Molecular Insights into Prion Degradation in Creutzfeldt Jakob Disease’s Challenges and Future Directions: A Review


Authors : Mithula Jinde; Dr. Estuti Chandra; Poornima S

Volume/Issue : Volume 10 - 2025, Issue 7 - July


Google Scholar : https://tinyurl.com/2994mvb7

Scribd : https://tinyurl.com/hamvvv8v

DOI : https://doi.org/10.38124/ijisrt/25jul1837

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : Creutzfeldt-Jakob Disease (CJD) is a rare, fatal neurodegenerative disorder characterized by the accumulation of misfolded prion proteins (PrP^Sc) in the central nervous system. This review explores the molecular dynamics of prion misfolding and its implications for disease progression, with a particular focus on cellular degradation pathways. Key proteolytic systems, including the ubiquitin-proteasome system and the autophagy-lysosome pathway, are critically analyzed for their roles in the clearance of PrP^Sc. Special emphasis is placed on lysosomal involvement, where autophagosomes fuse to form autolysosomes, facilitating the breakdown of pathogenic proteins. The interplay between proteases and molecular chaperones in maintaining protein homeostasis is also discussed. Neuropathologically, CJD is marked by spongiform alterations, neuronal loss, and gliosis. Clinically, the disease presents with rapidly progressive dementia, motor impairments, and psychiatric symptoms. The heterogeneity of CJD is addressed by outlining its sporadic, familial, iatrogenic, and variant subtypes. Recent advances in diagnostic techniques, including real-time quaking-induced conversion (RT-QuIC) in peripheral tissues, as well as the integration of machine learning tools and AI-assisted biomarker discovery, are highlighted. Emerging therapeutic strategies targeting proteolytic and lysosomal pathways are also reviewed, offering potential for future intervention in this currently untreatable disease.

Keywords : Creutzfeldt-Jakob Disease (CJD), Prion Proteins, Neurodegeneration, Sporadic CJD, Variant CJD, Protein Misfolding, Real-Time Quaking-Induced Conversion (RT-QuIC), Biomarkers, Magnetic Resonance Imaging (MRI), Therapeutic Approaches.

References :

  1. Sigurdson, C. J., Bartz, J. C., & Glatzel, M. (2019). Cellular and molecular mechanisms of prion disease. Annual Review of Pathology: Mechanisms of Disease, 14, 497-516.
  2. Prusiner, S. B. (1998). Prions. Proceedings of the National Academy of Sciences, 95(23), 13363-13383.
  3. Langeveld, J. P., Wang, J. J., Van de Wiel, D. F., Shih, G. C., Garssen, G. J., Bossers, A., & Shih, J. C. (2003). Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. The Journal of Infectious Diseases188(11), 1782-1789.
  4. Soto, C., & Castilla, J. (2004). The controversial protein-only hypothesis of prion propagation. Nature Medicine, 10(Suppl), S63-S67.
  5. Kojima, G., Tatsuno, B. K., Inaba, M., Velligas, S., Masaki, K., & Liow, K. K. (2013). Creutzfeldt-Jakob disease: a case report and differential diagnoses. Hawai'i journal of medicine & public health: a journal of Asia Pacific Medicine & Public Health72(4), 136–139
  6. Aguzzi, A., & Lakkaraju, A. K. (2016). Cell biology of prions and prionoids: a status report. Trends in Cell Biology, 26(1), 40-51.
  7. Soto, C., Estrada, L., & Castilla, J. (2006). Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends in biochemical sciences31(3), 150-155.
  8. Cappai, R., & Collins, S. J. (2004). Structural biology of prions. Prions11, 14-32.
  9. Parchi, P., Giese, A., Capellari, S., Brown, P., Schulz-Schaeffer, W., Windl, O., ... & Kretzschmar, H. (1999). Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Annals of Neurology, 46(2), 224-233.
  10. [1] Geschwind, M. D. (2015). Prion Diseases. Continuum: Lifelong Learning in Neurology, 21(6, Neuroinfectious Disease), 1612–1638. https://doi.org/10.1212/CON.0000000000000230
  11. Brown, P., Brandel, J. P., Sato, T., Nakamura, Y., MacKenzie, J., Will, R. G., ... & Schonberger, L. B. (2012). Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerging infectious diseases18(6), 901.
  12. Ironside, J. W. (2006). Variant Creutzfeldt–Jakob disease: risk of transmission by blood transfusion and blood therapies. Haemophilia12, 8-15.
  13. Brown, P., Preece, M., Brandel, J. P., Sato, T., McShane, L., Zerr, I., ... & Collins, S. J. (2000). Iatrogenic Creutzfeldt–Jakob disease at the millennium. Neurology55(8), 1075-1081.
  14. Will, R. G., Ironside, J. W., Zeidler, M., Estibeiro, K., Cousens, S. N., Smith, P. G., ... & Hofman, A. (1996). A new variant of Creutzfeldt-Jakob disease in the UK. The Lancet347(9006), 921-925.
  15. Collinge, J., Sidle, K. C., Meads, J., Ironside, J., & Hill, A. F. (1996). Molecular analysis of prion strain variation and the aetiology of'new variant'CJD. Nature383(6602), 685-690.
  16. Heath, C. A., Cooper, S. A., Murray, K., Lowman, A., Henry, C., MacLeod, M. A., ... & Will, R. G. (2010). Validation of diagnostic criteria for variant Creutzfeldt–Jakob disease. Annals of neurology67(6), 761-7
  17. Zerr, I., Kallenberg, K., Summers, D. M., Romero, C., Taratuto, A., Heinemann, U., ... & Collins, S. J. (2009). Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain, 132(10), 2659-2668.
  18. Kovács, G. G., Puopolo, M., Ladogana, A., Pocchiari, M., Budka, H., Van Duijn, C., ... & Zerr, I. (2005). Genetic prion disease: the EUROCJD experience. Human genetics, 118(2), 166-174.
  19. Parchi, P., & Gambetti, P. (2011). Human prion diseases. Cold Spring Harbor Perspectives in Biology, 3(1), a006833. https://doi.org/10.1101/cshperspect.a006833
  20. Pankevich, D. E., Wizemann, T. M., Altevogt, B. M., & Institute of Medicine (US). (2011)
  21. Collinge, J., & Clarke, A. R. (2007). A general model of prion strains and their pathogenicity. Science, 318(5852), 930-936.
  22. Prusiner, S. B. (2013). Biology and genetics of prions causing neurodegeneration. Annual Review of Genetics, 47, 601-623.
  23. Aguzzi, A., & Zhu, C. (2017). Prions: A century of scientific puzzles and a Nobel prize. Cell, 171(2), 229-244. Prusiner, S. B. (2013). Biology and genetics of prions causing neurodegeneration. Annual review of genetics, 47, 601-623.
  24. Wille, H., & Prusiner, S. B. (2016). Prion protein structure and biology. Handbook of Clinical Neurology, 153, 21-37.
  25. Guo, B. B., Bellingham, S. A., & Hill, A. F. (2015). The neutral sphingomyelinase pathway regulates the packaging of the prion protein into exosomes. Journal of Biological Chemistry, 290(6), 3455-3467.
  26. Hanson, S., Nadig, L., & Altevogt, B. (2010). Forum on Neuroscience and Nervous System Disorders Board on Health Sciences Policy.
  27. Sanz-Hernández, M., Barritt, J. D., Sobek, J., Hornemann, S., Aguzzi, A., & De Simone, A. (2021). Mechanism of misfolding of the human prion protein revealed by a pathological mutation. Proceedings of the National Academy of Sciences, 118(12), e2019631118.
  28. Moreno-Gonzalez, I., & Soto, C. (2011, July). Misfolded protein aggregates: mechanisms, structures, and potential for disease transmission. In Seminars in cell & developmental biology (Vol. 22, No. 5, pp. 482-487). Academic Press.
  29. Ugalde, C. L., Finkelstein, D. I., Lawson, V. A., & Hill, A. F. (2016). Pathogenic mechanisms of the prion protein, amyloid‐β, and α‐synuclein misfolding: The prion concept and neurotoxicity of protein oligomers. Journal of Neurochemistry, 139(2), 162-180.
  30. Mastrianni, J. A. (2010). The genetics of prion diseases. Genetics in Medicine, 12(4), 187–195. https://doi.org/10.1097/GIM.0b013e3181cd7374
  31. Kristiansen, M., Deriziotis, P., Dimcheff, D. E., Jackson, G. S., Ovaa, H., Naumann, H., ... & Tabrizi, S. J. (2007). Disease-associated prion protein oligomers inhibit the 26S proteasome. Molecular cell, 26(2), 175-188.
  32. Singh, J., & Udgaonkar, J. B. (2015). Molecular mechanism of the misfolding and oligomerization of the prion protein: current understanding and its implications. Biochemistry, 54(29), 4431-4442.
  33. (https://www.ucsfhealth.org/conditions/creutzfeldt-jakob-disease/symptoms)
  34. Wechselberger, C., Wurm, S., Pfarr, W., & Höglinger, O. (2002). The physiological functions of prion protein. Experimental cell research281(1), 1-8.
  35. Onodera, T., Sakudo, A., Tsubone, H., & Itohara, S. (2014). Review of studies that have used knockout mice to assess the normal function of prion protein under immunological or pathophysiological stress. Microbiology and immunology58(7), 361-374.
  36. Roucou, X., Gains, M., & LeBlanc, A. C. (2004). Neuroprotective functions of prion protein. Journal of Neuroscience Research75(2), 153-161.
  37. Otvos Jr, L., & Cudic, M. (2002). Post-translational modifications in prion proteins. Current protein and peptide science3(6), 643-652.
  38. Benetti, F., Biarnés, X., Attanasio, F., Giachin, G., Rizzarelli, E., & Legname, G. (2014). Structural determinants in prion protein folding and stability. Journal of molecular biology426(22), 3796-3810.
  39. Singh, R. K., Chamachi, N. G., Chakrabarty, S., & Mukherjee, A. (2017). Mechanism of unfolding of human prion protein. The Journal of Physical Chemistry B121(3), 550-564.
  40. Hackl, S., & Becker, C. F. (2019). Prion protein—Semisynthetic prion protein (PrP) variants with posttranslational modifications. Journal of Peptide Science25(10), e3216.
  41. Basler, K., Oesch, B., Scott, M., Westaway, D., Wälchli, M., Groth, D. F., ... & Weissmann, C. (1986). Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell46(3), 417-428.
  42. López-Pérez, Ó., Badiola, J. J., Bolea, R., Ferrer, I., Llorens, F., & Martín-Burriel, I. (2020). An Update on Autophagy in Prion Diseases. Frontiers in bioengineering and biotechnology8, 975. https://doi.org/10.3389/fbioe.2020.00975 López-Pérez, Ó., Badiola, J. J., Bolea, R., Ferrer, I., Llorens, F., & Martín-Burriel, I. (2020). An Update on Autophagy in Prion Diseases. Frontiers in bioengineering and biotechnology8, 975. https://doi.org/10.3389/fbioe.2020.00975
  43. Walter, P., & Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. science334(6059), 1081-1086.
  44. Goold, R., McKinnon, C., & Tabrizi, S. J. (2015). Prion degradation pathways: Potential for therapeutic intervention. Molecular and Cellular Neuroscience66, 12-20.
  45. Taylor, D. R., & Hooper, N. M. (2006). The prion protein and lipid rafts. Molecular membrane biology23(1), 89-99
  46. Benetti, F., Biarnés, X., Attanasio, F., Giachin, G., Rizzarelli, E., & Legname, G. (2014). Structural determinants in prion protein folding and stability. Journal of molecular biology426(22), 3796-3810.
  47. Soto, C., & Castilla, J. (2004). The controversial protein-only hypothesis of prion propagation. Nature Medicine, 10(Suppl), S63-S67
  48. Zerr, I., Kallenberg, K., Summers, D. M., Romero, C., Taratuto, A., Heinemann, U., Breithaupt, M., Varges, D., Meissner, B., Ladogana, A., Schuur, M., Haik, S., Collins, S. J., Jansen, G. H., Stokin, G. B., Pimentel, J., Hewer, E., Collie, D., Smith, P., Roberts, H., … Sanchez-Juan, P. (2009). Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain: a journal of neurology132(Pt 10), 2659–2668. https://doi.org/10.1093/brain/awp191
  49. Gil‐Garcia, M., Iglesias, V., Pallarès, I., & Ventura, S. (2021). Prion‐like proteins: from computational approaches to proteome‐wide analysis. FEBS open bio11(9), 2400-2417.
  50. George Priya Doss, C., Rajith, B., Rajasekaran, R., Srajan, J., Nagasundaram, N., & Debajyoti, C. (2013). In silico analysis of prion protein mutants: A comparative study by molecular dynamics approach. Cell biochemistry and biophysics67, 1307-1318.
  51. Peden, A. H., McGuire, L. I., Appleford, N. E., Mallinson, G., Wilham, J. M., Orru, C. D., ... & Head, M. W. (2012). Sensitive and specific detection of sporadic Creutzfeldt–Jakob disease brain prion protein using real-time quaking-induced conversion. Journal of general virology93(2), 438-449.
  52. Jesuthasan, A., Sequeira, D., Hyare, H. et al. Assessing initial MRI reports for suspected CJD patients. J Neurol 269, 4452–4458 (2022). https://doi.org/10.1007/s00415-022-11087-x
  53. Mastrianni, J. A. (2010). The genetics of prion diseases. Genetics in Medicine12(4), 187-195.
  54. Alberts, B., Johnson, A., & Lewis, J. (2002). Molecular biology of the cell. New York: Garland Science. The Lipid Bilayer.
  55. Neumann, E. N., Bertozzi, T. M., Wu, E., Serack, F., Harvey, J. W., Brauer, P. P., Pirtle, C. P., Coffey, A., Howard, M., Kamath, N., Lenz, K., Guzman, K., Raymond, M. H., Khalil, A. S., Deverman, B. E., Minikel, E. V., Vallabh, S. M., & Weissman, J. S. (2024). Brainwide silencing of prion protein by AAV-mediated delivery of an engineered compact epigenetic editor. Science, 384(6703), ado7082. https://doi.org/10.1126/science.ado7082
  56. Biró, A., Cuesta-Vargas, A. I., & Szilágyi, L. (2023). Precognition of mental health and neurogenerative disorders using AI-parsed text and sentiment analysis. Acta Universitatis Sapientiae15(2), 359-403.
  57. Hossain, K. M., Islam, M. A., Hossain, S., Nijholt, A., & Ahad, M. A. R. (2023). Status of deep learning for EEG-based brain–computer interface applications. Frontiers in Computational Neuroscience, 16. https://doi.org/10.3389/fncom.2022.1006763
  58. Poleggi, A., Baiardi, S., Ladogana, A., & Parchi, P. (2022). The use of real-time quaking-induced conversion for the diagnosis of human prion diseases. Frontiers in Aging Neuroscience14, 874734.
  59. Mammana, A., Baiardi, S., Rossi, M., Franceschini, A., Donadio, V., Capellari, S., Caughey, B., & Parchi, P. (2020). Detection of prions in skin punch biopsies of Creutzfeldt-Jakob disease patients. Annals of clinical and translational neurology7(4), 559–564. https://doi.org/10.1002/acn3.51000
  60. Orrú, C. D., Bongianni, M., Tonoli, G., Ferrari, S., Hughson, A. G., Groveman, B. R., ... & Zanusso, G. (2014). A test for Creutzfeldt–Jakob disease using nasal brushings. New England Journal of Medicine371(6), 519-529.
  61. do Carmo Ferreira, N., & Caughey, B. (2020). Proteopathic seed amplification assays for neurodegenerative disorders. Clinics in laboratory medicine40(3), 257-270.
  62. Wang, F., Pritzkow, S., & Soto, C. (2023). PMCA for ultrasensitive detection of prions and to study disease biology. Cell and tissue research392(1), 307–321. https://doi.org/10.1007/s00441-022-03727-5
  63. Cazzaniga, F. A., Bistaffa, E., De Luca, C. M. G., Portaleone, S. M., Catania, M., Redaelli, V., Tramacere, I., Bufano, G., Rossi, M., Caroppo, P., Giovagnoli, A. R., Tiraboschi, P., Di Fede, G., Eleopra, R., Devigili, G., Elia, A. E., Cilia, R., Fiorini, M., Bongianni, M., Salzano, G., … Moda, F. (2022). PMCA-Based Detection of Prions in the Olfactory Mucosa of Patients With Sporadic Creutzfeldt-Jakob Disease. Frontiers in aging neuroscience14, 848991. https://doi.org/10.3389/fnagi.2022.848991
  64. Salvi, M., Molinari, F., Ciccarelli, M., & others. (2023). Quantitative analysis of prion disease using an AI-powered digital pathology framework. Scientific Reports, 13, 17759. https://doi.org/10.1038/s41598-023-44782-4
  65. Bizzi, A., Pascuzzo, R., Blevins, J., et al. (2020). Evaluation of a new criterion for detecting prion disease with diffusion magnetic resonance imaging. JAMA Neurology, 77(9), 1141–1149. https://doi.org/10.1001/jamaneurol.2020.1319
  66. Aguib, Y., Heiseke, A., Gilch, S., Riemer, C., Baier, M., Schätzl, H. M., & Ertmer, A. (2009). Autophagy induction by trehalose counteracts cellular prion infection. Autophagy5(3), 361–369. https://doi.org/10.4161/auto.5.3.7662
  67. Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A., & Rubinsztein, D. C. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. The Journal of biological chemistry282(8), 5641–5652. https://doi.org/10.1074/jbc.M609532200
  68. Jalali, P., Shahmoradi, A., Samii, A., Mazloomnejad, R., Hatamnejad, M. R., Saeed, A., ... & Salehi, Z. (2025). The role of autophagy in cancer: from molecular mechanism to therapeutic window. Frontiers in Immunology16, 1528230.
  69. López-Pérez, Ó., Badiola, J. J., Bolea, R., Ferrer, I., Llorens, F., & Martín-Burriel, I. (2020). An update on autophagy in prion diseases. Frontiers in Bioengineering and Biotechnology, 8, 975. https://doi.org/10.3389/fbioe.2020.00975
  70. Kristiansen, M., Deriziotis, P., Dimcheff, D. E., Jackson, G. S., Ovaa, H., Naumann, H., ... & Tabrizi, S. J. (2007). Disease-associated prion protein oligomers inhibit the 26S proteasome. Molecular Cell, 26(2), 175–188. https://doi.org/10.1016/j.molcel.2007.03.015
  71. Goold, R., McKinnon, C., & Tabrizi, S. J. (2015). Prion degradation pathways: Potential for therapeutic intervention. Molecular and Cellular Neuroscience, 66, 12–20. https://doi.org/10.1016/j.mcn.2015.03.010
  72. Roucou, X., Gains, M., & LeBlanc, A. C. (2004). Neuroprotective functions of prion protein. Journal of Neuroscience Research, 75(2), 153–161. https://doi.org/10.1002/jnr.10843
  73. Yang, Z., & Klionsky, D. J. (2009). An overview of the molecular mechanism of autophagy. Current topics in microbiology and immunology335, 1–32. https://doi.org/10.1007/978-3-642-00302-8_1
  74. Chen, L., Yang, L., Li, Y., Liu, T., Yang, B., Liu, L., & Wu, R. (2023). Autophagy and Inflammation: Regulatory Roles in Viral Infections. Biomolecules13(10), 1454. https://doi.org/10.3390/biom13101454
  75. Shafiq, M., Da Vela, S., Amin, L., Younas, N., Harris, D. A., Zerr, I., ... & Glatzel, M. (2022). The prion protein and its ligands: Insights into structure-function relationships. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research1869(6), 119240.

Creutzfeldt-Jakob Disease (CJD) is a rare, fatal neurodegenerative disorder characterized by the accumulation of misfolded prion proteins (PrP^Sc) in the central nervous system. This review explores the molecular dynamics of prion misfolding and its implications for disease progression, with a particular focus on cellular degradation pathways. Key proteolytic systems, including the ubiquitin-proteasome system and the autophagy-lysosome pathway, are critically analyzed for their roles in the clearance of PrP^Sc. Special emphasis is placed on lysosomal involvement, where autophagosomes fuse to form autolysosomes, facilitating the breakdown of pathogenic proteins. The interplay between proteases and molecular chaperones in maintaining protein homeostasis is also discussed. Neuropathologically, CJD is marked by spongiform alterations, neuronal loss, and gliosis. Clinically, the disease presents with rapidly progressive dementia, motor impairments, and psychiatric symptoms. The heterogeneity of CJD is addressed by outlining its sporadic, familial, iatrogenic, and variant subtypes. Recent advances in diagnostic techniques, including real-time quaking-induced conversion (RT-QuIC) in peripheral tissues, as well as the integration of machine learning tools and AI-assisted biomarker discovery, are highlighted. Emerging therapeutic strategies targeting proteolytic and lysosomal pathways are also reviewed, offering potential for future intervention in this currently untreatable disease.

Keywords : Creutzfeldt-Jakob Disease (CJD), Prion Proteins, Neurodegeneration, Sporadic CJD, Variant CJD, Protein Misfolding, Real-Time Quaking-Induced Conversion (RT-QuIC), Biomarkers, Magnetic Resonance Imaging (MRI), Therapeutic Approaches.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe