Authors :
Ann Irene. D; Grace Prabhakar
Volume/Issue :
Volume 10 - 2025, Issue 8 - August
Google Scholar :
https://tinyurl.com/ynb76p9j
Scribd :
https://tinyurl.com/4chhwste
DOI :
https://doi.org/10.38124/ijisrt/25aug1422
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
This study aimed to isolate, characterize, and identify indole-3-acetic acid (IAA)-producing bacteria from the
sugarcane (Saccharum officinarum) rhizosphere, as bacterial IAA is a key trait that facilitates plant growth promotion.
The level of auxin production was characterized by calorimetric estimation of IAA and the ability to solubilized calcium
phosphate was evaluated by a qualitative analysis of phosphate solubilization in NBRIP Agar assay. Bacterial strains
designated A, B, C, D, E, H, J, L, M, N, O, R, and S were isolated from the rhizosphere soil of sugarcane and were pure
cultured. These strains produced IAA at detectable levels and out of these strain "C" produced the maximum amount of
IAA per gram of the bacterial cell pellet, i.e. 2.72 mg of IAA per gram of dry cell pellet. Bacterial strains A, D, M, E, J, R,
O and N had the capacity of solubilize the insoluble calcium phosphate in NBRIP agar. 3 strains - M, N, and R were
capable producing both plant growth promoting traits. This study concludes that bacterial strains capable of IAA
production, phosphate solubilization, or—most promisingly—both functions, show significant potential as effective bio-
inoculants and optimal components for plant growth-promoting biofertilizer consortia."
Keywords :
Rhizosphere, Phosphate Solubilization, IAA, Sugarcane, PGPR.
References :
- Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58(4), 921–929. https://doi.org/10.1007/s00248-009-9531-y
- Rodrigues, A., Bonifacio, A., Araujo, F., Lira Junior, M., & Figueiredo, M. (2015). Azospirillum sp. as a challenge for agriculture. In F. D. Cassán, J. Okon, & C. Creus (Eds.), Handbook for Azospirillum (pp. 23–45). Springer. https://doi.org/10.1007/978-3-319-24654-3_2
- Kloepper, J. W. (1993). Applications in agricultural and environmental management. In F. B. Metting Jr. (Ed.), Soil microbial ecology: Applications in agricultural and environmental management (pp. 255–274). Marcel Dekker Inc.
- Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39. https://doi.org/10.1016/j.micres.2013.09.009
- Gupta, M., Rahi, P., Pathania, V., Gulati, A., Singh, B., Bhanwra, R., & Tewari, R. (2010). Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside, and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 42(3), 222–229. https://doi.org/10.1016/j.apsoil.2010.08.008
- Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Boyce, A. N. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability: A review. Molecules, 21(5), 573. https://doi.org/10.3390/molecules21050573
- Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473
- Babalola, O. O., Fadiji, A. E., Enagbonma, B. J., Alori, E. T., Ayilara, M. S., & Ayangbenro, A. S. (2020). The nexus between plant and plant microbiome: Revelation of the networking strategies. Frontiers in Microbiology, 11, 548037. https://doi.org/10.3389/fmicb.2020.548037
- Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419. https://doi.org/10.1590/S1415-475738420150053
- Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401
- Sharpe, P. (1998). Sugar cane: Past and present. Ethnobotanical Leaflets, 1998(3), Article 6.
- Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419. https://doi.org/10.1590/S1415-475738420150053
- Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, Article 963401. https://doi.org/10.6064/2012/963401
- Lupwayi, N. Z., Rice, W. A., & Clayton, G. W. (1998). Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biology and Biochemistry, 30(12), 1733–1741. https://doi.org/10.1016/S0038-0717(98)00025-X
- Alvey, S., Yang, C., Buerkert, A., & Crowley, D. (2003). Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biology and Fertility of Soils, 37(2), 73–82. https://doi.org/10.1007/s00374-002-0573-2
- Van Elsas, J. D., Garbeva, P., & Salles, J. (2002). Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation, 13(1), 29–40. https://doi.org/10.1023/A:1016393915414
- Herschkovitz, Y., Lerner, A., Okon, Y., & Jurkevitch, E. (2005). Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays). Environmental Microbiology, 11(7), 1847–1852. https://doi.org/10.1111/j.1462-2920.2005.00920.x
- Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266. https://doi.org/10.1146/annurev.arplant.57. 032905.105159
- Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42(3), 207–220. https://doi.org/10.1139/m96-032
- Arshad, M., & Frankenberger, W. T., Jr. (1992). Microbial production of plant growth regulators. In F. B. Metting Jr. (Ed.), Soil microbial ecology (pp. 307–347). Marcel Dekker.
- Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904–916. https://doi.org/10.1080/01490451.2019.1654043
- Datta, C., & Basu, P. (2000). Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub Cajanus cojan. Microbiological Research, 155(2), 123–127. https://doi.org/10.1016/S0944-5013(00)80047-9
- Jones, D. L. (1998). Organic acids in the rhizosphere—A critical review. Plant and Soil, 205(1), 25–44. https://doi.org/10.1023/A:1004356007312
- Lynch, J. M. (1985). Origin, nature and biological activity of aliphatic substances and growth hormones found in soil. In J. M. Vaughan & R. E. Whitehead (Eds.), Soil organic matter and biological activity (pp. 151–174). Springer. https://doi.org/10.1007/978-94-009-5105-1_6
- Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42(3), 207–220. https://doi.org/10.1139/m96-032
- Remans, R. (2007). Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Plant and Soil, 302(1–2), 117–126. https://doi.org/10.1007/s11104-007-9469-8
- Richardson, A. E., & Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability: Update on microbial phosphorus. Plant Physiology, 156(3), 989–996. https://doi.org/10.1104/pp.111.175448
- Seshachala, U., & Tallapragada, P. (2012). Phosphate solubilizers from the rhizosphere of Piper nigrum L. in Karnataka, India. Chilean Journal of Agricultural Research, 72(3), 397–403. https://doi.org/10.4067/S0718-58392012000300015
- Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant–microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4), a001438. https://doi.org/10.1101/cshperspect.a001438
- Zaidi, A., Khan, M. S., Ahemad, M., & Oves, M. (2009). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science, 26(1), 1–20. https://doi.org/10.1016/j.jksus.2013.05.001
- Kovar, J. L., & Classen, N. (2005). Soil–root interactions and phosphorus nutrition of plants. In J. T. Sims & A. N. Sharpley (Eds.), Phosphorus: Agriculture and the environment (pp. 379–414). ASA, CSSA, and SSSA.
- Pandey, A., & Srivastava, P. (2019). Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-817004-5.00001-4
- Rudrappa, T., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148(3), 1547–1556. https://doi.org/10.1104/pp.108.127613
- Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology, 26(1), 192–195. https://doi.org/10.1104/pp.26.1.192
- Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
- Najar, I. N., Sherpa, M. T., Das, S., Das, S., & Thakur, N. (2018). Microbial ecology of two hot springs of Sikkim: Predominant population and geochemistry. Science of the Total Environment, 637–638, 730–745. https://doi.org/10.1016/j.scitotenv.2018.05.037
- Sherpa, M. T., Najar, I. N., Das, S., & Thakur, N. (2018). Bacterial diversity in an alpine debris-free and debris-cover accumulation zone glacier ice, North Sikkim, India. Indian Journal of Microbiology, 58(4), 470–478. https://doi.org/10.1007/s12088-018-0747-8
- Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132(1), 44–51. https://doi.org/10.1104/pp.102.019661
- Kloepper, J. W., Wei, G., & Tuzun, S. (1992). Rhizosphere population dynamics and internal colonization of cucumber by plant growth-promoting rhizobacteria which induce systemic resistance to Colletotrichum orbiculare. In E. C. Tjamos, G. C. Papavizas, & R. J. Cook (Eds.), Biological control of plant diseases (NATO ASI Series, Vol. 230, pp. 185–197). Springer. https://doi.org/10.1007/978-1-4757-9468-7_24
- Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245(1), 35–47. https://doi.org/10.1023/A:1020809400075
- Kang, B. G., Kim, W. T., Yun, H. S., & Chang, S. C. (2010). Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnology Reports, 4(3), 179–183. https://doi.org/10.1007/s11816-010-0136-1
- Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate-solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
- Shazhad, S. (2010). Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil & Environment, 29(1), 38–46.
- Dinesh, R., Anandaraj, M., Kumar, A., Bini, Y. K., Subila, K. P., & Aravind, R. (2013). Effects of plant growth-promoting rhizobacteria and NPK fertilizers on biochemical and microbial properties of soils under ginger (Zingiber officinale) cultivation. Agricultural Research, 2(4), 346–353. https://doi.org/10.1007/s40003-013-0080-8
- Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2013). Linking plant nutritional status to plant–microbe interactions. PLoS ONE, 8(7), e68555. https://doi.org/10.1371/journal.pone.0068555
- Parikh, K. (2015). Auxin hormone production and plant growth promotion by phosphate solubilizing bacteria of groundnut rhizosphere. International Journal of Innovative Research in Science, Engineering and Technology, 4(9), 8171–8176.
- Ali, W., Nadeem, M., Ashiq, W., Hussain, M. B., & Khan, A. (2019). The effects of organic and inorganic phosphorus amendments on the biochemical attributes and active microbial population of agriculture podzols following silage corn cultivation in boreal climate. Scientific Reports, 9(1), 17297. https://doi.org/10.1038/s41598-019-53906-8
- Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology & Biotechnology, 28(4), 1327–1350. https://doi.org/10.1007/s11274-011-0979-9
- Tao, G. C., Tian, S. J., Cai, M. Y., & Xie, G. H. (2008). Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soil. Pedosphere, 18(4), 515–523. https://doi.org/10.1016/S1002-0160(08)60042-9
- Shahab, S., Ahmed, N., & Khan, N. (2009). Indole acetic acid production and enhanced plant growth promotion by indigenous phosphate-solubilizing bacteria. African Journal of Agricultural Research, 4(11), 1312–1316.
- Wang, N., Wang, L., Zhu, K., Hou, S., Chen, L., Mi, D., Gui, Y., Qi, X., Jiang, C., & Lin, Y. (2020). Quorum sensing: A prospective therapeutic target for bacterial diseases. Frontiers in Microbiology, 11, 536865. https://doi.org/10.3389/fmicb.2020.536865
This study aimed to isolate, characterize, and identify indole-3-acetic acid (IAA)-producing bacteria from the
sugarcane (Saccharum officinarum) rhizosphere, as bacterial IAA is a key trait that facilitates plant growth promotion.
The level of auxin production was characterized by calorimetric estimation of IAA and the ability to solubilized calcium
phosphate was evaluated by a qualitative analysis of phosphate solubilization in NBRIP Agar assay. Bacterial strains
designated A, B, C, D, E, H, J, L, M, N, O, R, and S were isolated from the rhizosphere soil of sugarcane and were pure
cultured. These strains produced IAA at detectable levels and out of these strain "C" produced the maximum amount of
IAA per gram of the bacterial cell pellet, i.e. 2.72 mg of IAA per gram of dry cell pellet. Bacterial strains A, D, M, E, J, R,
O and N had the capacity of solubilize the insoluble calcium phosphate in NBRIP agar. 3 strains - M, N, and R were
capable producing both plant growth promoting traits. This study concludes that bacterial strains capable of IAA
production, phosphate solubilization, or—most promisingly—both functions, show significant potential as effective bio-
inoculants and optimal components for plant growth-promoting biofertilizer consortia."
Keywords :
Rhizosphere, Phosphate Solubilization, IAA, Sugarcane, PGPR.