Modern Approaches to Sustainable Agriculture


Authors : Sadiq Sani; Abubakar Ibrahim Abdulkadir; Nasif Abdullahi; Kabiru Musa Abubakar; Abdullahi Abdul; Abdullahi Lawal Umar

Volume/Issue : Volume 9 - 2024, Issue 5 - May

Google Scholar : https://tinyurl.com/bd2t44yf

Scribd : https://tinyurl.com/3zsy9sd9

DOI : https://doi.org/10.38124/ijisrt/IJISRT24MAY1714

Abstract : The global population is increasing at an alarming rate, presenting a formidable challenge in meeting the escalating demand for food. This concern has garnered the attention of agrarian scientists and policymakers worldwide. The present population's rapid utilization of natural resources raises apprehensions about compromising the entitlement of future generations to access nutritious food and clean air. The multifaceted causes of this challenge can be delineated, with a prominent factor identified as the deficient or suboptimal implementation of innovative approaches and practices for sustainable agriculture. These contemporary strategies encompass climate-smart agriculture (CSA), precision farming, sustainable intensification, biodynamic agriculture, regenerative agriculture, organic farming, agroecology, integrated nutrient management (INM), integrated pest management, conservation agriculture, aquaponics, biotechnology, artificial intelligence, and big data analytics. It discusses the potential of these approaches to enhance resource efficiency, optimize yield, minimize environmental impact, and address challenges related to food security and climate change resilience. Empirical evidence supports the assertion that the adoption of these approaches and practices serves as a safeguard for agricultural sustainability.

Keywords : Sustainable Agriculture, Modern Approaches, Climate Smart Agriculture, Precision Farming, Aquaponics, Biotechnology, Artificial Intelligence, Big Data Analytics.

References :

  1. Altieri, M. A. (1995). Agroecology: The Science of Sustainable Agriculture. CRC Press.
  2. Altieri, M. A. (1999). The Ecological Role of Biodiversity in Agroecosystems. Agriculture, Ecosystems & Environment, 74(1-3), 19-31.
  3. Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2017). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 37(3), 33.
  4. Anderson, K., & Gaston, K. J. (2018). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 16(6), 324-325.
  5. Basso, B., & Antle, J. (2020). Digital agriculture: An introduction. American Journal of Agricultural Economics, 102(2), 373-391.
  6. Bengtsson, J., Ahnström, J., & Weibull, A. C. (2005). The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied Ecology, 42(2), 261-269.
  7. Bhattacharya, A., Sarkar, B., & Kalamdhad, A. S. (2017). A review of recent advancements in the management of agricultural waste using integrated nutrient management. Bioresource Technology, 241, 1101-1114.
  8. Biradar, C. M., Hari Prasad, K. S., & Rao, G. S. L. H. V. P. (2019). Artificial intelligence in agriculture: A comprehensive review. Journal of Agricultural Engineering, 56(3), 1-12.
  9. Birkett, M. A., Pickett, J. A., Khan, Z. R., & Al Abassi, S. (2018). IPM to sustainable food production. Phytochemistry Reviews, 17(5), 1149-1151.
  10. Blackmore, S., Godwin, R. J., & Fountas, S. (2013). Precision agriculture: A new approach to crop management. In Advances in Agronomy (Vol. 120, pp. 1-23). Academic Press.
  11. Bonaudo, T., Bendahan, A. B., Sabatier, R., Ryschawy, J., Bellon, S., Leger, F., & Tichit, M. (2014). Agroecological principles for the redesign of integrated crop-livestock systems. European Journal of Agronomy, 57, 43-51.
  12. Campbell, B. M., Thornton, P., Zougmore, R., van Asten, P., & Lipper, L. (2014). Sustainable intensification: What is its role in climate-smart agriculture? Current Opinion in Environmental Sustainability, 8, 39-43.
  13. Carpenter-Boggs, L., Kennedy, A. C., & Reganold, J. P. (2000). Organic and biodynamic management: Effects on soil biology. Soil Science Society of America Journal, 64(5), 1651-1659.
  14. Chandel, V., Sharma, A., & Kumar, R. (2020). Integrated nutrient management in sustainable agriculture: A review. Journal of Pure and Applied Microbiology, 14(2), 1175-1183.
  15. Chen, F., Peng, Z., & Li, B. (2019). Advances in precision agriculture technologies for crop stress tolerance breeding. Agriculture, Ecosystems & Environment, 284, 106586.
  16. Conway, G. R. (1997). The Doubly Green Revolution: Food for All in the 21st Century. Cornell University Press.
  17. De Castro, A. I., Jurado, J. M., & Fernandez-Rubio, J. (2017). Unmanned aerial systems (UASs) for environmental applications. Geosciences, 7(3), 62.
  18. Dixon, J., Gulliver, A., & Gibbon, D. (2001). Farming systems and poverty: Improving farmers' livelihoods in a changing world. FAO and World Bank.
  19. Dryzek, J. S. (1997). The Politics of the Earth: Environmental Discourses. Oxford University Press.
  20. Elevitch, C. R., Mazaroli, D. N., & Ragone, D. (2018). Agroforestry standards for regenerative agriculture. Sustainability, 10(9), 3337.
  21. Endut, A., Jusoh, A., Ali, N. M., Wan Nik, W. B., & Hassan, A. (2010). A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Desalination, 262(1-3), 187-192.
  22. FAO. (2010). "Climate-Smart" Agriculture: Policies, Practices, and Financing for Food Security, Adaptation and Mitigation. Food and Agriculture Organization of the United Nations.
  23. FAO. (2010). Integrated Crop-Livestock Farming Systems. Food and Agriculture Organization of the United Nations.
  24. FAO. (2013). Climate Smart Agriculture Sourcebook. Food and Agriculture Organization of the United Nations.
  25. Food and Agriculture Organization (FAO). (2012). The State of Food Insecurity in the World.
  26. Food and Agriculture Organization (FAO). (2018). The Future of Food and Agriculture – Alternative Pathways to 2050.
  27. Food and Agriculture Organization (FAO). (2020). The State of Food Security and Nutrition in the World 2020.
  28. Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., & Godfray, H. C. J. (2013). Sustainable intensification in agriculture: Premises and policies. Science, 341(6141), 33-34.
  29. Garrity, D., Akinnifesi, F., Ajayi, O., Weldesemayat, S., Mowo, J., Kalinganire, A., & Larwanou, M. (2010). Evergreen agriculture: A robust approach to sustainable food security in Africa. Food Security, 2(3), 197-214.
  30. Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828-831.
  31. Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K. V., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7(4), 4199-4224.
  32. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812-818.
  33. Gold, M. V. (2007). Sustainable Agriculture: Definitions and Terms. USDA National Agricultural Library.
  34. Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011). Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Critical Reviews in Plant Sciences, 30(1-2), 95-124.
  35. Gurr, G. M., Wratten, S. D., & Luna, J. M. (2017). Multi-function agricultural biodiversity: Pest management and other benefits. Basic and Applied Ecology, 18, 1-14.
  36. Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 543-555.
  37. Hoddle, M. S. (2017). IPM: What is it and why should extension educators care? Journal of Extension, 55(3), 3FEA2.
  38. IFOAM. (2005). Principles of Organic Agriculture. International Federation of Organic Agriculture Movements.
  39. James, C. (2018). Global status of commercialized biotech/GM crops: 2018. ISAAA Brief No. 54. ISAAA: Ithaca, NY.
  40. Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems, 76(1), 1-10.
  41. Kassam, A., Friedrich, T., Shaxson, F., & Pretty, J. (2015). The spread of conservation agriculture: Justification, sustainability and uptake. International Journal of Agricultural Sustainability, 13(3), 292-320.
  42. Koepf, H. H. (1989). The Biodynamic Farm. Anthroposophic Press.
  43. Kremen, C., & Miles, A. (2012). Ecosystem Services in Biologically Diversified Versus Conventional Farming Systems: Benefits, Externalities, and Trade-offs. Ecology and Society, 17(4).
  44. Kumar, V., Joshi, N., Singh, S. K., & Sharma, S. (2021). Impact of integrated nutrient management on soil fertility and crop productivity. Journal of Pharmacognosy and Phytochemistry, 10(2), 786-791.
  45. La Saponara, V., Nardinocchi, C., Dainelli, R., Di Gennaro, S., & Alippi, A. (2020). A review of UAV remote sensing applications for agroforestry systems. Remote Sensing, 12(18), 2970.
  46. LaCanne, C. E., & Lundgren, J. G. (2018). Regenerative agriculture: Merging farming and natural resource conservation profitably. PeerJ, 6, e4428.
  47. Lal, R. (2020). Regenerative agriculture for food and climate. Journal of Soil and Water Conservation, 75(5), 123A-124A.
  48. Lampkin, N. (1994). Organic Farming: Sustainable Agriculture in Practice. In Sustainable Agriculture: Green Fights for the Future, 56-70.
  49. Liebman, M., & Davis, A. S. (2009). Managing weeds in organic farming systems: an ecological approach. In Agronomy for Sustainable Development, 29(2), 49-51.
  50. Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., & Hottle, R. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068-1072.
  51. Liu, Y., Huang, L., Wang, W., Qin, W., & Zhou, K. (2019). Precision agriculture technologies for crop farming system. Journal of Integrative Agriculture, 18(4), 731-749.
  52. Malik, R. K., Rana, S. S., & Kumar, V. (2018). Integrated nutrient management for sustainable crop production. Journal of Pharmacognosy and Phytochemistry, 7(2), 1932-1937.
  53. Montagnini, F., & Nair, P. K. (2004). Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Springer Science & Business Media.
  54. Montgomery, D. R. (2017). Growing a revolution: Bringing our soil back to life. W. W. Norton & Company.
  55. Nair, P. K. R. (2012). Agroforestry - The future of global land use. Springer Science & Business Media.
  56. Newton, P., Civita, N., Frankel-Goldwater, L., Bartel, K., & Johns, C. (2020). What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes. Frontiers in Sustainable Food Systems, 4, 577723.
  57. Pandey, P., Pandey, A. K., & Singh, N. (2020). Integrated nutrient management for sustainable crop production: A review. International Journal of Chemical Studies, 8(1), 378-383.
  58. Parrott, N., & Marsden, T. (2002). The real green revolution: Organic and agroecological farming in the South. Greenpeace Environmental Trust.
  59. Partey, S. T., Koo, J., Sadick, A., Nkansah, P., Zougmore, R., & Nyadzi, E. (2018). Climate-smart agriculture in the African context. Sustainability, 10(9), 3196.
  60. Paull, J. (2011). Biodynamic agriculture: The journey from Koberwitz to the world, 1924-1938. Journal of Organic Systems, 6(1), 27-41.
  61. Peng, X., Cao, S., Zuo, Q., & Xia, H. (2020). A review of the development of precision agriculture technologies. International Journal of Agricultural and Biological Engineering, 13(5), 17-29.
  62. Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience, 55(7), 573-582.
  63. Pretty, J. (2008). Agricultural sustainability: Concepts, principles, and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 447-465.
  64. Pretty, J. N. (1995). Regenerating Agriculture: Policies and Practice for Sustainability and Self-Reliance. Earthscan.
  65. Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., ... & Sutherland, W. J. (2018). Global assessment of agricultural system redesigns for sustainable intensification. Nature Sustainability, 1(8), 441-446.
  66. Pretty, J., Toulmin, C., & Williams, S. (2006). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 4(2), 101-116.
  67. Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5-24.
  68. Qaim, M., & Kouser, S. (2013). Genetically modified crops and food security. PLOS ONE, 8(6), e64879.
  69. Rakocy, J. E., Bailey, D. S., Shultz, R. C., & Thoman, E. S. (2006). Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. Acta Horticulturae, 742, 63-74.
  70. Reganold, J. P. (1995). Soil quality and profitability of biodynamic and conventional farming systems: A review. American Journal of Alternative Agriculture, 10(1), 36-45.
  71. Resh, H. M. (2013). Hydroponic food production: A definitive guidebook for the advanced home gardener and the commercial hydroponic grower. CRC Press.
  72. Rhodes, C. J. (2017). The imperative for regenerative agriculture. Science Progress, 100(1), 80-129.
  73. Rigby, D., & Cáceres, D. (2001). Organic farming and the sustainability of agricultural systems. Agricultural Systems, 68(1), 21-40.
  74. Robertson, G. P., & Swinton, S. M. (2005). Reconciling Agricultural Productivity and Environmental Integrity: A Grand Challenge for Agriculture. Frontiers in Ecology and the Environment, 3(1), 38-46.
  75. Röling, N. G., & Wagemakers, M. A. (2000). Facilitating Sustainable Agriculture: Participatory Learning and Adaptive Management in Times of Environmental Uncertainty. Cambridge University Press.
  76. Sanginga, N., & Woomer, P. L. (2009). Integrated Soil Fertility Management in Africa: Principles, Practices, and Developmental Process. CIAT.
  77. Scheben, A., Wolter, F., Batley, J., & Puchta, H. (2016). How can plant breeding address the future needs of agriculture? Plant Molecular Biology, 92(1-2), 561-565.
  78. Scherr, S. J., Shames, S., & Friedman, R. (2012). From climate-smart agriculture to climate-smart landscapes. Agriculture & Food Security, 1(1), 12.
  79. Schleenbecker, R., & Hamm, U. (2013). Consumers’ perception of organic product attributes and organic food purchase decisions: A review. Agronomy for Sustainable Development, 33(4), 275-295.
  80. Schreefel, L., Schulte, R. P., de Boer, I. J., Schrijver, A. P., & van Zanten, H. H. (2020). Regenerative agriculture–the soil is the base. Global Food Security, 26, 100404.
  81. Seufert, V., Ramankutty, N., & Foley, J. A. (2012). Comparing the yields of organic and conventional agriculture. Nature, 485(7397), 229-232.
  82. Sharma, V., Dhingra, A., & Sharma, S. (2018). Sustainable agriculture and role of integrated nutrient management in enhancing soil health and productivity. Journal of Pharmacognosy and Phytochemistry, 7(3), 2128-2133.
  83. Singh, S., Khadka, M. S., Bista, B., & Shrestha, R. (2019). Integrated nutrient management in paddy cultivation for sustainable productivity. International Journal of Agriculture and Environmental Research, 5(1), 108-116.
  84. Singh, Y. V., Singh, R., & Prasad, S. M. (2011). Integrated farming system for Eastern India. Indian Journal of Agronomy, 56(4), 297-304.
  85. Sudduth, K. A., & Kitchen, N. R. (2005). The emergence of precision agriculture. Crop Management, 4(1), 1-14.
  86. Taylor, B. (2002). Ecological Resistance Movements: The Global Emergence of Radical and Popular Environmentalism. State University of New York Press
  87. Tesfaye, K., Kruseman, G., Cairns, J. E., Zaman-Allah, M. A., Wegary, D., Zaidi, P. H., & Erenstein, O. (2015). Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Climate Risk Management, 3, 38-51.
  88. Thompson, M. L., Shearer, S. A., & Meldrum, J. (2015). Integrated nutrient management strategies for enhancing crop productivity in intensive maize-based systems. Agriculture, Ecosystems & Environment, 214, 87-102.
  89. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260-20264.
  90. Tilman, D., et al. (2002). Agricultural Sustainability and Intensive Production Practices. Nature, 418(6898), 671-677.
  91. Turinek, M., Grobelnik-Mlakar, S., Bavec, M., & Bavec, F. (2009). Biodynamic agriculture research progress and priorities. Renewable Agriculture and Food Systems, 24(2), 146-154.
  92. United Nations Department of Economic and Social Affairs (UN DESA). (2019). World Population Prospects 2019.
  93. United Nations. (2017). World Population Prospects: The 2017 Revision.
  94. Wesseler, J., Zilberman, D., & Nelson, G. C. (2014). The impacts and acceptance of agricultural biotechnology: An introduction to the special issue. Food Policy, 49, 1-4.
  95. Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2009). Agroecology is a science, a movement, and a practice. A review. Agronomy for Sustainable Development, 29, 503-515.
  96. Willer, H., & Lernoud, J. (2019). The World of Organic Agriculture. Statistics and Emerging Trends 2019. Research Institute of Organic Agriculture FiBL and IFOAM Organics International.
  97. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming – A review. Agricultural Systems, 153, 69-80.
  98. Wu, M., Sun, Z., & He, X. (2018). Remote sensing applications for precision agriculture: A learning community approach. International Journal of Applied Earth Observation and Geoinformation, 64, 180-191.

The global population is increasing at an alarming rate, presenting a formidable challenge in meeting the escalating demand for food. This concern has garnered the attention of agrarian scientists and policymakers worldwide. The present population's rapid utilization of natural resources raises apprehensions about compromising the entitlement of future generations to access nutritious food and clean air. The multifaceted causes of this challenge can be delineated, with a prominent factor identified as the deficient or suboptimal implementation of innovative approaches and practices for sustainable agriculture. These contemporary strategies encompass climate-smart agriculture (CSA), precision farming, sustainable intensification, biodynamic agriculture, regenerative agriculture, organic farming, agroecology, integrated nutrient management (INM), integrated pest management, conservation agriculture, aquaponics, biotechnology, artificial intelligence, and big data analytics. It discusses the potential of these approaches to enhance resource efficiency, optimize yield, minimize environmental impact, and address challenges related to food security and climate change resilience. Empirical evidence supports the assertion that the adoption of these approaches and practices serves as a safeguard for agricultural sustainability.

Keywords : Sustainable Agriculture, Modern Approaches, Climate Smart Agriculture, Precision Farming, Aquaponics, Biotechnology, Artificial Intelligence, Big Data Analytics.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe