Authors :
Semirat Abidemi Balogun; Onuh Matthew Ijiga; Nonso Okika; Lawrence Anebi Enyejo; Ogboji James Agbo
Volume/Issue :
Volume 10 - 2025, Issue 8 - August
Google Scholar :
https://tinyurl.com/9uec8jt7
Scribd :
https://tinyurl.com/ztfayb65
DOI :
https://doi.org/10.38124/ijisrt/25aug324
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
SQL injection and data exfiltration remain among the most severe threats to relational database security, often
leading to critical data breaches in enterprise systems. This review explores the application of machine learning techniques
for detecting such threats by profiling the behavioral patterns of relational SQL queries. Unlike traditional rule-based
approaches, machine learning models enable the dynamic identification of anomalous query structures and access behaviors
indicative of malicious intent. The study synthesizes recent advancements in supervised, unsupervised, and deep learning
methods tailored for query classification, anomaly detection, and user behavior modeling. Furthermore, it evaluates the
efficacy of these techniques in detecting stealthy exfiltration attacks under evolving threat landscapes. Emphasis is placed
on data preprocessing strategies, feature extraction from SQL logs, and the use of graph-based and sequence-aware models
for enhanced detection accuracy. The review concludes by outlining emerging challenges such as adversarial query
generation, concept drift, and the need for explainable models in high-assurance environments.
Keywords :
SQL Injection Detection, Data Exfiltration, Machine Learning, Behavioral Profiling, Relational Query Patterns, Anomaly Detection.
References :
- Adebayo, A. B., & Al-Dubai, A. Y. (2020). Leveraging machine learning for secure database access: A behavioral profiling approach. Information Systems, 92, 101521. https://doi.org/10.1016/j.is.2020.101521
- Adekunle, F., & Zhang, T. (2024). Event-driven frameworks for real-time intrusion detection in SQL-intensive applications. ACM Transactions on Privacy and Security, 27(1), 1–25. https://doi.org/10.1145/3591230
- Aggarwal, C. C., & Sathe, S. (2020). Theoretical foundations and algorithms for outlier ensembles. ACM Computing Surveys, 53(6), 1–36. https://doi.org/10.1145/3398037
- Akhtar, S., & Farooq, M. (2020). Real-time detection of SQL anomalies using deep autoencoders and stream processors. Journal of Network and Computer Applications, 157, 102591. https://doi.org/10.1016/j.jnca.2020.102591
- Alghawazi, et al. (2023). SQL injection detection using RNN autoencoder and LSTM. arXiv preprint.
- Alomari, M., & Wang, J. (2021). Deep structural analysis of SQL queries for anomaly detection. IEEE Transactions on Dependable and Secure Computing.
- Alshammari, R., Alwan, Z., & Alzain, M. A. (2021). Advanced SQL injection attack detection using behavioral features and statistical analysis. Computers, Materials & Continua, 66(2), 1631–1646. https://doi.org/10.32604/cmc.2021.013267
- Altwaijry, H., & El-Alfy, E. M. (2021). Evaluation of rule-based intrusion detection systems for SQLi vulnerabilities. IEEE Transactions on Dependable and Secure Computing, 18(4), 1549–1562. https://doi.org/10.1109/TDSC.2019.2896769
- Awotiwon, B. O., Enyejo, J. O., Owolabi, F. R. A., Babalola, I. N. O., & Olola, T. M. (2024). Addressing Supply Chain Inefficiencies to Enhance Competitive Advantage in Low-Cost Carriers (LCCs) through Risk Identification and Benchmarking Applied to Air Australasia’s Operational Model. World Journal of Advanced Research and Reviews, 2024, 23(03), 355–370. https://wjarr.com/content/addressing-supply-chain-inefficiencies-enhance-competitive-advantage-low-cost-carriers-lccs
- Banerjee, A., & Roy, A. (2022). Intelligent profiling of SQL attack surfaces: A review of recent progress. Information & Computer Security, 30(4), 597–617. https://doi.org/10.1108/ICS-11-2021-0146
- Banerjee, A., & Singh, R. (2022). Metric-aware performance evaluation in SQL-based threat detection systems. Computers & Security, 115, 102620. https://doi.org/10.1016/j.cose.2022.102620
- Bashir, F., Rauf, A., & Shahid, A. R. (2023). A hybrid AI-based framework for behavioral anomaly detection in SQL transactions. Neural Computing and Applications, 35, 11571–11585. https://doi.org/10.1007/s00521-023-08159-2
- Bashiru, O., Ochem, C., Enyejo, L. A., Manuel, H. N. N., & Adeoye, T. O. (2024). The crucial role of renewable energy in achieving the sustainable development goals for cleaner energy. *Global Journal of Engineering and Technology Advances*, 19(03), 011-036. https://doi.org/10.30574/gjeta.2024.19.3.0099
- Bianchi, F., Grana, M., & Rossi, C. (2021). Graph neural networks for anomaly detection in SQL query graphs. IEEE Transactions on Neural Networks and Learning Systems.
- Chatterjee, M., Gupta, S., & Bera, P. (2021). Profiling SQL behavior using deep learning for injection attack detection. Computers & Security, 105, 102240. https://doi.org/10.1016/j.cose.2021.102240
- Chen, D., & Zhao, Q. (2021). Low-latency SQL injection detection in distributed databases using recurrent neural networks. Future Generation Computer Systems, 117, 71–84. https://doi.org/10.1016/j.future.2020.11.014
- Chen, H., Yu, L., & Zhang, Y. (2021). Static and signature-based detection of SQL injection: A retrospective and limitations. Journal of Information Security and Applications, 59, 102836. https://doi.org/10.1016/j.jisa.2021.102836
- Chen, L., Rao, Q., & Zhao, Y. (2020). Temporal sequence modeling of SQL queries for anomaly detection. IEEE Transactions on Information Forensics and Security.
- Corporal Machine Learning Algorithms in SIEM Systems for Enhanced Detection. (2023). ResearchGate Conference Paper.
- Demilie, W. B., & Deriba, F. G. (2022). Detection and prevention of SQL‑injection attacks and developing compressive framework using machine learning and hybrid techniques. Journal of Big Data, 9(1), 124.
- Falor, A., Hirani, M., Vedant, H., Mehta, P., & Krishnan, D. (2022). A deep learning approach for detection of SQL injection attacks using convolutional neural networks. In Proceedings of Data Analytics and Management: ICDAM 2021 (Vol. 2, pp. 293–304).
- Garcia, R., & Watts, B. (2021). Role-aware machine learning for insider threat detection. ACM Transactions on Privacy and Security.
- Geeksforgeeks, (2024). Supervised and Unsupervised learning, https://www.geeksforgeeks.org/machine-learning/supervised-unsupervised-learning/
- Godwins, O. P., David-Olusa, A., Ijiga, A. C., Olola, T. M., & Abdallah, S. (2024). The role of renewable and cleaner energy in achieving sustainable development goals and enhancing nutritional outcomes: Addressing malnutrition, food security, and dietary quality. World Journal of Biology Pharmacy and Health Sciences, 2024, 19(01), 118–141. https://wjbphs.com/sites/default/files/WJBPHS-2024-0408.pdf
- Godwins, O. P., Ochagwuba, E., Idoko, I. P., Akpa, F. A., Olajide, F. I., & Olatunde, T. I. (2024). Comparative analysis of disaster management strategies and their impact on nutrition outcomes in the USA and Nigeria. *Business and Economics in Developing Countries (BEDC)*, 2(2), 34-42. http://doi.org/10.26480/bedc.02.2024.34.42
- Gomez, P., Sánchez, F., & Molina, J. (2022). Context-augmented profiling of database queries. Journal of Big Data Security.
- Haque, A., & Soliman, H. (2025). A transformer‑based autoencoder with Isolation Forest and XGBoost for malfunction and intrusion detection in wireless sensor networks. Future Internet, 17(4), 164.
- Hussain, S., Ahmed, T., & Nazir, U. (2022). User-role activity profiling in relational databases. Information Sciences.
- Ibokette, A. I., Aboi, E. J., Ijiga, A. C., Ugbane, S. I., Odeyemi, M. O., & Umama, E. E. (2024). The impacts of curbside feedback mechanisms on recycling performance of households in the United States. *World Journal of Biology Pharmacy and Health Sciences*, 17(2), 366-386.
- Ibokette., A. I. Ogundare, T. O., Danquah, E. O., Anyebe, A. P., Agaba, J. A., & Olola, T. M. (2024). The impacts of emotional intelligence and IOT on operational efficiency in manufacturing: A cross-cultural analysis of Nigeria and the US. Computer Science & IT Research Journal P-ISSN: 2709-0043, E-ISSN: 2709-0051. DOI: 10.51594/csitrj.v5i8.1464
- Ibokette., A. I. Ogundare, T. O., Danquah, E. O., Anyebe, A. P., Agaba, J. A., & Agaba, J. A. (2024). Optimizing maritime communication networks with virtualization, containerization and IoT to address scalability and real – time data processing challenges in vessel – to –shore communication. Global Journal of Engineering and Technology Advances, 2024, 20(02), 135–174. https://gjeta.com/sites/default/files/GJETA-2024-0156.pdf
- Ibrahim, M. M., & Suryani, V. (2023). Classification of SQL injection attacks using ensemble learning SVM and Naïve Bayes. In Proceedings of 2023 International Conference on Data Science and Its Applications (ICODSA) (pp. 230–236).
- Idoko P. I., Igbede, M. A., Manuel, H. N. N., Ijiga, A. C., Akpa, F. A., & Ukaegbu, C. (2024). Assessing the impact of wheat varieties and processing methods on diabetes risk: A systematic review. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(02), 260–277. https://wjbphs.com/sites/default/files/WJBPHS-2024-0286.pdf
- Idoko, I. P., Igbede, M. A., Manuel, H. N. N., Adeoye, T. O., Akpa, F. A., & Ukaegbu, C. (2024). Big data and AI in employment: The dual challenge of workforce replacement and protecting customer privacy in biometric data usage. *Global Journal of Engineering and Technology Advances*, 19(02), 089-106. https://doi.org/10.30574/gjeta.2024.19.2.0080
- Idoko, I. P., Ijiga, O. M., Agbo, D. O., Abutu, E. P., Ezebuka, C. I., & Umama, E. E. (2024). Comparative analysis of Internet of Things (IOT) implementation: A case study of Ghana and the USA-vision, architectural elements, and future directions. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 180-199.
- Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power generation: The vital role of power electronics in California's renewable energy transformation. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 274-293.
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Ileanaju, S. (2024). Harmonizing the voices of AI: Exploring generative music models, voice cloning, and voice transfer for creative expression.
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the potential of Elon Musk's proposed quantum AI: A comprehensive analysis and implications. *Global Journal of Engineering and Technology Advances*, 18(3), 048-065.
- Igba, E., Danquah, E. O., Ukpoju, E. A., Obasa, J., Olola, T. M., & Enyejo, J. O. (2024). Use of Building Information Modeling (BIM) to Improve Construction Management in the USA. World Journal of Advanced Research and Reviews, 2024, 23(03), 1799–1813. https://wjarr.com/content/use-building-information-modeling-bim-improve-construction-management-usa
- Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. Open Access Research Journals. Volume 13, Issue. https://doi.org/10.53022/oarjst.2024.11.1.0060I
- Integrating SIEM with Data Lakes and AI: Enhancing Threat Detection and Response. (2024). ResearchGate Paper.
- Iqbal, W., & Naeem, M. (2024). Behavior-aware database intrusion detection: Trends and gaps. Journal of Cybersecurity and Privacy, 4(2), 207–230. https://doi.org/10.3390/jcp4020013
- Kamble, M. Y., Wankhade, K., & Barde, B. (2020). Comparative study on SQL injection detection using rule-based methods. Procedia Computer Science, 172, 641–648. https://doi.org/10.1016/j.procs.2020.05.088
- Kaushik, A., & Joshi, R. (2020). Structured feature representation of SQL queries for anomaly detection. Future Generation Computer Systems, 111, 504–517. https://doi.org/10.1016/j.future.2020.05.031
- Khan, S., & Ahmad, R. (2022). Grammar-based normalization of SQL statements for effective injection detection. International Journal of Information Security.
- Lee, H., Kim, D., & Park, S. (2023). Adaptive SQL query normalization with machine learning. ACM Transactions on Database Systems.
- Li, Y., Yang, T., & Jiang, M. (2023). Adaptive anomaly detection in streaming data using hybrid neural models. Journal of Artificial Intelligence Research, 76, 231–257. https://doi.org/10.1613/jair.1.13564
- Liu, F. T., Ting, K. M., & Zhou, Z. H. (2021). Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(3), 1–28. https://doi.org/10.1145/3458446
- Liu, H., Guo, Q., & Li, S. (2023). Systematic review of injection vulnerabilities and data leakage in cloud-based databases. Future Generation Computer Systems, 145, 259–272. https://doi.org/10.1016/j.future.2023.03.018
- Liu, Y., Zhao, H., & Fan, Y. (2022). Anomaly-based detection of SQLi using LSTM sequence learning. Expert Systems with Applications, 193, 116385. https://doi.org/10.1016/j.eswa.2021.116385
- Lu, Y., Chen, X., & Fang, J. (2022). Representing relational queries as graphs for intrusion detection. Applied Soft Computing.
- Mehrotra, R., & Thakur, R. (2023). Extraction of behavioral features from SQL logs using unsupervised deep encoders. Pattern Recognition Letters, 169, 30–38. https://doi.org/10.1016/j.patrec.2023.01.015
- Mohd Yazid Idris et al. (2023). An improved LSTM‑PCA ensemble classifier for SQL injection and XSS detection. UTM e‑prints.
- Onuh, J. E., Idoko, I. P., Igbede, M. A., Olajide, F. I., Ukaegbu, C., & Olatunde, T. I. (2024). Harnessing synergy between biomedical and electrical engineering: A comparative analysis of healthcare advancement in Nigeria and the USA. *World Journal of Advanced Engineering Technology and Sciences*, 11(2), 628-649.
- Ouyang, X., Lin, W., & Zhang, H. (2023). Online anomaly detection for relational databases using attention-based streaming models. Neurocomputing, 522, 87–101. https://doi.org/10.1016/j.neucom.2022.12.072
- Owolabi, F. R. A., Enyejo, J. O., Babalola, I. N. O., & Olola, T. M. (2024). Overcoming engagement shortfalls and financial constraints in Small and Medium Enterprises (SMES) social media advertising through cost-effective Instagram strategies in Lagos and New York City. International Journal of Management & Entrepreneurship Research P-ISSN: 2664-3588, E-ISSN: 2664-3596. DOI: 10.51594/ijmer.v6i8.1462
- Patel, D., Sharma, K., & Mehta, S. (2023). Supervised modeling of user-based SQL activity for anomaly detection. Computers & Security.
- Pu, et al. (2022). Detecting zero‑day web attacks with an ensemble of LSTM, GRU, and stacked autoencoders. Computers, 14(6), 205.
- Qureshi, M. A., & Khan, S. (2023). Detecting data exfiltration from relational queries: A machine learning perspective. IEEE Access, 11, 74501–74514. https://doi.org/10.1109/ACCESS.2023.3282905
- Rahman, M., Ahmed, F., & Miah, M. S. (2022). The weakness of black-box SQL injection scanners in modern web applications. Security and Privacy, 5(2), e205. https://doi.org/10.1002/spy2.205
- Sabottke, C. F., & Abraham, J. (2022). Survey of anomaly detection for relational data using supervised and unsupervised learning. IEEE Transactions on Knowledge and Data Engineering, 34(4), 1527–1540. https://doi.org/10.1109/TKDE.2021.3053062
- Sajjad, A., Nasir, Q., & Shafique, M. (2022). A taxonomy and survey of SQL injection detection and prevention techniques. Journal of Network and Computer Applications, 195, 103217. https://doi.org/10.1016/j.jnca.2021.103217
- Setiyaji, A., & Ramli, K. (2024). A technique utilizing CNN for identification of SQL injection attacks. 2024 ICSINTESA Conference Proceedings.
- Sharma, P., & Desai, R. (2023). Query–table interaction graphs for exfiltration detection. Knowledge-Based Systems.
- Sharma, R., Dey, L., & Kumar, S. (2022). Semantic embedding of structured query language statements for intrusion detection. Knowledge-Based Systems, 240, 108025. https://doi.org/10.1016/j.knosys.2022.108025
- Singh, A., & Jang‑Jaccard, J. (2022). Autoencoder‑based unsupervised intrusion detection using multi‑scale convolutional recurrent networks. arXiv preprint.
- Singh, A., & Kumar, P. (2023). LSTM‑based behavioral profiling of SQL query streams. Future Generation Computer Systems.
- Stiawan, D., et al. (2023). LSTM+PCA composite model to detect SQL injection and XSS. Scientific Reports.
- Suretysystems, (2025). Enhance SAP System Security: Top Strategies for SAP SIEM Integration, https://www.suretysystems.com/insights/enhance-sap-system-security-top-strategies-for-sap-siem-integration/
- Tang, L., et al. (2020). Attack detection in network flow data using LSTM for SQL injection. International Journal of Applied Engineering Research, 15(6), 569–580.
- The Future of SIEM in a Machine Learning‑Driven Cybersecurity. (2023). Turkish Journal of Computer and Mathematics Education.
- Uetz, R., Herzog, M., Hackländer, L., Schwarz, S., & Henze, M. (2023). You cannot escape me: detecting evasions of SIEM rules in enterprise networks. arXiv preprint.
- Vakharia, M., & Patel, V. (2020). Benchmarking datasets for anomaly detection in SQL injection scenarios. Journal of Cybersecurity, 6(1), taaa011. https://doi.org/10.1093/cybsec/taaa011
- Wang, T., & Li, M. (2024). Context-aware detection of data exfiltration via query patterns. Computers & Security.
- Web Traffic Anomaly Detection Using Isolation Forest. (2024). MDPI International Journal of Data, 11(4), 83.
- Xu, J., & Tan, Z. (2023). A framework for benchmark dataset creation in SQL-based attack detection using graph learning. IEEE Access, 11, 48526–48538. https://doi.org/10.1109/ACCESS.2023.3265270
- Yoon, J., Park, E., & Han, S. (2024). Hybrid role-based anomaly detection in enterprise queries. IEEE Transactions on Software Engineering.
- Zhang, J., & Yu, W. (2021). Feature transformation for SQL injection detection using query dependency graphs. Information Sciences, 569, 1–18. https://doi.org/10.1016/j.ins.2021.02.005
- Zhang, M., & Wang, X. (2021). Comparative analysis of evaluation metrics for SQL anomaly classifiers. Expert Systems with Applications, 185, 115550. https://doi.org/10.1016/j.eswa.2021.115550
- Zhang, Y., Xu, L., & Li, X. (2024). Structural feature extraction for SQL anomaly detection. Journal of Computer Security.
- Zheng, Y., Xie, T., & Xu, D. (2020). From SQL injection to data exfiltration: Challenges and countermeasures. IEEE Access, 8, 172495–172508. https://doi.org/10.1109/ACCESS.2020.3025084
- Zhou, W., Li, Z., & Xu, H. (2024). Graph stream learning of SQL behaviors. Information Sciences.
- Zhou, Y., Xu, Y., & Wang, C. (2021). Machine learning for database security: A systematic review. ACM Computing Surveys, 54(9), 1–36. https://doi.org/10.1145/3457600
SQL injection and data exfiltration remain among the most severe threats to relational database security, often
leading to critical data breaches in enterprise systems. This review explores the application of machine learning techniques
for detecting such threats by profiling the behavioral patterns of relational SQL queries. Unlike traditional rule-based
approaches, machine learning models enable the dynamic identification of anomalous query structures and access behaviors
indicative of malicious intent. The study synthesizes recent advancements in supervised, unsupervised, and deep learning
methods tailored for query classification, anomaly detection, and user behavior modeling. Furthermore, it evaluates the
efficacy of these techniques in detecting stealthy exfiltration attacks under evolving threat landscapes. Emphasis is placed
on data preprocessing strategies, feature extraction from SQL logs, and the use of graph-based and sequence-aware models
for enhanced detection accuracy. The review concludes by outlining emerging challenges such as adversarial query
generation, concept drift, and the need for explainable models in high-assurance environments.
Keywords :
SQL Injection Detection, Data Exfiltration, Machine Learning, Behavioral Profiling, Relational Query Patterns, Anomaly Detection.