Mineralization Potential of the Lithium-Bearing Micas in the St Austell Granite, SW England


Authors : Amina Catherine Ijiga; Michael Owenvbiugie Eguagie; Alfred Tokowa

Volume/Issue : Volume 10 - 2025, Issue 1 - January


Google Scholar : https://tinyurl.com/jc6nbzb6

Scribd : https://tinyurl.com/6jb32h7u

DOI : https://doi.org/10.5281/zenodo.14709730


Abstract : The St Austell Granite, located in southwest England, represents a geologically significant area for the study of lithium-bearing micas and their mineralization potential. This paper investigates the geochemical properties, spatial distribution, and extraction feasibility of lithium from micas, such as zinnwaldite and lepidolite, which are hosted within this granite complex. Through a combination of field sampling, petrographic analysis, and advanced geochemical characterization techniques, the study explores the factors influencing lithium enrichment, including magmatic processes and hydrothermal alterations. The findings reveal that the lithium-bearing micas in the St Austell Granite possess high concentrations of lithium, often associated with rare earth elements, making them a promising resource for sustainable lithium extraction. Moreover, the research highlights the environmental and economic implications of developing these deposits, particularly in the context of increasing global demand for lithium in energy storage technologies. This study contributes to the growing body of knowledge on unconventional lithium sources, providing insights into their viability as a strategic resource for the renewable energy transition. Key recommendations for future exploration and processing strategies are proposed, emphasizing the role of innovation in unlocking the full potential of lithium- bearing micas in the St Austell Granite.

Keywords : Lithium-Bearing Micas, St Austell Granite, Mineralization Potential, Geochemical Analysis, Sustainable Lithium Extraction.

References :

  1. Aborode, A. T., Adesola, R. O., Idris, I., Adio, W. S., Scott, G. Y., Chakoma, M., & Onifade, I. A. (2024). Troponin C gene mutations on cardiac muscle cell and skeletal regulation: A comprehensive review. Gene, 148651.
  2. Aborode, A. T., Badri, R., Ottoho, E., Fakorede, S., Etinosa, P., Mangdow, M., & Onifade, I. A. (2024). Effects of migration on Sudanese women and children: A public health concern. Medicine, Conflict and Survival, 1-9.
  3. Aborode, A. T., Oluwajoba, A. S., Ibrahim, A. M., Ahmad, S., Mehta, A., Osayawe, O. J.-K., Oyebode, D., Akinsola, O., Osinuga, A., Onifade, I. A., Adelakun, I. O., Adesola, R. O., Abidola, T. B., Ogunyemi, A. D., Ogundijo, O. A., Banwo, O. G., & Obiechefu, C. H. (2024). Nanomedicine in cancer therapy: Advancing precision treatments. Advances in Biomarker Sciences and Technology.
  4. Aborode, A. T., Onifade, I. A., Olorunshola, M. M., Adenikinju, G. O., & Ogundipe, O. (2024). Biochemical mechanisms and molecular interactions of vitamins in cancer therapy. Cancer Pathogenesis and Therapy, 2, E01-E49.
  5. Ali, S. H., & Corder, G. D. (2019). The sustainability of lithium mining: Balancing environmental impact and resource extraction. Resources, Conservation and Recycling, 149, 37-51. https://doi.org/10.1016/j.resconrec.2019.05.003
  6. Anyebe, A. P., Yeboah, O. K. K., Bakinson, O. I., Adeyinka, T. Y., & Okafor, F. C. (2024). Optimizing Carbon Capture Efficiency through AI-Driven Process Automation for Enhancing Predictive Maintenance and CO2 Sequestration in Oil and Gas Facilities. American Journal of Environment and Climate, 3(3), 44–58. https://doi.org/10.54536/ajec.v3i3.3766
  7. Ashley P. (2023). Power of the microscope: Petrographic analysis and mineralogy in the exploration and mining industry. https://coringmagazine.com/article/power-microscope-petrographic-analysis-mineralogy/
  8. Awaji, A. A., Maigoro, A. Y., Aborode, A. T., Akintola, A. A., Fatoba, D. O., Idris, E. B., & Onifade, I. A. (2024). Identification of key molecular pathways and genes in BRCA1 and BRCA2-mutant ovarian cancer: Evidence from bioinformatics analysis. Genome Instability & Disease, 5(4), 164-182.
  9. Ayobami, O. I., Sunbare-Funto, O. J., Mbah, C. E., Ajibade, O. A., Oyawoye, O. M., & Onifade, I. A. (2024). Faecal microbial transplant. Advances in Biomarker Sciences and Technology.
  10. Ayoola, V. B., Audu, B. A., Boms, J. C., Ifoga, S. M., Mbanugo, O. J., & Ugochukwu, U. N.  (2024). Integrating Industrial Hygiene in Hospice and Home Based Palliative Care to Enhance Quality of Life for Respiratory and Immunocompromised Patients. NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880.
  11. Ayoola, V. B., Ugochukwu, U. N., Adeleke, I., Michael, C. I. Adewoye, M. B., & Adeyeye, Y. (2024). Generative AI-Driven Fraud Detection in Health Care Enhancing Data Loss Prevention and Cybersecurity Analytics for Real-Time Protection of Patient Records. International Journal of Scientific Research and Modern Technology (IJSRMT), Volume 3, Issue 11, 2024.https://www.ijsrmt.com/index.php/ijsrmt/article/view/112
  12. Banks, D. A., Yardley, B. W. D., & Campbell, A. R. (1994). The behavior of lithium in granite-related hydrothermal systems. Chemical Geology, 118(1-4), 91-104. https://doi.org/10.1016/0009-2541(94)90167-8
  13. Barker, D. S. (2017). Petrographic methods for identifying and quantifying mineralogical components in granitic rocks. Journal of Petrology, 58(9), 1739–1755. https://doi.org/10.1093/petrology/egx056
  14. Bradley, D. C., Stillings, L. L., Jaskula, B. W., Munk, L., & McCauley, A. D. (2017). Lithium—For harnessing renewable energy. U.S. Geological Survey Professional Paper, 1802, 1-21. https://doi.org/10.3133/pp1802G
  15. Breiter, K., Ďurišová, J., & Škoda, R. (2017). The spatial and temporal distribution of lithium in granitic pegmatites and greisenized granites. Lithos, 277, 373-388. https://doi.org/10.1016/j.lithos.2016.06.014
  16. Černý, P., & Ercit, T. S. (2005). The classification of granitic pegmatites revisited: The importance of magmatic and post-magmatic processes. Canadian Mineralogist, 43(6), 2005-2026. https://doi.org/10.2113/gscanmin.43.6.2005
  17. Černý, P., & Novak, M. (2001). Lithium-bearing pegmatites: Classification, composition, and petrogenetic significance. Mineralogical and Petrological Review, 21(1), 5-39. https://doi.org/10.1007/s007100170002
  18. Chiaradia, M., & Weis, D. (2016). Assessing precision and accuracy in rock geochemistry: Best practices in sampling and preparation. Journal of Analytical Atomic Spectrometry, 31(2), 418-431. https://doi.org/10.1039/C5JA00424K
  19. Deer, W. A., Howie, R. A., & Zussman, J. (2013). Advances in the mineralogical characterization of lithium-bearing micas. Mineralogical Magazine, 77(4), 1021-1040. https://doi.org/10.1180/minmag.2013.077.4.02
  20. Eguagie, M. O., Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Okafor, F. C. & Onwusi, C. N. (2025). Geochemical and Mineralogical Characteristics of Deep Porphyry Systems: Implications for Exploration Using ASTER. International Journal of Scientific Research in Civil Engineering.  2025 | IJSRCE | Volume 9 | Issue 1 | ISSN: 2456-6667. doi: https://doi.org/10.32628/IJSRCE25911
  21. Ekundayo, F. O., Orisadipe, D. B., & Onifade, I. A. (2020). Degradative ability of silver particles synthesized by Gram-negative bacteria of some crops rhizosphere on crude oil polluted soil. Asian Plant Research Journal, 4(4), 25-33.
  22. Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J.,  Awotiwon,  B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains for Risk Mitigation, Optimization, and Carbon Footprint Reduction through Green Initiatives. International Journal of Innovative Science and Research Technology, Volume 9, Issue 11, November– 2024.  ISSN No:-2456-2165.   https://doi.org/10.38124/ijisrt/IJISRT24NOV1344
  23. Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J.,  Awotiwon,  B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains for Risk Mitigation, Optimization, and Carbon Footprint Reduction through Green Initiatives. International Journal of Innovative Science and Research Technology, Volume 9, Issue 11, November– 2024.  ISSN No:-2456-2165.   https://doi.org/10.38124/ijisrt/IJISRT24NOV1344
  24. Enyejo, L. A., Adewoye, M. B. & Ugochukwu, U. N. (2024). Interpreting Federated Learning (FL) Models on Edge Devices by Enhancing Model Explainability with Computational Geometry and Advanced Database Architectures. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. Vol. 10 No. 6 (2024): November-December doi : https://doi.org/10.32628/CSEIT24106185
  25. Enyejo, J. O., Obani, O. Q, Afolabi, O.  Igba, E. & Ibokette, A. I., (2024). Effect of Augmented Reality (AR) and Virtual Reality (VR) experiences on customer engagement and purchase behavior in retail stores. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 132–150. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0116.pdf
  26. Evensen, N. M., London, D., & Haapala, I. (2018). Factors controlling lithium enrichment in granitic systems: A petrological perspective. Ore Geology Reviews, 96, 325-346. https://doi.org/10.1016/j.oregeorev.2018.02.011
  27. Flexer, V., Baspineiro, C. F., & Galli, C. I. (2018). Lithium recovery from brines: A vital raw material for green energy. Journal of Environmental Management, 223, 857–868. https://doi.org/10.1016/j.jenvman.2018.06.043
  28. Godwins, O. P., David-Olusa, A., Ijiga, A. C.,  Olola, T. M., & Abdallah, S. (2024). The role of renewable and cleaner energy in achieving sustainable development goals and enhancing nutritional outcomes: Addressing malnutrition, food security, and dietary quality. World Journal of Biology Pharmacy and Health Sciences, 2024, 19(01), 118–141. https://wjbphs.com/sites/default/files/WJBPHS-2024-0408.pdf
  29. Gorman, A. R., & Holness, M. B. (2020). Crystallization mechanisms and lithium distribution in granitic pegmatites. Contributions to Mineralogy and Petrology, 175(6), 45-61. https://doi.org/10.1007/s00410-020-01684-z
  30. Granite in Focus (May 18, 2017).A collection of Cornubian granite textures https://variscancoast.co.uk/cornubian-granite-textures
  31. Grosjean, C., Miranda, P. H., Perrin, M., & Poggi, P. (2012). Assessment of world lithium resources and consequences of their geographic distribution for the energy transition. Renewable and Sustainable Energy Reviews, 16(3), 1735-1744. https://doi.org/10.1016/j.rser.2011.11.019
  32. Harper, G. D., & Wafai, Y. (2022). The role of lithium in energy storage for renewable technologies: A global perspective. Renewable Energy, 190, 805-817. https://doi.org/10.1016/j.renene.2022.03.091
  33. Ibokette., A. I. Ogundare, T. O., Danquah, E. O., Anyebe, A. P., Agaba, J. A., & Agaba, J. A. (2024). Optimizing maritime communication networks with virtualization, containerization and IoT to address scalability and real – time data processing challenges in vessel – to –shore communication. Global Journal of Engineering and Technology Advances, 2024, 20(02), 135–174. https://gjeta.com/sites/default/files/GJETA-2024-0156.pdf
  34. Idoko, D. O., Agaba, J. A.,  Nduka, I.,  Badu, S. G.,  Ijiga, A. C. & Okereke, E. K, (2024). The role of HSE risk assessments in mitigating occupational hazards and infectious disease spread: A public health review. Open Access Research Journal of Biology and Pharmacy, 2024, 11(02), 011–030. https://oarjbp.com/content/role-hse-risk-assessments-mitigating-occupational-hazards-and-infectious-disease-spread.
  35. Idoko, I. P., Akindele, J. S., Imarenakhue, W. U. & Bashiru, O. (2024). Exploring the Role of Bioenergy in Achieving Sustainable Waste Utilization and Promoting Low-Carbon Transition Strategies. International Journal of Scientific Research in Science and Technology. ISSN: 2395-6011 | Online ISSN: 2395-602X,     doi : https://doi.org/10.32628/ IJSRST241161112
  36. Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. *Global Journal of Engineering and Technology Advances*, 19(01), 006-036.
  37. Igba, E., Adeyemi, A. F., Enyejo, J. O., Ijiga, A. C., Amidu, G., & Addo, G. (2024). Optimizing Business loan and Credit Experiences through AI powered ChatBot Integration in financial services. Finance & Accounting Research Journal, P-ISSN: 2708-633X, E-ISSN: 2708, Volume 6, Issue 8, P.No. 1436-1458, August 2024. DOI:10.51594/farj.v6i8.1406
  38. Ijiga, A. C., Aboi, E. J., Idoko, P. I., Enyejo, L. A., & Odeyemi, M. O. (2024). Collaborative innovations in Artificial Intelligence (AI): Partnering with leading U.S. tech firms to combat human trafficking. Global Journal of Engineering and Technology Advances, 2024,18(03), 106-123. https://gjeta.com/sites/default/files/GJETA-2024-0046.pdf
  39. Ijiga, A. C., Abutu E. P., Idoko, P.  I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 2024, 11(01), 535–551.·         https://ijsra.net/sites/default/files/IJSRA-2024-0078.pdf
  40. Ijiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 07(01), 048–063.  https://ijbpsa.com/sites/default/files/IJBPSA-2024-0015.pdf
  41. Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 2024, 10(02), 081–104. https://oarjbp.com/content/integrating-community-based-partnerships-enhanced-health-outcomes-collaborative-model
  42. Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/ sites/default/files/MSARR-2024-0091.pdf.
  43. Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/ sites/default/files/MSARR-2024-0091.pdf.
  44. Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention.
  45. Jaskula, B. W., & Bradley, D. C. (2020). Global lithium resources: Geology, production, and emerging extraction technologies. Resources Policy, 68, 101777. https://doi.org/10.1016/j.resourpol.2020.101777
  46. Kushnir, P., & Sandén, B. A. (2020). The time dimension and lithium resource constraints for electric vehicles. Resources Policy, 68, 101765. https://doi.org/10.1016/j.resourpol.2020.101765
  47. London, D. (2008). Pegmatites and the origin of granitic lithium enrichment. Elements, 4(5), 287-293. https://doi.org/10.2113/gselements.4.5.287
  48. Manning, D. A. C. (1995). Introduction to the granites of southwest England. Proceedings of the Ussher Society, 8(3), 1-5.
  49. Manning, D. A. C. (1995). Introduction to the granites of southwest England. Proceedings of the Ussher Society, 8(3), 1-5.
  50. Manning, D. A. C., & Hill, P. I. (1990). The petrogenetic significance of topaz granites. Journal of Petrology, 31(1), 131-172. https://doi.org/10.1093/petrology/31.1.131
  51. Müller, A., & Groves, D. I. (2019). Controls on lithium mineralization in granites and related rocks: Insights from spatial distribution patterns. Ore Geology Reviews, 107, 325-344. https://doi.org/10.1016/j.oregeorev.2019.02.017
  52. Müller, A., & Halls, C. (2005). The magmatic and hydrothermal evolution of topaz granites: A case study from SW England. Mineralogy and Petrology, 83(3-4), 257–291. https://doi.org/10.1007/s00710-004-0060-4
  53. Onifade I. A., Orisadipe, D. B., Nkor, N. D., Ekundayo, F. O., & Arogunjo, A. O. (2021). Degradation of Crude Oil by Bacteria Isolated from Various Soil Plantation at Idanre, Nigeria. Asian Journal of Biotechnology and Bioresource Technology 7(4): 87-92, 2021; Article no.AJB2T.69699 ISSN: 2457-0125. DOI: 10.9734/AJB2T/2021/v7i430112.
  54. Pyle, J. M., Spear, F. S., & Wark, D. A. (2002). Quantitative phase equilibria modeling and geochemical analysis of granite-hosted mineralization systems. Contributions to Mineralogy and Petrology, 143(4), 437-448. https://doi.org/10.1007/s00410-002-0354-0
  55. Rollinson, H. R. (2014). Sampling strategies for geochemical studies: Methods and best practices. Geochemical Journal, 48(6), 511-523. https://doi.org/10.2343/geochemj.2.0322
  56. Rollinson, H. R. (2019). Analytical techniques and data interpretation in igneous petrology: A focus on granitic systems. Chemical Geology, 525, 331-348. https://doi.org/10.1016/j.chemgeo.2019.07.008
  57. Shail, R. K., & Wilkinson, J. J. (1994). Late- to post-Variscan extensional tectonics in southwest England: Evidence from the Lizard Complex and the sedimentary basins of the Plymouth area. Journal of the Geological Society, 151(4), 669-682. https://doi.org/10.1144/gsjgs.151.4.0669
  58. Shail, R. K., & Wilkinson, J. J. (1994). Late- to post-Variscan extensional tectonics in southwest England: Evidence from the Lizard Complex and the sedimentary basins of the Plymouth area. Journal of the Geological Society, 151(4), 669-682. https://doi.org/10.1144/gsjgs.151.4.0669
  59. Simons, B., Andersen, T., Herd, R., & Shail, R. K. (2016). Rare-metal enrichment in the St Austell Granite: Constraints from textural, mineralogical, and geochemical investigations. Lithos, 248-251, 230-243. https://doi.org/10.1016/j.lithos.2016.01.013
  60. Sirbescu, M.-L. C., & Nabelek, P. I. (2003). Li, Be, B, P, and F in granite-pegmatite systems: Partitioning and sources. American Mineralogist, 88(6), 1003–1018. https://doi.org/10.2138/am-2003-0706
  61. Stone, M., Exley, C. S., & George, M. C. (1993). Compositional variation in the Cornubian Batholith and its significance. Proceedings of the Ussher Society, 8, 256–263.
  62. U.S. Geological Survey. (2022). Lithium supply and demand: Addressing critical mineral needs in the global market. Mineral Commodity Summaries, 2022, 99-102. https://doi.org/10.3133/mcs2022
  63. Valenzuela, A., & Billi, A. (2020). Environmental impacts of lithium extraction: A review of sustainability challenges and mitigation strategies. Environmental Science and Policy, 114, 518-532. https://doi.org/10.1016/j.envsci.2020.08.015
  64. Vikström, H., Davidsson, S., & Höök, M. (2013). Lithium availability and future production outlooks. Applied Energy, 110, 252-266. https://doi.org/10.1016/j.apenergy.2013.04.005
  65. Vikström, H., Davidsson, S., & Höök, M. (2013). Lithium availability and future production outlooks. Applied Energy, 110, 252-266. https://doi.org/10.1016/j.apenergy.2013.04.005
  66. Wall, F., & Naden, J. (2012). Rare earth element and lithium mineralization in granite pegmatites and greisen systems. Ore Geology Reviews, 44, 126-142. https://doi.org/10.1016/j.oregeorev.2011.12.003
  67. Wanger, T. C. (2011). The lithium future—Resources, recycling, and the environment. Conservation Letters, 4(3), 202–206. https://doi.org/10.1111/j.1755-263X.2011.00166.x
  68. X-Ray Minerals. (n.d.). Lithium mica minerals case study. Retrieved January 6, 2025, from https://www.xrayminerals.co.uk/en/lithium-mica-minerals-case-study/
  69. Xu, C., Kang, J., & Ren, X. (2019). Evaluating the economic and environmental feasibility of lithium extraction from unconventional resources. Minerals Engineering, 134, 317-331. https://doi.org/10.1016/j.mineng.2019.01.016
  70. Ziemann, S., Müller, S., Weil, M., & Schebek, L. (2018). Modeling the impacts of material supply constraints on the global lithium-ion battery supply chain. Journal of Cleaner Production, 181, 125-135. https://doi.org/10.1016/j.jclepro.2018.01.232

The St Austell Granite, located in southwest England, represents a geologically significant area for the study of lithium-bearing micas and their mineralization potential. This paper investigates the geochemical properties, spatial distribution, and extraction feasibility of lithium from micas, such as zinnwaldite and lepidolite, which are hosted within this granite complex. Through a combination of field sampling, petrographic analysis, and advanced geochemical characterization techniques, the study explores the factors influencing lithium enrichment, including magmatic processes and hydrothermal alterations. The findings reveal that the lithium-bearing micas in the St Austell Granite possess high concentrations of lithium, often associated with rare earth elements, making them a promising resource for sustainable lithium extraction. Moreover, the research highlights the environmental and economic implications of developing these deposits, particularly in the context of increasing global demand for lithium in energy storage technologies. This study contributes to the growing body of knowledge on unconventional lithium sources, providing insights into their viability as a strategic resource for the renewable energy transition. Key recommendations for future exploration and processing strategies are proposed, emphasizing the role of innovation in unlocking the full potential of lithium- bearing micas in the St Austell Granite.

Keywords : Lithium-Bearing Micas, St Austell Granite, Mineralization Potential, Geochemical Analysis, Sustainable Lithium Extraction.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe