Authors :
Bashir Ssimbwa; Azizi Wasike; Jamir Ssebadduka
Volume/Issue :
Volume 10 - 2025, Issue 11 - November
Google Scholar :
https://tinyurl.com/2katjsb8
Scribd :
https://tinyurl.com/2sx8b2n2
DOI :
https://doi.org/10.38124/ijisrt/25nov1523
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
This review explores the application of machine learning (ML) models in cardiovascular disease (CVD)
prediction, emphasizing their potential to revolutionize risk assessment and healthcare delivery. By examining traditional
models such as Logistic Regression, Support Vector Machines, and Random Forest, alongside advanced approaches like
XGBoost, the study highlights their strengths, limitations, and performance in various healthcare contexts. The review
underscores the growing role of hybrid and explainable ML architectures, as well as the integration of deep learning
techniques, in enhancing accuracy, scalability, and clinical trust. Despite notable advancements, challenges such as data
quality, imbalance, and ethical considerations in underrepresented regions persist, underscoring the need for collaborative
efforts among stakeholders to ensure equitable and efficient implementation. By addressing these gaps and leveraging
robust models like XGBoost, ML has the potential to significantly reduce the global burden of CVDs and drive
transformative change in precision medicine and patient-centred care.
Keywords :
Data Science, Big Data, Machine Learning, Artificial Intelligence, Computer Science, Cardiovascular Disease Prediction, Machine Learning Models, Machine Learning Architectures.
References :
- R. Kakkar and R. T. Lee, “Cardiovascular diseases,” Drug Discovery Today: Disease Models. Accessed: Feb. 05, 2025. [Online]. Available: https://www.who.int/health-topics/cardiovascular-diseases?utm_source=chatgpt.com#tab=tab_1
- J. J. Joseph et al., “Comprehensive Management of Cardiovascular Risk Factors for Adults with Type 2 Diabetes: A Scientific Statement from the American Heart Association,” Circulation, vol. 145, no. 9, pp. 722–759, Mar. 2022, doi: 10.1161/CIR.0000000000001040/SUPPL_FILE/SUPPLEMENTAL.
- G. A. Roth et al., “Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study,” J. Am. Coll. Cardiol., vol. 76, no. 25, pp. 2982–3021, Dec. 2020, doi: 10.1016/J.JACC.2020.11.010.
- S. S. Virani et al., “Heart Disease and Stroke Statistics—2021 Update,” Circulation, vol. 143, no. 8, pp. E254–E743, Feb. 2021, doi: 10.1161/CIR.0000000000000950.
- G. A. Mensah, G. A. Roth, and V. Fuster, “The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond,” J. Am. Coll. Cardiol., vol. 74, no. 20, pp. 2529–2532, Nov. 2019, doi: 10.1016/J.JACC.2019.10.009.
- J. Wu et al., “Lifestyle behaviors and risk of cardiovascular disease and prognosis among individuals with cardiovascular disease: a systematic review and meta-analysis of 71 prospective cohort studies,” Int. J. Behav. Nutr. Phys. Act., vol. 21, no. 1, pp. 1–17, Dec. 2024, doi: 10.1186/S12966-024-01586-7/FIGURES/5.
- H. C. Kim et al., “2018 Korean Society of Hypertension guidelines for the management of hypertension: Part I-epidemiology of hypertension,” Clin. Hypertens., vol. 25, no. 1, pp. 1–6, Aug. 2019, doi: 10.1186/S40885-019-0121-0/TABLES/3.
- Y. Anistyasari, S. C. Hidayati, R. Harimurti, and Ekohariadi, “A Random Forest Algorithm for Predicting Computer Programming Skill Associated with Learning Styles,” 2023 6th Int. Conf. Vocat. Educ. Electr. Eng. Integr. Scalable Digit. Connect. Intell. Syst. Green Technol. Educ. Sustain. Community Dev. ICVEE 2023 - Proceeding, pp. 162–166, Oct. 2023, doi: 10.1109/ICVEE59738.2023.10348199.
- K. I. Taher, A. M. Abdulazeez, and D. A. Zebari, “Data Mining Classification Algorithms for Analyzing Soil Data,” Asian J. Res. Comput. Sci., pp. 17–28, May 2021, doi: 10.9734/AJRCOS/2021/V8I230196.
- R. Guido, S. Ferrisi, D. Lofaro, and D. Conforti, “An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review,” Information, vol. 15, no. 4, Apr. 2024, doi: 10.3390/INFO15040235.
- I. Mohammed Hassoon, “Boosting Learning Algorithms for Chronic Diseases Prediction: A Review,” Iraqi J. Comput. Informatics, vol. 50, no. 2, pp. 22–30, Oct. 2024, doi: 10.25195/IJCI.V50I2.506.
- S. Chatakondu and K. Zhai, “An Analysis of the k-Nearest Neighbor Classifier to Predict Benign and Malignant Breast Cancer Tumors,” J. Student Res., vol. 12, no. 4, Nov. 2023, doi: 10.47611/JSRHS.V12I4.5577.
- Y. Wu, “Heart Disease Prediction Using Gradient Boosting Decision Trees,” Proc. 1st Int. Conf. Eng. Manag. Inf. Technol. Intell., pp. 527–535, Jan. 2024, doi: 10.5220/0012958300004508.
- B. R. Wankar, N. V. Kshirsagar, A. V. Jadhav, S. R. Bawane, and S. M. Koshti, “Innovative Deep Learning Approach for Parkinson’s Disease Prediction: Leveraging Convolutional Neural Networks for Early Detection,” EAI Endorsed Trans. Pervasive Heal. Technol., vol. 10, May 2024, doi: 10.4108/EETPHT.10.6190.
- N. . Shangaranarayanee, K. Hareesh Kumar, T. Jagadeesh, and S. Karthik, “Disease Prognosis Using Artificial Intelligence Neural Networks,” J. Artif. Intell. Capsul. Networks, vol. 6, no. 1, pp. 1–14, Mar. 2024, doi: 10.36548/JAICN.2024.1.001.
- H. Byeon et al., “Deep Neural Network Model for Enhancing Disease Prediction using Auto Encoder based Broad Learning.,” SLAS Technol., vol. 29, no. 3, pp. 100145–100145, May 2024, doi: 10.1016/J.SLAST.2024.100145.
- N. R. Barman, K. Sharma, and R. Hazra, “A transformer-based approach to automate disease prediction from patient descriptions,” 2023 IEEE 7th Conf. Inf. Commun. Technol. CICT 2023, pp. 1–5, Dec. 2023, doi: 10.1109/CICT59886.2023.10455356.
- S. K. Binu and C. Shanthi, “Clinical Insight: Comparative Analysis of Deep Learning Models for Disease Prediction across Multifaceted Datasets,” 3rd IEEE Int. Conf. Distrib. Comput. Electr. Circuits Electron. ICDCECE 2024, Apr. 2024, doi: 10.1109/ICDCECE60827.2024.10548473.
- M. A. Bülbül, “A novel hybrid deep learning model for early stage diabetes risk prediction,” J. Supercomput., vol. 80, no. 13, pp. 19462–19484, May 2024, doi: 10.1007/S11227-024-06211-9.
- G. Airlangga, “A Hybrid CNN-RNN Model for Enhanced Anemia Diagnosis: A Comparative Study of Machine Learning and Deep Learning Techniques,” Indones. J. Artif. Intell. Data Min., vol. 7, no. 2, p. 366, May 2024, doi: 10.24014/IJAIDM.V7I2.29898.
- L. Wang, C. Zhang, and J. Li, “A Hybrid CNN-Transformer Model for Predicting N Staging and Survival in Non-Small Cell Lung Cancer Patients Based on CT-Scan,” Tomography, vol. 10, no. 10, pp. 1676–1693, Oct. 2024, doi: 10.3390/TOMOGRAPHY10100123.
- M. S. Arif, A. U. Rehman, and D. Asif, “Explainable Machine Learning Model for Chronic Kidney Disease Prediction,” Algorithms, vol. 17, no. 10, pp. 443–443, Oct. 2024, doi: 10.3390/A17100443.
- V. N. Manju, N. Aparna, and K. Krishna Sowjanya, “Decision Tree-Based Explainable AI for Diagnosis of Chronic Kidney Disease,” Proc. 5th Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2023, pp. 947–952, Aug. 2023, doi: 10.1109/ICIRCA57980.2023.10220774.
- I. D. Mienye and N. Jere, “Optimized Ensemble Learning Approach with Explainable AI for Improved Heart Disease Prediction,” Information, vol. 15, no. 7, pp. 394–394, Jul. 2024, doi: 10.3390/INFO15070394.
- C. S. Muñoz-Valencia, J. A. Quesada, D. Orozco-Beltran, and X. Barber, “Bayesian networks for disease diagnosis: What are they, who has used them and how? (Preprint),” Apr. 2023, doi: 10.2196/PREPRINTS.48570.
- “A Framework for Multi-modal Learning: Jointly Modeling Inter- & Intra-Modality Dependencies,” May 2024, doi: 10.48550/ARXIV.2405.17613.
- S. Li and R. Zhang, “A novel interactive deep cascade spectral graph convolutional network with multi-relational graphs for disease prediction.,” Neural Networks, vol. 175, pp. 106285–106285, Apr. 2024, doi: 10.1016/J.NEUNET.2024.106285.
- Y. Ohnuki, M. Akiyama, and Y. Sakakibara, “Deep learning of multimodal networks with topological regularization for drug repositioning,” J. Cheminform., vol. 16, no. 1, Aug. 2024, doi: 10.1186/S13321-024-00897-Y.
- W. Wang, “Heart disease prediction using machine learning models,” Theor. Nat. Sci., vol. 51, no. 1, pp. 9–17, Oct. 2024, doi: 10.54254/2753-8818/51/2024CH0144.
- S. Yadav, A. Yadav, D. S. Srivastava, and P. Rai, “Heart Disease Prediction Using Machine Learning,” Indian Sci. J. Res. Eng. Manag., vol. 08, no. 008, pp. 1–4, Sep. 2024, doi: 10.55041/IJSREM37304.
- L. S, “Predicting Heart Disease through Machine Learning Methods,” Int. J. Innov. Sci. Res. Technol., pp. 829–842, Sep. 2024, doi: 10.38124/IJISRT/IJISRT24SEP382.
- J. Hassan, “Heart Disease Prediction Using Machine Learning Algorithms,” J. Innov. Comput. Emerg. Technol., vol. 4, no. 2, Oct. 2024, doi: 10.56536/JICET.V4I2.145.
- Z. Ahmed, “Abstract 4113047: Discovering novel biomarkers and predicting cardiovascular disease using AI/ML techniques for precision medicine,” Circulation, vol. 150, no. Suppl_1, Nov. 2024, doi: 10.1161/CIRC.150.SUPPL_1.4113047.
- “Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment,” Oct. 2024, doi: 10.48550/ARXIV.2410.14738.
- S. Tomar, D. Dembla, and Y. Chaba, “Analysis and Enhancement of Prediction of Cardiovascular Disease Diagnosis using Machine Learning Models SVM, SGD, and XGBoost,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 4, pp. 469–479, 2024, doi: 10.14569/IJACSA.2024.0150449.
- T. Dong et al., “Enhancing Cardiovascular Risk Prediction: Development of an Advanced Xgboost Model with Hospital-Level Random Effects,” Bioengineering, vol. 11, no. 10, pp. 1039–1039, Oct. 2024, doi: 10.3390/BIOENGINEERING11101039.
- Y. Zhou, “Prediction and Analysis of Cardiovascular Diseases Based on XGBoost,” 2024 IEEE 2nd Int. Conf. Image Process. Comput. Appl. ICIPCA 2024, pp. 1877–1881, Jun. 2024, doi: 10.1109/ICIPCA61593.2024.10709218.
- D. Bhardwaz, Y. Singla, R. Kaur, and L. Sharma, “Advancing Cardiovascular Health Risk Assessment: A Comprehensive Study on Heart Attack Prediction Using XGBoost Models and Cross-Validation,” 2024 Int. Conf. Adv. Comput. Res. Sci. Eng. Technol. ACROSET 2024, pp. 1–5, Sep. 2024, doi: 10.1109/ACROSET62108.2024.10743413.
- S. N. N. Arif, A. M. Siregar, S. Faisal, and A. R. Juwita, “Klasifikasi Penyakit Serangan Jantung Menggunakan Metode Machine Learning K-Nearest Neighbors (KNN) dan Support Vector Machine (SVM),” J. media Inform. Budidarma, vol. 8, no. 3, p. 1617, Jul. 2024, doi: 10.30865/MIB.V8I3.7844.
- C. Yan, Y. Xing, S. Liu, E. Gao, and J. Wang, “Machine Learning Models for Cardiovascular Disease Prediction: A Comparative Study,” Jun. 2024, doi: 10.1101/2024.05.27.596092.
- Suman Kumar Swarnkar, “Random Forest-Based Prediction Models for Assessing Cardiovascular Disease Risk: Integrating Clinical and Genetic Factors,” J. Electr. Syst., vol. 20, no. 3s, pp. 663–672, Apr. 2024, doi: 10.52783/JES.1352.
- V. R. Burugadda, V. Dutt, Mamta, and N. Vyas, “Personalized Cardiovascular Disease Risk Prediction Using Random Forest: An Optimized Approach,” Proc. - 2023 IEEE World Conf. Appl. Intell. Comput. AIC 2023, pp. 226–232, Jul. 2023, doi: 10.1109/AIC57670.2023.10263915.
- M. Naghavi et al., “Abstract 4144083: AI-CVD: Artificial Intelligence-Enabled Opportunistic Screening of Coronary Artery Calcium Computed Tomography Scans for Predicting CVD Events and All-Cause Mortality: The Multi-Ethnic Study of Atherosclerosis (MESA),” Circulation, vol. 150, no. Suppl_1, Nov. 2024, doi: 10.1161/CIRC.150.SUPPL_1.4144083.
- S. P. Singh, A. Singh, and M. Kumari, “Beyond Traditional Methods: Utilizing Regularized Logistic Regression for Accurate Heart Disease Forecasting,” Proc. - 2024 Int. Conf. Emerg. Innov. Adv. Comput. INNOCOMP 2024, pp. 247–251, May 2024, doi: 10.1109/INNOCOMP63224.2024.00048.
- H. Miao, “Logistic regression for cardiovascular diseases prediction by integrating PCA and K-means ++,” Theor. Nat. Sci., vol. 38, no. 1, pp. 126–132, Jun. 2024, doi: 10.54254/2753-8818/38/20240569.
- H. Azis, “Assessing the Performance of Logistic Regression in Heart Disease Detection through 5-Fold Cross-Validation,” Int. J. Artif. Intell. Med. Issues, vol. 2, no. 1, pp. 1–11, May 2024, doi: 10.56705/IJAIMI.V2I1.137.
- W. DeGroat et al., “Multimodal AI/ML for discovering novel biomarkers and predicting disease using multi-omics profiles of patients with cardiovascular diseases,” Dent. Sci. reports, vol. 14, no. 1, p. 26503, Nov. 2024, doi: 10.1038/S41598-024-78553-6.
- Raza Naeem, “Machine and deep learning techniques for cardiovascular disease detection,” J. Innov. Comput. Emerg. Technol., vol. 4, no. 2, Oct. 2024, doi: 10.56536/JICET.V4I2.131.
- N. Ghaniaviyanto Ramadhan, Adiwijaya, W. Maharani, and A. Akbar Gozali, “Prediction of Cardiovascular Disease (CVD) in the Upcoming Year Using Tree-Based Ensemble Model,” 2024 12th Int. Conf. Inf. Commun. Technol. ICoICT 2024, pp. 210–216, Aug. 2024, doi: 10.1109/ICOICT61617.2024.10698310.
- R. Bhuvaneswari, S. Karthigeyan, and T. Sabhanayagam, “CVNET - Cardiovascular Disease Detection using Deep Convolutional Neural Network,” 2024 Asia Pacific Conf. Innov. Technol. APCIT 2024, pp. 1–6, Jul. 2024, doi: 10.1109/APCIT62007.2024.10673606.
- N. V. DURGA SAI SIVA VARA PRASAD RAJU and P. N. DEVI, “AI-Assisted Medical Imaging and Heart Disease Diagnosis: A Deep Learning Approach for Automated Analysis and Enhanced Prediction Using Ensemble Classifiers,” J. Artif. Intell. Gen. Sci. ISSN3006-4023, vol. 6, no. 1, pp. 210–229, Oct. 2024, doi: 10.60087/JAIGS.V6I1.242.
- B. Surya, B. Venkatesh, S Vijayalakshmi, A. H. Narayanan, and R. Syed, “AI for Early CVD Diagnosis and Personalized Care,” Int. Res. J. Med. Surg., vol. 01, no. 02, pp. 09–18, Jan. 2024, doi: 10.47857/IRJMEDS.2024.V01I02.008.
- S. Dalal et al., “Application of Machine Learning for Cardiovascular Disease Risk Prediction,” Comput. Intell. Neurosci., vol. 2023, no. 1, pp. 1–12, Mar. 2023, doi: 10.1155/2023/9418666.
- I. Ilham, “Enhancing Cardiovascular Disease Prediction Accuracy through an Ensemble Machine Learning Approach,” Int. J. Artif. Intell. Med. Issues, vol. 2, no. 2, pp. 95–103, Nov. 2024, doi: 10.56705/IJAIMI.V2I2.157.
- C. Mansoor, S. K. Chettri, and H. Naleer, “Advancing Heart Disease Prediction through Synergistic Integration of Machine Learning and Deep Learning Techniques,” Proc. - 3rd Int. Conf. Adv. Comput. Commun. Appl. Informatics, ACCAI 2024, May 2024, doi: 10.1109/ACCAI61061.2024.10602447.
- “Centralized and Federated Heart Disease Classification Models Using UCI Dataset and their Shapley-value Based Interpretability,” Aug. 2024, doi: 10.48550/ARXIV.2408.06183.
- C. Sudlow et al., “UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age,” PLoS Med., vol. 12, no. 3, Mar. 2015, doi: 10.1371/JOURNAL.PMED.1001779.
- R. G. - et al., “Review on Heart Disease Prediction using Machine Learning Approaches,” Int. J. Multidiscip. Res., vol. 6, no. 5, Oct. 2024, doi: 10.36948/IJFMR.2024.V06I05.29475.
- D. P. Mishra, H. K. Gupta, G. Saajith, and R. Bag, “Optimizing Heart Disease Prediction Model with GridsearchCV for Hyperparameter Tuning,” 2024 1st Int. Conf. Cogn. Green Ubiquitous Comput. IC-CGU 2024, pp. 1–6, Mar. 2024, doi: 10.1109/IC-CGU58078.2024.10530772.
- A. Al Redhaei, W. A. Fares, and M. A. Al Betar, “Utilizing Optimization Techniques in Feature Selection for Effective Cardiovascular Disease Prediction,” 2023 24th Int. Arab Conf. Inf. Technol. ACIT 2023, pp. 1–6, Dec. 2023, doi: 10.1109/ACIT58888.2023.10453772.
- P. M. Goad and P. J. Deore, “Predicting and Analyzing Cardiovascular Disease through Ensemble Learning Approaches,” Int. Res. J. Multidiscip. Technovation, vol. 6, no. 5, pp. 153–163, Sep. 2024, doi: 10.54392/IRJMT24510.
- H. Liu, Y. Tian, and D. Yu, “Prediction of cardiovascular and cerebrovascular diseases based on machine learning models,” Appl. Comput. Eng., vol. 46, no. 1, pp. 35–44, Mar. 2024, doi: 10.54254/2755-2721/46/20241068.
- Nishat Anjum et al., “Improving Cardiovascular Disease Prediction through Comparative Analysis of Machine Learning Models,” J. Comput. Sci. Technol. Stud., vol. 6, no. 2, pp. 62–70, Apr. 2024, doi: 10.32996/JCSTS.2024.6.2.7.
- Y. Dou, J. Liu, W. Meng, and Y. Zhang, “Comparative analysis of supervised learning algorithms for prediction of cardiovascular diseases.,” Technol. Heal. Care, vol. 32, pp. 241–251, Apr. 2024, doi: 10.3233/THC-248021.
- U. Hasanah, A. M. Soleh, and K. Sadik, “Effect of Random Under sampling, Oversampling, and SMOTE on the Performance of Cardiovascular Disease Prediction Models,” J. Mat. Stat. dan Komputasi, vol. 21, no. 1, pp. 88–102, Sep. 2024, doi: 10.20956/J.V21I1.35552.
- M. Chandrika, R. Kiran, P. Vaidya, and R. Kodnad, “Evaluation of Machine Learning Models for Cardiovascular Risk Assessment,” 2nd Int. Conf. Intell. Cyber Phys. Syst. Internet Things, ICoICI 2024 - Proc., pp. 993–996, Aug. 2024, doi: 10.1109/ICOICI62503.2024.10696637.
- M. N. Sailaja, N. Ramakrishnaiah, and K. Swaroopa, “Cardiovascular Wellness ThroughTechnology: A Closer Look at Machine Learning Techniques,” 2nd IEEE Int. Conf. Adv. Inf. Technol. ICAIT 2024 - Proc., pp. 1–8, Jul. 2024, doi: 10.1109/ICAIT61638.2024.10690421.
- “Comparative Study of Machine Learning Algorithms in Detecting Cardiovascular Diseases, Dayana,” May 2024, doi: 10.48550/ARXIV.2405.17059.
- K. Niharika, U. B. Sofi, B. F. Ahmed, M. Arun, J. Ravi, and V. G. Krishnan, “Cardiovascular Disease Prediction Through Machine Learning Algorithms,” Proc. 3rd Int. Conf. Appl. Artif. Intell. Comput. ICAAIC 2024, pp. 583–588, Jun. 2024, doi: 10.1109/ICAAIC60222.2024.10574997.
- R. K. P. Tripathi and S. Tiwari, “Unravelling the Enigma of Machine Learning Model Interpretability in Enhancing Disease Prediction,” Adv. Syst. Anal. Softw. Eng. high Perform. Comput. B. Ser., pp. 125–153, Dec. 2023, doi: 10.4018/978-1-6684-8531-6.CH007.
- A. H. Elmi, A. Abdullahi, and M. A. Barre, “A machine learning approach to cardiovascular disease prediction with advanced feature selection,” Indones. J. Electr. Eng. Comput. Sci., vol. 33, no. 2, pp. 1030–1041, Feb. 2024, doi: 10.11591/IJEECS.V33.I2.PP1030-1041.
- C. Skouteli, N. Prenzas, A. Kakas, and C. S. Pattichis, “Explainable AI Modeling in the Prediction of Cardiovascular Disease Risk.,” Stud. Health Technol. Inform., vol. 316, pp. 978–982, Aug. 2024, doi: 10.3233/SHTI240574.
- “Mitigating Learning Bias in Healthcare Datasets,” Kumbhalwar, Jul. 2024, doi: 10.31979/ETD.98WG-H7W3.
- A. Ogunpola, F. Saeed, S. Basurra, A. M. Albarrak, and S. N. Qasem, “Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases.,” Diagnostics, vol. 14, no. 2, Jan. 2024, doi: 10.3390/DIAGNOSTICS14020144.
- S. Naganjaneyulu, G. Akanksha, S. Shaheeda, and M. Sadhak, “HMLF_CDD_SSBM: A Hybrid Machine Learning Framework for Cardiovascular Disease Diagnosis Prediction Using the SMOTE Stacking Method,” Lect. Notes Networks Syst., vol. 537 LNNS, pp. 571–585, Jan. 2023, doi: 10.1007/978-981-99-3010-4_47.
- K. V. Tompra, G. Papageorgiou, and C. Tjortjis, “Strategic Machine Learning Optimization for Cardiovascular Disease Prediction and High-Risk Patient Identification,” Algorithms, vol. 17, no. 5, Apr. 2024, doi: 10.3390/A17050178.
- P. C. Kanth, S. Vijayalakshmi, and T. S. Palathara, “Machine Learning Model Enabled with Data Optimisation for Prediction of Coronary Heart Disease,” pp. 1–5, Mar. 2024, doi: 10.1109/TQCEBT59414.2024.10545194.
- A. Kachhawa and J. Hitt, “An Intelligent System for Early Prediction of Cardiovascular Disease using Machine Learning,” J. Student Res., vol. 11, no. 3, Mar. 2023, doi: 10.47611/JSRHS.V11I3.2989.
- M. A. Sufian et al., “Enhancing Clinical Validation for Early Cardiovascular Disease Prediction through Simulation, AI, and Web Technology,” Diagnostics, vol. 14, no. 12, pp. 1308–1308, Jun. 2024, doi: 10.3390/DIAGNOSTICS14121308.
- V. O. Eguavoen, F. I. Amadin, and E. Nwelih, “Cardiovascular Disease Risk Prediction For People Living With Hiv Using Ensemble Deep Neural Network,” Int. Conf. Sci. Eng. Bus. Driv. Sustain. Dev. Goals, SEB4SDG 2024, pp. 1–9, Apr. 2024, doi: 10.1109/SEB4SDG60871.2024.10629982.
- F. Li, J. Zhao, P. Wu, H. H. Ong, W. Wei, and J. F. Peterson, “Abstract 15589: Evaluating Methods to Mitigate the Bias for Machine Learning-Based Cardiovascular Risk Model,” Circulation, vol. 146, no. Suppl_1, Nov. 2022, doi: 10.1161/CIRC.146.SUPPL_1.15589.
- C. J. Ejiyi et al., “Enhanced Cardiovascular Disease Prediction Modelling using Machine Learning Techniques: A Focus on CardioVitalnet.,” Netw. Comput. Neural Syst., pp. 1–33, Apr. 2024, doi: 10.1080/0954898X.2024.2343341.
- M. S. Hossain, M. A. Talukder, and M. Z. Mahmud, “Advancements in Cardiovascular Disease Detection: Leveraging Data Mining and Machine Learning,” bioRxiv, Mar. 2024, doi: 10.1101/2024.03.09.584222.
- A. Petreska, “Cardiovascular disease prediction with machine learning techniques,” J. Cardiol. Curr. Res., vol. 17, no. 2, pp. 41–51, Apr. 2024, doi: 10.15406/JCCR.2024.17.00603.
- T. Shilpa and anal paul, “CVDPF: A Hybrid Feature Selection Method with Data-Driven Approach for Cardiovascular Disease Prediction Framework using Machine Learning,” Dec. 2022, doi: 10.21203/RS.3.RS-2323170/V1.
- A. G. Tumusiime, O. S. Eyobu, I. Mugume, and T. J. Oyana, “A weather features dataset for prediction of short-term rainfall quantities in Uganda,” Data Br., vol. 50, Sep. 2023, doi: 10.1016/J.DIB.2023.109613.
- “Cleaned Weather Dataset for Uganda,” gahwera, Jan. 2023, doi: 10.7910/DVN/PQLYHP.
- Alexandros Argyriadis, Chrisi Vlachou, Ioannis Andriopoulos, and Ioannis Dimitrakopoulos, “Health promotion strategies for cardiovascular disease in the community of Uganda: Policies, challenges, and pathways to a healthier future,” Int. J. Sci. Res. Arch., vol. 10, no. 1, pp. 360–365, Sep. 2023, doi: 10.30574/IJSRA.2023.10.1.0759.
- M. Ananthi, A. S. Narayanan, T. P. Dhiraj Prasad, and R. Jai Vignesh, “Cardiovascular Disease Prediction Using Randelistic Algorithm,” Proc. Int. Conf. Circuit Power Comput. Technol. ICCPCT 2023, pp. 20–25, Aug. 2023, doi: 10.1109/ICCPCT58313.2023.10245957.
- M. E. Shirley, N. H. Kasujja, and G. Marvin, “Shapley Additive Explanations (SHAP) for Cardiovascular Diseases Prediction,” 2nd Int. Conf. Sustain. Comput. Smart Syst. ICSCSS 2024 - Proc., pp. 1429–1437, Jul. 2024, doi: 10.1109/ICSCSS60660.2024.10625027.
- M. Madhavilatha and M. G. T. P. Kumari, “Interpretable Artificial Intelligence in Cardiovascular Health: An In-depth Analysis of Heart Disease Data,” Indian Sci. J. Res. Eng. Manag., vol. 08, no. 02, pp. 1–13, Feb. 2024, doi: 10.55041/IJSREM28549.
This review explores the application of machine learning (ML) models in cardiovascular disease (CVD)
prediction, emphasizing their potential to revolutionize risk assessment and healthcare delivery. By examining traditional
models such as Logistic Regression, Support Vector Machines, and Random Forest, alongside advanced approaches like
XGBoost, the study highlights their strengths, limitations, and performance in various healthcare contexts. The review
underscores the growing role of hybrid and explainable ML architectures, as well as the integration of deep learning
techniques, in enhancing accuracy, scalability, and clinical trust. Despite notable advancements, challenges such as data
quality, imbalance, and ethical considerations in underrepresented regions persist, underscoring the need for collaborative
efforts among stakeholders to ensure equitable and efficient implementation. By addressing these gaps and leveraging
robust models like XGBoost, ML has the potential to significantly reduce the global burden of CVDs and drive
transformative change in precision medicine and patient-centred care.
Keywords :
Data Science, Big Data, Machine Learning, Artificial Intelligence, Computer Science, Cardiovascular Disease Prediction, Machine Learning Models, Machine Learning Architectures.