IAA per gram of the bacterial cell pellet, i.e. 2.72 mg of IAA per gram of dry cell pellet. Bacterial strains A, D, M, E, J, R, O and N had the capacity of solubilize the insoluble calcium phosphate in NBRIP agar. 3 strains - M, N, and R were capable producing both plant growth promoting traits. This study concludes that bacterial strains capable of IAA production, phosphate solubilization, or—most promisingly—both functions, show significant potential as effective bio- inoculants and optimal components for plant growth-promoting biofertilizer consortia."

Keywords : Rhizosphere, Phosphate Solubilization, IAA, Sugarcane, PGPR.

References :

  1. Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58(4), 921–929. https://doi.org/10.1007/s00248-009-9531-y
  2. Rodrigues, A., Bonifacio, A., Araujo, F., Lira Junior, M., & Figueiredo, M. (2015). Azospirillum sp. as a challenge for agriculture. In F. D. Cassán, J. Okon, & C. Creus (Eds.), Handbook for Azospirillum (pp. 23–45). Springer. https://doi.org/10.1007/978-3-319-24654-3_2
  3. Kloepper, J. W. (1993). Applications in agricultural and environmental management. In F. B. Metting Jr. (Ed.), Soil microbial ecology: Applications in agricultural and environmental management (pp. 255–274). Marcel Dekker Inc.
  4. Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39. https://doi.org/10.1016/j.micres.2013.09.009
  5. Gupta, M., Rahi, P., Pathania, V., Gulati, A., Singh, B., Bhanwra, R., & Tewari, R. (2010). Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside, and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 42(3), 222–229. https://doi.org/10.1016/j.apsoil.2010.08.008
  6. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Boyce, A. N. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability: A review. Molecules, 21(5), 573. https://doi.org/10.3390/molecules21050573
  7. Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473
  8. Babalola, O. O., Fadiji, A. E., Enagbonma, B. J., Alori, E. T., Ayilara, M. S., & Ayangbenro, A. S. (2020). The nexus between plant and plant microbiome: Revelation of the networking strategies. Frontiers in Microbiology, 11, 548037. https://doi.org/10.3389/fmicb.2020.548037
  9. Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419. https://doi.org/10.1590/S1415-475738420150053
  10. Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401
  11. Sharpe, P. (1998). Sugar cane: Past and present. Ethnobotanical Leaflets, 1998(3), Article 6.
  12. Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419. https://doi.org/10.1590/S1415-475738420150053
  13. Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, Article 963401. https://doi.org/10.6064/2012/963401
  14. Lupwayi, N. Z., Rice, W. A., & Clayton, G. W. (1998). Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biology and Biochemistry, 30(12), 1733–1741. https://doi.org/10.1016/S0038-0717(98)00025-X
  15. Alvey, S., Yang, C., Buerkert, A., & Crowley, D. (2003). Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biology and Fertility of Soils, 37(2), 73–82. https://doi.org/10.1007/s00374-002-0573-2
  16. Van Elsas, J. D., Garbeva, P., & Salles, J. (2002). Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation, 13(1), 29–40. https://doi.org/10.1023/A:1016393915414
  17. Herschkovitz, Y., Lerner, A., Okon, Y., & Jurkevitch, E. (2005). Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays). Environmental Microbiology, 11(7), 1847–1852. https://doi.org/10.1111/j.1462-2920.2005.00920.x
  18. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266. https://doi.org/10.1146/annurev.arplant.57. 032905.105159
  19. Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42(3), 207–220. https://doi.org/10.1139/m96-032
  20. Arshad, M., & Frankenberger, W. T., Jr. (1992). Microbial production of plant growth regulators. In F. B. Metting Jr. (Ed.), Soil microbial ecology (pp. 307–347). Marcel Dekker.
  21. Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904–916. https://doi.org/10.1080/01490451.2019.1654043
  22. Datta, C., & Basu, P. (2000). Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub Cajanus cojan. Microbiological Research, 155(2), 123–127. https://doi.org/10.1016/S0944-5013(00)80047-9
  23. Jones, D. L. (1998). Organic acids in the rhizosphere—A critical review. Plant and Soil, 205(1), 25–44. https://doi.org/10.1023/A:1004356007312
  24. Lynch, J. M. (1985). Origin, nature and biological activity of aliphatic substances and growth hormones found in soil. In J. M. Vaughan & R. E. Whitehead (Eds.), Soil organic matter and biological activity (pp. 151–174). Springer. https://doi.org/10.1007/978-94-009-5105-1_6
  25. Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42(3), 207–220. https://doi.org/10.1139/m96-032
  26. Remans, R. (2007). Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Plant and Soil, 302(1–2), 117–126. https://doi.org/10.1007/s11104-007-9469-8
  27. Richardson, A. E., & Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability: Update on microbial phosphorus. Plant Physiology, 156(3), 989–996. https://doi.org/10.1104/pp.111.175448
  28. Seshachala, U., & Tallapragada, P. (2012). Phosphate solubilizers from the rhizosphere of Piper nigrum L. in Karnataka, India. Chilean Journal of Agricultural Research, 72(3), 397–403. https://doi.org/10.4067/S0718-58392012000300015
  29. Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant–microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4), a001438. https://doi.org/10.1101/cshperspect.a001438
  30. Zaidi, A., Khan, M. S., Ahemad, M., & Oves, M. (2009). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science, 26(1), 1–20. https://doi.org/10.1016/j.jksus.2013.05.001
  31. Kovar, J. L., & Classen, N. (2005). Soil–root interactions and phosphorus nutrition of plants. In J. T. Sims & A. N. Sharpley (Eds.), Phosphorus: Agriculture and the environment (pp. 379–414). ASA, CSSA, and SSSA.
  32. Pandey, A., & Srivastava, P. (2019). Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-817004-5.00001-4
  33. Rudrappa, T., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148(3), 1547–1556. https://doi.org/10.1104/pp.108.127613
  34. Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology, 26(1), 192–195. https://doi.org/10.1104/pp.26.1.192
  35. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  36. Najar, I. N., Sherpa, M. T., Das, S., Das, S., & Thakur, N. (2018). Microbial ecology of two hot springs of Sikkim: Predominant population and geochemistry. Science of the Total Environment, 637–638, 730–745. https://doi.org/10.1016/j.scitotenv.2018.05.037
  37. Sherpa, M. T., Najar, I. N., Das, S., & Thakur, N. (2018). Bacterial diversity in an alpine debris-free and debris-cover accumulation zone glacier ice, North Sikkim, India. Indian Journal of Microbiology, 58(4), 470–478. https://doi.org/10.1007/s12088-018-0747-8
  38. Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132(1), 44–51. https://doi.org/10.1104/pp.102.019661
  39. Kloepper, J. W., Wei, G., & Tuzun, S. (1992). Rhizosphere population dynamics and internal colonization of cucumber by plant growth-promoting rhizobacteria which induce systemic resistance to Colletotrichum orbiculare. In E. C. Tjamos, G. C. Papavizas, & R. J. Cook (Eds.), Biological control of plant diseases (NATO ASI Series, Vol. 230, pp. 185–197). Springer. https://doi.org/10.1007/978-1-4757-9468-7_24
  40. Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245(1), 35–47. https://doi.org/10.1023/A:1020809400075
  41. Kang, B. G., Kim, W. T., Yun, H. S., & Chang, S. C. (2010). Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnology Reports, 4(3), 179–183. https://doi.org/10.1007/s11816-010-0136-1
  42. Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate-solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  43. Shazhad, S. (2010). Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil & Environment, 29(1), 38–46.
  44. Dinesh, R., Anandaraj, M., Kumar, A., Bini, Y. K., Subila, K. P., & Aravind, R. (2013). Effects of plant growth-promoting rhizobacteria and NPK fertilizers on biochemical and microbial properties of soils under ginger (Zingiber officinale) cultivation. Agricultural Research, 2(4), 346–353. https://doi.org/10.1007/s40003-013-0080-8
  45. Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2013). Linking plant nutritional status to plant–microbe interactions. PLoS ONE, 8(7), e68555. https://doi.org/10.1371/journal.pone.0068555
  46. Parikh, K. (2015). Auxin hormone production and plant growth promotion by phosphate solubilizing bacteria of groundnut rhizosphere. International Journal of Innovative Research in Science, Engineering and Technology, 4(9), 8171–8176.
  47. Ali, W., Nadeem, M., Ashiq, W., Hussain, M. B., & Khan, A. (2019). The effects of organic and inorganic phosphorus amendments on the biochemical attributes and active microbial population of agriculture podzols following silage corn cultivation in boreal climate. Scientific Reports, 9(1), 17297. https://doi.org/10.1038/s41598-019-53906-8
  48. Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology & Biotechnology, 28(4), 1327–1350. https://doi.org/10.1007/s11274-011-0979-9
  49. Tao, G. C., Tian, S. J., Cai, M. Y., & Xie, G. H. (2008). Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soil. Pedosphere, 18(4), 515–523. https://doi.org/10.1016/S1002-0160(08)60042-9
  50. Shahab, S., Ahmed, N., & Khan, N. (2009). Indole acetic acid production and enhanced plant growth promotion by indigenous phosphate-solubilizing bacteria. African Journal of Agricultural Research, 4(11), 1312–1316.
  51. Wang, N., Wang, L., Zhu, K., Hou, S., Chen, L., Mi, D., Gui, Y., Qi, X., Jiang, C., & Lin, Y. (2020). Quorum sensing: A prospective therapeutic target for bacterial diseases. Frontiers in Microbiology, 11, 536865. https://doi.org/10.3389/fmicb.2020.536865

This study aimed to isolate, characterize, and identify indole-3-acetic acid (IAA)-producing bacteria from the sugarcane (Saccharum officinarum) rhizosphere, as bacterial IAA is a key trait that facilitates plant growth promotion. The level of auxin production was characterized by calorimetric estimation of IAA and the ability to solubilized calcium phosphate was evaluated by a qualitative analysis of phosphate solubilization in NBRIP Agar assay. Bacterial strains designated A, B, C, D, E, H, J, L, M, N, O, R, and S were isolated from the rhizosphere soil of sugarcane and were pure cultured. These strains produced IAA at detectable levels and out of these strain "C" produced the maximum amount of IAA per gram of the bacterial cell pellet, i.e. 2.72 mg of IAA per gram of dry cell pellet. Bacterial strains A, D, M, E, J, R, O and N had the capacity of solubilize the insoluble calcium phosphate in NBRIP agar. 3 strains - M, N, and R were capable producing both plant growth promoting traits. This study concludes that bacterial strains capable of IAA production, phosphate solubilization, or—most promisingly—both functions, show significant potential as effective bio- inoculants and optimal components for plant growth-promoting biofertilizer consortia."

Keywords : Rhizosphere, Phosphate Solubilization, IAA, Sugarcane, PGPR.

CALL FOR PAPERS


Paper Submission Last Date
30 - November - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe