Authors :
Mithula Jinde; Dr. Estuti Chandra; Poornima S
Volume/Issue :
Volume 10 - 2025, Issue 7 - July
Google Scholar :
https://tinyurl.com/2994mvb7
Scribd :
https://tinyurl.com/hamvvv8v
DOI :
https://doi.org/10.38124/ijisrt/25jul1837
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Creutzfeldt-Jakob Disease (CJD) is a rare, fatal neurodegenerative disorder characterized by the accumulation of
misfolded prion proteins (PrP^Sc) in the central nervous system. This review explores the molecular dynamics of prion
misfolding and its implications for disease progression, with a particular focus on cellular degradation pathways. Key
proteolytic systems, including the ubiquitin-proteasome system and the autophagy-lysosome pathway, are critically analyzed
for their roles in the clearance of PrP^Sc. Special emphasis is placed on lysosomal involvement, where autophagosomes fuse
to form autolysosomes, facilitating the breakdown of pathogenic proteins. The interplay between proteases and molecular
chaperones in maintaining protein homeostasis is also discussed. Neuropathologically, CJD is marked by spongiform
alterations, neuronal loss, and gliosis. Clinically, the disease presents with rapidly progressive dementia, motor impairments,
and psychiatric symptoms. The heterogeneity of CJD is addressed by outlining its sporadic, familial, iatrogenic, and variant
subtypes. Recent advances in diagnostic techniques, including real-time quaking-induced conversion (RT-QuIC) in
peripheral tissues, as well as the integration of machine learning tools and AI-assisted biomarker discovery, are highlighted.
Emerging therapeutic strategies targeting proteolytic and lysosomal pathways are also reviewed, offering potential for future
intervention in this currently untreatable disease.
Keywords :
Creutzfeldt-Jakob Disease (CJD), Prion Proteins, Neurodegeneration, Sporadic CJD, Variant CJD, Protein Misfolding, Real-Time Quaking-Induced Conversion (RT-QuIC), Biomarkers, Magnetic Resonance Imaging (MRI), Therapeutic Approaches.
References :
- Sigurdson, C. J., Bartz, J. C., & Glatzel, M. (2019). Cellular and molecular mechanisms of prion disease. Annual Review of Pathology: Mechanisms of Disease, 14, 497-516.
- Prusiner, S. B. (1998). Prions. Proceedings of the National Academy of Sciences, 95(23), 13363-13383.
- Langeveld, J. P., Wang, J. J., Van de Wiel, D. F., Shih, G. C., Garssen, G. J., Bossers, A., & Shih, J. C. (2003). Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. The Journal of Infectious Diseases, 188(11), 1782-1789.
- Soto, C., & Castilla, J. (2004). The controversial protein-only hypothesis of prion propagation. Nature Medicine, 10(Suppl), S63-S67.
- Kojima, G., Tatsuno, B. K., Inaba, M., Velligas, S., Masaki, K., & Liow, K. K. (2013). Creutzfeldt-Jakob disease: a case report and differential diagnoses. Hawai'i journal of medicine & public health: a journal of Asia Pacific Medicine & Public Health, 72(4), 136–139
- Aguzzi, A., & Lakkaraju, A. K. (2016). Cell biology of prions and prionoids: a status report. Trends in Cell Biology, 26(1), 40-51.
- Soto, C., Estrada, L., & Castilla, J. (2006). Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends in biochemical sciences, 31(3), 150-155.
- Cappai, R., & Collins, S. J. (2004). Structural biology of prions. Prions, 11, 14-32.
- Parchi, P., Giese, A., Capellari, S., Brown, P., Schulz-Schaeffer, W., Windl, O., ... & Kretzschmar, H. (1999). Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Annals of Neurology, 46(2), 224-233.
- [1] Geschwind, M. D. (2015). Prion Diseases. Continuum: Lifelong Learning in Neurology, 21(6, Neuroinfectious Disease), 1612–1638. https://doi.org/10.1212/CON.0000000000000230
- Brown, P., Brandel, J. P., Sato, T., Nakamura, Y., MacKenzie, J., Will, R. G., ... & Schonberger, L. B. (2012). Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerging infectious diseases, 18(6), 901.
- Ironside, J. W. (2006). Variant Creutzfeldt–Jakob disease: risk of transmission by blood transfusion and blood therapies. Haemophilia, 12, 8-15.
- Brown, P., Preece, M., Brandel, J. P., Sato, T., McShane, L., Zerr, I., ... & Collins, S. J. (2000). Iatrogenic Creutzfeldt–Jakob disease at the millennium. Neurology, 55(8), 1075-1081.
- Will, R. G., Ironside, J. W., Zeidler, M., Estibeiro, K., Cousens, S. N., Smith, P. G., ... & Hofman, A. (1996). A new variant of Creutzfeldt-Jakob disease in the UK. The Lancet, 347(9006), 921-925.
- Collinge, J., Sidle, K. C., Meads, J., Ironside, J., & Hill, A. F. (1996). Molecular analysis of prion strain variation and the aetiology of'new variant'CJD. Nature, 383(6602), 685-690.
- Heath, C. A., Cooper, S. A., Murray, K., Lowman, A., Henry, C., MacLeod, M. A., ... & Will, R. G. (2010). Validation of diagnostic criteria for variant Creutzfeldt–Jakob disease. Annals of neurology, 67(6), 761-7
- Zerr, I., Kallenberg, K., Summers, D. M., Romero, C., Taratuto, A., Heinemann, U., ... & Collins, S. J. (2009). Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain, 132(10), 2659-2668.
- Kovács, G. G., Puopolo, M., Ladogana, A., Pocchiari, M., Budka, H., Van Duijn, C., ... & Zerr, I. (2005). Genetic prion disease: the EUROCJD experience. Human genetics, 118(2), 166-174.
- Parchi, P., & Gambetti, P. (2011). Human prion diseases. Cold Spring Harbor Perspectives in Biology, 3(1), a006833. https://doi.org/10.1101/cshperspect.a006833
- Pankevich, D. E., Wizemann, T. M., Altevogt, B. M., & Institute of Medicine (US). (2011)
- Collinge, J., & Clarke, A. R. (2007). A general model of prion strains and their pathogenicity. Science, 318(5852), 930-936.
- Prusiner, S. B. (2013). Biology and genetics of prions causing neurodegeneration. Annual Review of Genetics, 47, 601-623.
- Aguzzi, A., & Zhu, C. (2017). Prions: A century of scientific puzzles and a Nobel prize. Cell, 171(2), 229-244. Prusiner, S. B. (2013). Biology and genetics of prions causing neurodegeneration. Annual review of genetics, 47, 601-623.
- Wille, H., & Prusiner, S. B. (2016). Prion protein structure and biology. Handbook of Clinical Neurology, 153, 21-37.
- Guo, B. B., Bellingham, S. A., & Hill, A. F. (2015). The neutral sphingomyelinase pathway regulates the packaging of the prion protein into exosomes. Journal of Biological Chemistry, 290(6), 3455-3467.
- Hanson, S., Nadig, L., & Altevogt, B. (2010). Forum on Neuroscience and Nervous System Disorders Board on Health Sciences Policy.
- Sanz-Hernández, M., Barritt, J. D., Sobek, J., Hornemann, S., Aguzzi, A., & De Simone, A. (2021). Mechanism of misfolding of the human prion protein revealed by a pathological mutation. Proceedings of the National Academy of Sciences, 118(12), e2019631118.
- Moreno-Gonzalez, I., & Soto, C. (2011, July). Misfolded protein aggregates: mechanisms, structures, and potential for disease transmission. In Seminars in cell & developmental biology (Vol. 22, No. 5, pp. 482-487). Academic Press.
- Ugalde, C. L., Finkelstein, D. I., Lawson, V. A., & Hill, A. F. (2016). Pathogenic mechanisms of the prion protein, amyloid‐β, and α‐synuclein misfolding: The prion concept and neurotoxicity of protein oligomers. Journal of Neurochemistry, 139(2), 162-180.
- Mastrianni, J. A. (2010). The genetics of prion diseases. Genetics in Medicine, 12(4), 187–195. https://doi.org/10.1097/GIM.0b013e3181cd7374
- Kristiansen, M., Deriziotis, P., Dimcheff, D. E., Jackson, G. S., Ovaa, H., Naumann, H., ... & Tabrizi, S. J. (2007). Disease-associated prion protein oligomers inhibit the 26S proteasome. Molecular cell, 26(2), 175-188.
- Singh, J., & Udgaonkar, J. B. (2015). Molecular mechanism of the misfolding and oligomerization of the prion protein: current understanding and its implications. Biochemistry, 54(29), 4431-4442.
- (https://www.ucsfhealth.org/conditions/creutzfeldt-jakob-disease/symptoms)
- Wechselberger, C., Wurm, S., Pfarr, W., & Höglinger, O. (2002). The physiological functions of prion protein. Experimental cell research, 281(1), 1-8.
- Onodera, T., Sakudo, A., Tsubone, H., & Itohara, S. (2014). Review of studies that have used knockout mice to assess the normal function of prion protein under immunological or pathophysiological stress. Microbiology and immunology, 58(7), 361-374.
- Roucou, X., Gains, M., & LeBlanc, A. C. (2004). Neuroprotective functions of prion protein. Journal of Neuroscience Research, 75(2), 153-161.
- Otvos Jr, L., & Cudic, M. (2002). Post-translational modifications in prion proteins. Current protein and peptide science, 3(6), 643-652.
- Benetti, F., Biarnés, X., Attanasio, F., Giachin, G., Rizzarelli, E., & Legname, G. (2014). Structural determinants in prion protein folding and stability. Journal of molecular biology, 426(22), 3796-3810.
- Singh, R. K., Chamachi, N. G., Chakrabarty, S., & Mukherjee, A. (2017). Mechanism of unfolding of human prion protein. The Journal of Physical Chemistry B, 121(3), 550-564.
- Hackl, S., & Becker, C. F. (2019). Prion protein—Semisynthetic prion protein (PrP) variants with posttranslational modifications. Journal of Peptide Science, 25(10), e3216.
- Basler, K., Oesch, B., Scott, M., Westaway, D., Wälchli, M., Groth, D. F., ... & Weissmann, C. (1986). Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell, 46(3), 417-428.
- López-Pérez, Ó., Badiola, J. J., Bolea, R., Ferrer, I., Llorens, F., & Martín-Burriel, I. (2020). An Update on Autophagy in Prion Diseases. Frontiers in bioengineering and biotechnology, 8, 975. https://doi.org/10.3389/fbioe.2020.00975 López-Pérez, Ó., Badiola, J. J., Bolea, R., Ferrer, I., Llorens, F., & Martín-Burriel, I. (2020). An Update on Autophagy in Prion Diseases. Frontiers in bioengineering and biotechnology, 8, 975. https://doi.org/10.3389/fbioe.2020.00975
- Walter, P., & Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. science, 334(6059), 1081-1086.
- Goold, R., McKinnon, C., & Tabrizi, S. J. (2015). Prion degradation pathways: Potential for therapeutic intervention. Molecular and Cellular Neuroscience, 66, 12-20.
- Taylor, D. R., & Hooper, N. M. (2006). The prion protein and lipid rafts. Molecular membrane biology, 23(1), 89-99
- Benetti, F., Biarnés, X., Attanasio, F., Giachin, G., Rizzarelli, E., & Legname, G. (2014). Structural determinants in prion protein folding and stability. Journal of molecular biology, 426(22), 3796-3810.
- Soto, C., & Castilla, J. (2004). The controversial protein-only hypothesis of prion propagation. Nature Medicine, 10(Suppl), S63-S67
- Zerr, I., Kallenberg, K., Summers, D. M., Romero, C., Taratuto, A., Heinemann, U., Breithaupt, M., Varges, D., Meissner, B., Ladogana, A., Schuur, M., Haik, S., Collins, S. J., Jansen, G. H., Stokin, G. B., Pimentel, J., Hewer, E., Collie, D., Smith, P., Roberts, H., … Sanchez-Juan, P. (2009). Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain: a journal of neurology, 132(Pt 10), 2659–2668. https://doi.org/10.1093/brain/awp191
- Gil‐Garcia, M., Iglesias, V., Pallarès, I., & Ventura, S. (2021). Prion‐like proteins: from computational approaches to proteome‐wide analysis. FEBS open bio, 11(9), 2400-2417.
- George Priya Doss, C., Rajith, B., Rajasekaran, R., Srajan, J., Nagasundaram, N., & Debajyoti, C. (2013). In silico analysis of prion protein mutants: A comparative study by molecular dynamics approach. Cell biochemistry and biophysics, 67, 1307-1318.
- Peden, A. H., McGuire, L. I., Appleford, N. E., Mallinson, G., Wilham, J. M., Orru, C. D., ... & Head, M. W. (2012). Sensitive and specific detection of sporadic Creutzfeldt–Jakob disease brain prion protein using real-time quaking-induced conversion. Journal of general virology, 93(2), 438-449.
- Jesuthasan, A., Sequeira, D., Hyare, H. et al. Assessing initial MRI reports for suspected CJD patients. J Neurol 269, 4452–4458 (2022). https://doi.org/10.1007/s00415-022-11087-x
- Mastrianni, J. A. (2010). The genetics of prion diseases. Genetics in Medicine, 12(4), 187-195.
- Alberts, B., Johnson, A., & Lewis, J. (2002). Molecular biology of the cell. New York: Garland Science. The Lipid Bilayer.
- Neumann, E. N., Bertozzi, T. M., Wu, E., Serack, F., Harvey, J. W., Brauer, P. P., Pirtle, C. P., Coffey, A., Howard, M., Kamath, N., Lenz, K., Guzman, K., Raymond, M. H., Khalil, A. S., Deverman, B. E., Minikel, E. V., Vallabh, S. M., & Weissman, J. S. (2024). Brainwide silencing of prion protein by AAV-mediated delivery of an engineered compact epigenetic editor. Science, 384(6703), ado7082. https://doi.org/10.1126/science.ado7082
- Biró, A., Cuesta-Vargas, A. I., & Szilágyi, L. (2023). Precognition of mental health and neurogenerative disorders using AI-parsed text and sentiment analysis. Acta Universitatis Sapientiae, 15(2), 359-403.
- Hossain, K. M., Islam, M. A., Hossain, S., Nijholt, A., & Ahad, M. A. R. (2023). Status of deep learning for EEG-based brain–computer interface applications. Frontiers in Computational Neuroscience, 16. https://doi.org/10.3389/fncom.2022.1006763
- Poleggi, A., Baiardi, S., Ladogana, A., & Parchi, P. (2022). The use of real-time quaking-induced conversion for the diagnosis of human prion diseases. Frontiers in Aging Neuroscience, 14, 874734.
- Mammana, A., Baiardi, S., Rossi, M., Franceschini, A., Donadio, V., Capellari, S., Caughey, B., & Parchi, P. (2020). Detection of prions in skin punch biopsies of Creutzfeldt-Jakob disease patients. Annals of clinical and translational neurology, 7(4), 559–564. https://doi.org/10.1002/acn3.51000
- Orrú, C. D., Bongianni, M., Tonoli, G., Ferrari, S., Hughson, A. G., Groveman, B. R., ... & Zanusso, G. (2014). A test for Creutzfeldt–Jakob disease using nasal brushings. New England Journal of Medicine, 371(6), 519-529.
- do Carmo Ferreira, N., & Caughey, B. (2020). Proteopathic seed amplification assays for neurodegenerative disorders. Clinics in laboratory medicine, 40(3), 257-270.
- Wang, F., Pritzkow, S., & Soto, C. (2023). PMCA for ultrasensitive detection of prions and to study disease biology. Cell and tissue research, 392(1), 307–321. https://doi.org/10.1007/s00441-022-03727-5
- Cazzaniga, F. A., Bistaffa, E., De Luca, C. M. G., Portaleone, S. M., Catania, M., Redaelli, V., Tramacere, I., Bufano, G., Rossi, M., Caroppo, P., Giovagnoli, A. R., Tiraboschi, P., Di Fede, G., Eleopra, R., Devigili, G., Elia, A. E., Cilia, R., Fiorini, M., Bongianni, M., Salzano, G., … Moda, F. (2022). PMCA-Based Detection of Prions in the Olfactory Mucosa of Patients With Sporadic Creutzfeldt-Jakob Disease. Frontiers in aging neuroscience, 14, 848991. https://doi.org/10.3389/fnagi.2022.848991
- Salvi, M., Molinari, F., Ciccarelli, M., & others. (2023). Quantitative analysis of prion disease using an AI-powered digital pathology framework. Scientific Reports, 13, 17759. https://doi.org/10.1038/s41598-023-44782-4
- Bizzi, A., Pascuzzo, R., Blevins, J., et al. (2020). Evaluation of a new criterion for detecting prion disease with diffusion magnetic resonance imaging. JAMA Neurology, 77(9), 1141–1149. https://doi.org/10.1001/jamaneurol.2020.1319
- Aguib, Y., Heiseke, A., Gilch, S., Riemer, C., Baier, M., Schätzl, H. M., & Ertmer, A. (2009). Autophagy induction by trehalose counteracts cellular prion infection. Autophagy, 5(3), 361–369. https://doi.org/10.4161/auto.5.3.7662
- Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A., & Rubinsztein, D. C. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. The Journal of biological chemistry, 282(8), 5641–5652. https://doi.org/10.1074/jbc.M609532200
- Jalali, P., Shahmoradi, A., Samii, A., Mazloomnejad, R., Hatamnejad, M. R., Saeed, A., ... & Salehi, Z. (2025). The role of autophagy in cancer: from molecular mechanism to therapeutic window. Frontiers in Immunology, 16, 1528230.
- López-Pérez, Ó., Badiola, J. J., Bolea, R., Ferrer, I., Llorens, F., & Martín-Burriel, I. (2020). An update on autophagy in prion diseases. Frontiers in Bioengineering and Biotechnology, 8, 975. https://doi.org/10.3389/fbioe.2020.00975
- Kristiansen, M., Deriziotis, P., Dimcheff, D. E., Jackson, G. S., Ovaa, H., Naumann, H., ... & Tabrizi, S. J. (2007). Disease-associated prion protein oligomers inhibit the 26S proteasome. Molecular Cell, 26(2), 175–188. https://doi.org/10.1016/j.molcel.2007.03.015
- Goold, R., McKinnon, C., & Tabrizi, S. J. (2015). Prion degradation pathways: Potential for therapeutic intervention. Molecular and Cellular Neuroscience, 66, 12–20. https://doi.org/10.1016/j.mcn.2015.03.010
- Roucou, X., Gains, M., & LeBlanc, A. C. (2004). Neuroprotective functions of prion protein. Journal of Neuroscience Research, 75(2), 153–161. https://doi.org/10.1002/jnr.10843
- Yang, Z., & Klionsky, D. J. (2009). An overview of the molecular mechanism of autophagy. Current topics in microbiology and immunology, 335, 1–32. https://doi.org/10.1007/978-3-642-00302-8_1
- Chen, L., Yang, L., Li, Y., Liu, T., Yang, B., Liu, L., & Wu, R. (2023). Autophagy and Inflammation: Regulatory Roles in Viral Infections. Biomolecules, 13(10), 1454. https://doi.org/10.3390/biom13101454
- Shafiq, M., Da Vela, S., Amin, L., Younas, N., Harris, D. A., Zerr, I., ... & Glatzel, M. (2022). The prion protein and its ligands: Insights into structure-function relationships. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1869(6), 119240.
Creutzfeldt-Jakob Disease (CJD) is a rare, fatal neurodegenerative disorder characterized by the accumulation of
misfolded prion proteins (PrP^Sc) in the central nervous system. This review explores the molecular dynamics of prion
misfolding and its implications for disease progression, with a particular focus on cellular degradation pathways. Key
proteolytic systems, including the ubiquitin-proteasome system and the autophagy-lysosome pathway, are critically analyzed
for their roles in the clearance of PrP^Sc. Special emphasis is placed on lysosomal involvement, where autophagosomes fuse
to form autolysosomes, facilitating the breakdown of pathogenic proteins. The interplay between proteases and molecular
chaperones in maintaining protein homeostasis is also discussed. Neuropathologically, CJD is marked by spongiform
alterations, neuronal loss, and gliosis. Clinically, the disease presents with rapidly progressive dementia, motor impairments,
and psychiatric symptoms. The heterogeneity of CJD is addressed by outlining its sporadic, familial, iatrogenic, and variant
subtypes. Recent advances in diagnostic techniques, including real-time quaking-induced conversion (RT-QuIC) in
peripheral tissues, as well as the integration of machine learning tools and AI-assisted biomarker discovery, are highlighted.
Emerging therapeutic strategies targeting proteolytic and lysosomal pathways are also reviewed, offering potential for future
intervention in this currently untreatable disease.
Keywords :
Creutzfeldt-Jakob Disease (CJD), Prion Proteins, Neurodegeneration, Sporadic CJD, Variant CJD, Protein Misfolding, Real-Time Quaking-Induced Conversion (RT-QuIC), Biomarkers, Magnetic Resonance Imaging (MRI), Therapeutic Approaches.