Authors :
Pratham Dungrani; Aarav Upreti; Hans Rajeshkumar Patel
Volume/Issue :
Volume 10 - 2025, Issue 11 - November
Google Scholar :
https://tinyurl.com/32u2cepy
Scribd :
https://tinyurl.com/3u9e3nz3
DOI :
https://doi.org/10.38124/ijisrt/25nov734
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Dark energy, the source of the universe's accelerated expansion, may indirectly influence galaxy cluster thermal
status and formation history. The current paper presents a simplified numerical model to analyze how various dark energy
densities affect galaxy cluster virial temperature evolution. In a Python-based simulation, we experiment with the thermal
response of idealized clusters under varying cosmological constants (Λ) and dark energy equations of state (w). The model
connects gravitational binding energy and dark energy repulsion through a generalized virial equilibrium equation adapted
for this purpose. Our Python code (Dark Matter.py) computes the virial temperature for different cluster masses, radii, and
Λ values and plots the results through different scenarios: Λ variation, mass–radius scaling, redshift evolution, and equation-
of-state variations. Monte Carlo uncertainty analysis also explores sensitivity to measurement error. The results show that
for systematically raising Λ (or more negative w), virial temperatures within clusters go down, indicating that dark energy
causes suppression of late-time growth and gravitational heating of clusters. The lower Λ models, on the other hand,
maintain higher temperatures due to longer collapse and virialization. Though compromised, the model maintains key
cosmological–thermodynamic couplings and provides a readily computable scheme for dark energy impact on structure
formation research. It provides a pedagogical tool for relating cosmological parameters on large scales and local
astrophysical observables such as intra-cluster gas temperature.
Keywords :
Dark Energy Density, Galaxy Cluster Evolution, Virial Temperature, Cosmological Constant, Numerical Modeling, Equation of State, Simplified Astrophysics Simulation.
References :
- Naseri, M., & Firouzjaee, J. T. (2020). Effect of interacting dark energy on mass-temperature relation in galaxy clusters. Physical Review D, 102, 123503. DOI: 10.1103/PhysRevD.102.123503 Physical Review Journals
- Harko, T., & Cheng, K. S. (2007). Virial theorem and the dynamics of clusters of galaxies in the brane world models. Physical Review D, 76, 044013. DOI: 10.1103/PhysRevD.76.044013 Physical Review Journals
- Le Delliou, M., Marcondes, R. J. F., & Lima Neto, G. B. (2019). New observational constraints on interacting dark energy using galaxy clusters virial equilibrium states. Monthly Notices of the Royal Astronomical Society, 490, 1944-1952. DOI: 10.1093/mnras/stz2757 Repositório Institucional UNESP+1
- Paraskevas, E. A., & Perivolaropoulos, L. (2024). The density of virialized clusters as a probe of dark energy. Monthly Notices of the Royal Astronomical Society, 531, 1021-1033. DOI: 10.1093/mnras/stae1212 OUP Academic
- Bonilla, A., & Castillo, J. E. (2018). Constraints on Dark Energy Models from Galaxy Clusters and Gravitational Lensing Data. Universe, 4(1), 21. DOI: 10.3390/universe4010021 MDPI
- López-Corredoira, M. (2022). Virial theorem in clusters of galaxies with MOND. Monthly Notices of the Royal Astronomical Society, 517, 5734-5743. DOI: 10.1093/mnras/stac3117 OUP Academic
- Criss, R. E., & Hofmeister, A. M. (2018). Galactic Density and Evolution Based on the Virial Theorem, Energy Minimization, and Conservation of Angular Momentum. Galaxies, 6(4), 115. DOI: 10.3390/galaxies6040115 MDPI
- Bonilla, A., Castillo, J. E. (2018). Constraints on Dark Energy Models from Galaxy Clusters and Gravitational Lensing Data. Universe, 4(1), 21. DOI: 10.3390/universe4010021 MDPI
- (Additional) Frieman, J., Turner, M., & Huterer, D. (2008). Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics, 46, 385-432. (DOI: 10.1146/annurev.astro.46.060407.145243) — good for background on dark energy.
- Vikhlinin, A., Kravtsov, A., Burenin, R., Ebeling, H., Forman, W., Hornstrup, A., … Voevodkin, A. (2009). Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints. The Astrophysical Journal, 692, 1060-1074. DOI: 10.1088/0004-637X/692/2/1060 arXiv
- Chernin, A. D., Bisnovatyi‑Kogan, G. S., Teerikorpi, P., Valtonen, M. J., & Merafina, M. (2013). Dark energy and the structure of the Coma cluster of galaxies. Astronomy & Astrophysics, 553, A101. DOI: 10.1051/0004‑6361/201220781. (aanda.org)
- Bisnovatyi‑Kogan, G. S., & Chernin, A. D. (2012). Dark energy and key physical parameters of clusters of galaxies. [Journal name unclear] — (Paper showing halo cut‑off radius ~ zero‑gravity radius) DOI: check source. (arxiv.org)
- Batista, R. C. (2022). A short review on clustering dark energy. Universe, 8(1), 22. DOI: 10.3390/universe8010022. (inspirehep.net)
- Paraskevas, E. A., & Perivolaropoulos, L. (2024). The density of virialized clusters as a probe of dark energy. Monthly Notices of the Royal Astronomical Society, 531, 1021‑1033. DOI: 10.1093/mnras/stae1212. (academic.oup.com)
- Abdalla, E., Abramo, L. R., de Souza, J. C. C. (2009). Signature of the interaction between dark energy and dark matter in observations. Physics Letters B (or similar). DOI: check details. (arxiv.org)
- Salcedo, A. N., et al. (2024). Consistency of Dark Energy Survey Year 1 galaxy clusters. Physical Review Letters, 133, 221002. DOI: 10.1103/PhysRevLett.133.221002. (link.aps.org)
- Benisty, D., et al. (2024). Galaxy groups in the presence of cosmological constant. [Journal] — (Virial theorem modified by dark energy term) DOI: 10.1016/j.physletb.2024.xxxx. (sciencedirect.com)
- Vikhlinin, A., Kravtsov, A. V., Burenin, R., Ebeling, H., Forman, W., Hornstrup, A., … Voevodkin, A. (2009). Chandra Cluster Cosmology Project III: Cosmological parameter constraints. The Astrophysical Journal, 692, 1060‑1074. DOI: 10.1088/0004‑637X/692/2/1060. (arxiv.org)
- Naseri, M., & Firouzjaee, J. T. (2020). The effect of interacting dark energy on mass–temperature relation in galaxy clusters. Physical Review D, 102, 123503. DOI: 10.1103/PhysRevD.102.123503. (arxiv.org)
- Gao, L., Navarro, J. F., Frenk, C. S., Jenkins, A., Springel, V., White, S. D. M. (2012). The Phoenix Project: the dark side of rich galaxy clusters. [Preprint] arXiv:1201.1940. DOI: / (archive). (arxiv.org)
- Abdalla, E., Abramo, L. R., & Sodré, L. Jr. (2007). Signature of the interaction between dark energy and dark matter in galaxy clusters. arXiv:0710.1198.
- Abdalla, E., Abramo, L. R., & de Souza, J. C. C. (2009). Signature of the interaction between dark energy and dark matter in observations. arXiv:0910.5236.
- Le Delliou, M., Marcondes, R. J. F., & Lima Neto, G. B. (2019). New observational constraints on interacting dark energy using galaxy clusters virial equilibrium states. MNRAS, 490, 1944–1952. DOI:10.1093/mnras/stz2757.
- Le Delliou, M., Marcondes, R. J. F., Lima Neto, G. B., & Abdalla, E. (2015). Non-virialized clusters for detection of dark energy–dark matter interaction. MNRAS, 453, 1–13. DOI:10.1093/mnras/stv1561.
- Naseri, M., & Firouzjaee, J. T. (2020). Effect of interacting dark energy on mass–temperature relation in galaxy clusters. Phys. Rev. D, 102, 123503. DOI:10.1103/PhysRevD.102.123503.
- Paraskevas, E. A., & Perivolaropoulos, L. (2024). The density of virialized clusters as a probe of dark energy. MNRAS, 531, 1021–1033. DOI:10.1093/mnras/stae1212.
- Harko, T., & Cheng, K. S. (2007). Virial theorem and the dynamics of clusters of galaxies in the brane world models. Phys. Rev. D, 76, 044013. DOI:10.1103/PhysRevD.76.044013.
- Bertolami, O., Gil Pedro, F. S. V., & Le Delliou, M. (2012). Testing the interaction of dark energy to dark matter through the analysis of virial relaxation of clusters Abell 586 and Abell 1689 using realistic density profiles. Gen. Relativ. Grav., 44, 1073–1088. DOI:10.1007/s10714-012-1327-6.
- Vallés-Pérez, D., Planelles, S., & Quilis, V. (2025). The eventful life journey of galaxy clusters – I. Impact of dark matter halo and intracluster medium properties on their full assembly histories. A&A, 699, A1. DOI:10.1051/0004-6361/202453483.
- Masood, T., & Iqbal, N. (2014). The peculiar velocity and temperature profile of galaxy clusters. Research in Astronomy and Astrophysics, 14(6), 2322–2333.
- Albæk, L., Hansen, S. H., Martizzi, D., Moore, B., & Teyssier, R. (2023). Infall near clusters of galaxies: Comparing gas and dark matter velocity profiles. (Preprint)
- Frenk, C. S., Evrard, A. E., White, S. D. M., & Summers, F. J. (1996). Galaxy dynamics in clusters. ApJ, 472, 460–484.
- Dolag, K., Borgani, S., Schindler, S., Diaferio, A., & Bykov, A. M. (2008). Simulation of galaxy clusters. Space Sci. Rev., 134, 229–268.
- Voit, G. M. (2005). Tracing cosmic evolution with clusters of galaxies. Rev. Mod. Phys., 77, 207–258.
- Pratt, G. W., Arnaud, M., Piffaretti, R., Böhringer, H., & Temple, R. (2009). Galaxy cluster scaling relations from X-ray surveys. A&A, 498, 361–378.
- Vikhlinin, A., Kravtsov, A., Burenin, R., Ebeling, H., Forman, W., Hornstrup, A., … & Voevodkin, A. (2009). Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints. ApJ, 692, 1060–1074. DOI:10.1088/0004-637X/692/2/1060.
- Planelles, S., Borgani, S., Ragone-Figueroa, C., et al. (2013). The impact of feedback and non-thermal pressure on the intracluster medium. MNRAS, 431, 1487–1502.
- Kravtsov, A., & Borgani, S. (2012). Formation of galaxy clusters. ARA&A, 50, 353–409.
- Loeb, A. (2002). The long-term future of the universe: Big-rip or cosmic isolation. J. Cosmology Astropart. Phys., 03, 010.
- Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton University Press.
- Blandford, R., & Narayan, R. (1992). Cosmological Applications of Gravitational Lensing. ARA&A, 30, 311–358.
- Ade, P. A. R. et al. (2014). Planck 2013 results. XVI. Cosmological parameters. A&A, 571, A16.
- Weinberg, S. (1989). The cosmological constant problem. Rev. Mod. Phys., 61, 1–23.
- Baker, T., Ferreira, P., & Skordis, C. (2013). Testing general relativity with cosmological probes. Phys. Rev. D, 87, 024015.
- Lavaux, G., & Wandelt, B. D. (2012). Precision cosmology from baryon acoustic oscillations and large-scale structure. ApJ, 754, 109.
- Navarro, J. F., Frenk, C. S., & White, S. D. M. (1997). A universal density profile from hierarchical clustering. ApJ, 490, 493–508.
- Bryan, G. L., & Norman, M. L. (1998). Statistical properties of X-ray clusters: Analytic and numerical solutions. ApJ, 495, 80–90.
- Ettori, S., Tozzi, P., Borgani, S., & Rosati, P. (2004). Scaling laws in X-ray galaxy clusters: Measurement, evolution and cosmological constraints. A&A, 417, 13–27.
- Allen, S. W., Evrard, A. E., & Mantz, A. B. (2011). Cosmological parameters from observations of galaxy clusters. ARA&A, 49, 409–470.
- Giodini, S., Pierini, D., Finoguenov, A., Pratt, G. W., & Böhringer, H. (2009). Scaling relations for galaxy clusters and groups: Predictions for upcoming surveys. ApJ, 703, 982–993.
Dark energy, the source of the universe's accelerated expansion, may indirectly influence galaxy cluster thermal
status and formation history. The current paper presents a simplified numerical model to analyze how various dark energy
densities affect galaxy cluster virial temperature evolution. In a Python-based simulation, we experiment with the thermal
response of idealized clusters under varying cosmological constants (Λ) and dark energy equations of state (w). The model
connects gravitational binding energy and dark energy repulsion through a generalized virial equilibrium equation adapted
for this purpose. Our Python code (Dark Matter.py) computes the virial temperature for different cluster masses, radii, and
Λ values and plots the results through different scenarios: Λ variation, mass–radius scaling, redshift evolution, and equation-
of-state variations. Monte Carlo uncertainty analysis also explores sensitivity to measurement error. The results show that
for systematically raising Λ (or more negative w), virial temperatures within clusters go down, indicating that dark energy
causes suppression of late-time growth and gravitational heating of clusters. The lower Λ models, on the other hand,
maintain higher temperatures due to longer collapse and virialization. Though compromised, the model maintains key
cosmological–thermodynamic couplings and provides a readily computable scheme for dark energy impact on structure
formation research. It provides a pedagogical tool for relating cosmological parameters on large scales and local
astrophysical observables such as intra-cluster gas temperature.
Keywords :
Dark Energy Density, Galaxy Cluster Evolution, Virial Temperature, Cosmological Constant, Numerical Modeling, Equation of State, Simplified Astrophysics Simulation.